MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  termoval Structured version   Visualization version   GIF version

Theorem termoval 17250
Description: The value of the terminal object function, i.e. the set of all terminal objects of a category. (Contributed by AV, 3-Apr-2020.)
Hypotheses
Ref Expression
initoval.c (𝜑𝐶 ∈ Cat)
initoval.b 𝐵 = (Base‘𝐶)
initoval.h 𝐻 = (Hom ‘𝐶)
Assertion
Ref Expression
termoval (𝜑 → (TermO‘𝐶) = {𝑎𝐵 ∣ ∀𝑏𝐵 ∃! ∈ (𝑏𝐻𝑎)})
Distinct variable groups:   𝑎,𝑏,   𝐵,𝑎,𝑏   𝐶,𝑎,𝑏,
Allowed substitution hints:   𝜑(,𝑎,𝑏)   𝐵()   𝐻(,𝑎,𝑏)

Proof of Theorem termoval
Dummy variable 𝑐 is distinct from all other variables.
StepHypRef Expression
1 df-termo 17244 . 2 TermO = (𝑐 ∈ Cat ↦ {𝑎 ∈ (Base‘𝑐) ∣ ∀𝑏 ∈ (Base‘𝑐)∃! ∈ (𝑏(Hom ‘𝑐)𝑎)})
2 fveq2 6645 . . . 4 (𝑐 = 𝐶 → (Base‘𝑐) = (Base‘𝐶))
3 initoval.b . . . 4 𝐵 = (Base‘𝐶)
42, 3eqtr4di 2851 . . 3 (𝑐 = 𝐶 → (Base‘𝑐) = 𝐵)
5 fveq2 6645 . . . . . . . 8 (𝑐 = 𝐶 → (Hom ‘𝑐) = (Hom ‘𝐶))
6 initoval.h . . . . . . . 8 𝐻 = (Hom ‘𝐶)
75, 6eqtr4di 2851 . . . . . . 7 (𝑐 = 𝐶 → (Hom ‘𝑐) = 𝐻)
87oveqd 7152 . . . . . 6 (𝑐 = 𝐶 → (𝑏(Hom ‘𝑐)𝑎) = (𝑏𝐻𝑎))
98eleq2d 2875 . . . . 5 (𝑐 = 𝐶 → ( ∈ (𝑏(Hom ‘𝑐)𝑎) ↔ ∈ (𝑏𝐻𝑎)))
109eubidv 2647 . . . 4 (𝑐 = 𝐶 → (∃! ∈ (𝑏(Hom ‘𝑐)𝑎) ↔ ∃! ∈ (𝑏𝐻𝑎)))
114, 10raleqbidv 3354 . . 3 (𝑐 = 𝐶 → (∀𝑏 ∈ (Base‘𝑐)∃! ∈ (𝑏(Hom ‘𝑐)𝑎) ↔ ∀𝑏𝐵 ∃! ∈ (𝑏𝐻𝑎)))
124, 11rabeqbidv 3433 . 2 (𝑐 = 𝐶 → {𝑎 ∈ (Base‘𝑐) ∣ ∀𝑏 ∈ (Base‘𝑐)∃! ∈ (𝑏(Hom ‘𝑐)𝑎)} = {𝑎𝐵 ∣ ∀𝑏𝐵 ∃! ∈ (𝑏𝐻𝑎)})
13 initoval.c . 2 (𝜑𝐶 ∈ Cat)
143fvexi 6659 . . . 4 𝐵 ∈ V
1514rabex 5199 . . 3 {𝑎𝐵 ∣ ∀𝑏𝐵 ∃! ∈ (𝑏𝐻𝑎)} ∈ V
1615a1i 11 . 2 (𝜑 → {𝑎𝐵 ∣ ∀𝑏𝐵 ∃! ∈ (𝑏𝐻𝑎)} ∈ V)
171, 12, 13, 16fvmptd3 6768 1 (𝜑 → (TermO‘𝐶) = {𝑎𝐵 ∣ ∀𝑏𝐵 ∃! ∈ (𝑏𝐻𝑎)})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1538  wcel 2111  ∃!weu 2628  wral 3106  {crab 3110  Vcvv 3441  cfv 6324  (class class class)co 7135  Basecbs 16475  Hom chom 16568  Catccat 16927  TermOctermo 17241
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pr 5295
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ral 3111  df-rex 3112  df-rab 3115  df-v 3443  df-sbc 3721  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-iota 6283  df-fun 6326  df-fv 6332  df-ov 7138  df-termo 17244
This theorem is referenced by:  istermo  17253  istermoi  17256
  Copyright terms: Public domain W3C validator