| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > isinito | Structured version Visualization version GIF version | ||
| Description: The predicate "is an initial object" of a category. (Contributed by AV, 3-Apr-2020.) |
| Ref | Expression |
|---|---|
| isinito.b | ⊢ 𝐵 = (Base‘𝐶) |
| isinito.h | ⊢ 𝐻 = (Hom ‘𝐶) |
| isinito.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
| isinito.i | ⊢ (𝜑 → 𝐼 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| isinito | ⊢ (𝜑 → (𝐼 ∈ (InitO‘𝐶) ↔ ∀𝑏 ∈ 𝐵 ∃!ℎ ℎ ∈ (𝐼𝐻𝑏))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isinito.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
| 2 | isinito.b | . . . 4 ⊢ 𝐵 = (Base‘𝐶) | |
| 3 | isinito.h | . . . 4 ⊢ 𝐻 = (Hom ‘𝐶) | |
| 4 | 1, 2, 3 | initoval 17919 | . . 3 ⊢ (𝜑 → (InitO‘𝐶) = {𝑖 ∈ 𝐵 ∣ ∀𝑏 ∈ 𝐵 ∃!ℎ ℎ ∈ (𝑖𝐻𝑏)}) |
| 5 | 4 | eleq2d 2814 | . 2 ⊢ (𝜑 → (𝐼 ∈ (InitO‘𝐶) ↔ 𝐼 ∈ {𝑖 ∈ 𝐵 ∣ ∀𝑏 ∈ 𝐵 ∃!ℎ ℎ ∈ (𝑖𝐻𝑏)})) |
| 6 | isinito.i | . . 3 ⊢ (𝜑 → 𝐼 ∈ 𝐵) | |
| 7 | oveq1 7360 | . . . . . . 7 ⊢ (𝑖 = 𝐼 → (𝑖𝐻𝑏) = (𝐼𝐻𝑏)) | |
| 8 | 7 | eleq2d 2814 | . . . . . 6 ⊢ (𝑖 = 𝐼 → (ℎ ∈ (𝑖𝐻𝑏) ↔ ℎ ∈ (𝐼𝐻𝑏))) |
| 9 | 8 | eubidv 2579 | . . . . 5 ⊢ (𝑖 = 𝐼 → (∃!ℎ ℎ ∈ (𝑖𝐻𝑏) ↔ ∃!ℎ ℎ ∈ (𝐼𝐻𝑏))) |
| 10 | 9 | ralbidv 3152 | . . . 4 ⊢ (𝑖 = 𝐼 → (∀𝑏 ∈ 𝐵 ∃!ℎ ℎ ∈ (𝑖𝐻𝑏) ↔ ∀𝑏 ∈ 𝐵 ∃!ℎ ℎ ∈ (𝐼𝐻𝑏))) |
| 11 | 10 | elrab3 3651 | . . 3 ⊢ (𝐼 ∈ 𝐵 → (𝐼 ∈ {𝑖 ∈ 𝐵 ∣ ∀𝑏 ∈ 𝐵 ∃!ℎ ℎ ∈ (𝑖𝐻𝑏)} ↔ ∀𝑏 ∈ 𝐵 ∃!ℎ ℎ ∈ (𝐼𝐻𝑏))) |
| 12 | 6, 11 | syl 17 | . 2 ⊢ (𝜑 → (𝐼 ∈ {𝑖 ∈ 𝐵 ∣ ∀𝑏 ∈ 𝐵 ∃!ℎ ℎ ∈ (𝑖𝐻𝑏)} ↔ ∀𝑏 ∈ 𝐵 ∃!ℎ ℎ ∈ (𝐼𝐻𝑏))) |
| 13 | 5, 12 | bitrd 279 | 1 ⊢ (𝜑 → (𝐼 ∈ (InitO‘𝐶) ↔ ∀𝑏 ∈ 𝐵 ∃!ℎ ℎ ∈ (𝐼𝐻𝑏))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 ∃!weu 2561 ∀wral 3044 {crab 3396 ‘cfv 6486 (class class class)co 7353 Basecbs 17139 Hom chom 17191 Catccat 17589 InitOcinito 17907 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-iota 6442 df-fun 6488 df-fv 6494 df-ov 7356 df-inito 17910 |
| This theorem is referenced by: isinitoi 17925 initoeu2 17942 zrinitorngc 20546 zrninitoringc 20580 irinitoringc 21405 isinito2lem 49503 |
| Copyright terms: Public domain | W3C validator |