MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isinito Structured version   Visualization version   GIF version

Theorem isinito 17958
Description: The predicate "is an initial object" of a category. (Contributed by AV, 3-Apr-2020.)
Hypotheses
Ref Expression
isinito.b 𝐵 = (Base‘𝐶)
isinito.h 𝐻 = (Hom ‘𝐶)
isinito.c (𝜑𝐶 ∈ Cat)
isinito.i (𝜑𝐼𝐵)
Assertion
Ref Expression
isinito (𝜑 → (𝐼 ∈ (InitO‘𝐶) ↔ ∀𝑏𝐵 ∃! ∈ (𝐼𝐻𝑏)))
Distinct variable groups:   𝐵,𝑏   𝐶,𝑏,   𝐼,𝑏,
Allowed substitution hints:   𝜑(,𝑏)   𝐵()   𝐻(,𝑏)

Proof of Theorem isinito
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 isinito.c . . . 4 (𝜑𝐶 ∈ Cat)
2 isinito.b . . . 4 𝐵 = (Base‘𝐶)
3 isinito.h . . . 4 𝐻 = (Hom ‘𝐶)
41, 2, 3initoval 17955 . . 3 (𝜑 → (InitO‘𝐶) = {𝑖𝐵 ∣ ∀𝑏𝐵 ∃! ∈ (𝑖𝐻𝑏)})
54eleq2d 2814 . 2 (𝜑 → (𝐼 ∈ (InitO‘𝐶) ↔ 𝐼 ∈ {𝑖𝐵 ∣ ∀𝑏𝐵 ∃! ∈ (𝑖𝐻𝑏)}))
6 isinito.i . . 3 (𝜑𝐼𝐵)
7 oveq1 7394 . . . . . . 7 (𝑖 = 𝐼 → (𝑖𝐻𝑏) = (𝐼𝐻𝑏))
87eleq2d 2814 . . . . . 6 (𝑖 = 𝐼 → ( ∈ (𝑖𝐻𝑏) ↔ ∈ (𝐼𝐻𝑏)))
98eubidv 2579 . . . . 5 (𝑖 = 𝐼 → (∃! ∈ (𝑖𝐻𝑏) ↔ ∃! ∈ (𝐼𝐻𝑏)))
109ralbidv 3156 . . . 4 (𝑖 = 𝐼 → (∀𝑏𝐵 ∃! ∈ (𝑖𝐻𝑏) ↔ ∀𝑏𝐵 ∃! ∈ (𝐼𝐻𝑏)))
1110elrab3 3660 . . 3 (𝐼𝐵 → (𝐼 ∈ {𝑖𝐵 ∣ ∀𝑏𝐵 ∃! ∈ (𝑖𝐻𝑏)} ↔ ∀𝑏𝐵 ∃! ∈ (𝐼𝐻𝑏)))
126, 11syl 17 . 2 (𝜑 → (𝐼 ∈ {𝑖𝐵 ∣ ∀𝑏𝐵 ∃! ∈ (𝑖𝐻𝑏)} ↔ ∀𝑏𝐵 ∃! ∈ (𝐼𝐻𝑏)))
135, 12bitrd 279 1 (𝜑 → (𝐼 ∈ (InitO‘𝐶) ↔ ∀𝑏𝐵 ∃! ∈ (𝐼𝐻𝑏)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  wcel 2109  ∃!weu 2561  wral 3044  {crab 3405  cfv 6511  (class class class)co 7387  Basecbs 17179  Hom chom 17231  Catccat 17625  InitOcinito 17943
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-iota 6464  df-fun 6513  df-fv 6519  df-ov 7390  df-inito 17946
This theorem is referenced by:  isinitoi  17961  initoeu2  17978  zrinitorngc  20551  zrninitoringc  20585  irinitoringc  21389  isinito2lem  49487
  Copyright terms: Public domain W3C validator