MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isinito Structured version   Visualization version   GIF version

Theorem isinito 17252
Description: The predicate "is an initial object" of a category. (Contributed by AV, 3-Apr-2020.)
Hypotheses
Ref Expression
isinito.b 𝐵 = (Base‘𝐶)
isinito.h 𝐻 = (Hom ‘𝐶)
isinito.c (𝜑𝐶 ∈ Cat)
isinito.i (𝜑𝐼𝐵)
Assertion
Ref Expression
isinito (𝜑 → (𝐼 ∈ (InitO‘𝐶) ↔ ∀𝑏𝐵 ∃! ∈ (𝐼𝐻𝑏)))
Distinct variable groups:   𝐵,𝑏   𝐶,𝑏,   𝐼,𝑏,
Allowed substitution hints:   𝜑(,𝑏)   𝐵()   𝐻(,𝑏)

Proof of Theorem isinito
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 isinito.c . . . 4 (𝜑𝐶 ∈ Cat)
2 isinito.b . . . 4 𝐵 = (Base‘𝐶)
3 isinito.h . . . 4 𝐻 = (Hom ‘𝐶)
41, 2, 3initoval 17249 . . 3 (𝜑 → (InitO‘𝐶) = {𝑖𝐵 ∣ ∀𝑏𝐵 ∃! ∈ (𝑖𝐻𝑏)})
54eleq2d 2875 . 2 (𝜑 → (𝐼 ∈ (InitO‘𝐶) ↔ 𝐼 ∈ {𝑖𝐵 ∣ ∀𝑏𝐵 ∃! ∈ (𝑖𝐻𝑏)}))
6 isinito.i . . 3 (𝜑𝐼𝐵)
7 oveq1 7142 . . . . . . 7 (𝑖 = 𝐼 → (𝑖𝐻𝑏) = (𝐼𝐻𝑏))
87eleq2d 2875 . . . . . 6 (𝑖 = 𝐼 → ( ∈ (𝑖𝐻𝑏) ↔ ∈ (𝐼𝐻𝑏)))
98eubidv 2647 . . . . 5 (𝑖 = 𝐼 → (∃! ∈ (𝑖𝐻𝑏) ↔ ∃! ∈ (𝐼𝐻𝑏)))
109ralbidv 3162 . . . 4 (𝑖 = 𝐼 → (∀𝑏𝐵 ∃! ∈ (𝑖𝐻𝑏) ↔ ∀𝑏𝐵 ∃! ∈ (𝐼𝐻𝑏)))
1110elrab3 3629 . . 3 (𝐼𝐵 → (𝐼 ∈ {𝑖𝐵 ∣ ∀𝑏𝐵 ∃! ∈ (𝑖𝐻𝑏)} ↔ ∀𝑏𝐵 ∃! ∈ (𝐼𝐻𝑏)))
126, 11syl 17 . 2 (𝜑 → (𝐼 ∈ {𝑖𝐵 ∣ ∀𝑏𝐵 ∃! ∈ (𝑖𝐻𝑏)} ↔ ∀𝑏𝐵 ∃! ∈ (𝐼𝐻𝑏)))
135, 12bitrd 282 1 (𝜑 → (𝐼 ∈ (InitO‘𝐶) ↔ ∀𝑏𝐵 ∃! ∈ (𝐼𝐻𝑏)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209   = wceq 1538  wcel 2111  ∃!weu 2628  wral 3106  {crab 3110  cfv 6324  (class class class)co 7135  Basecbs 16475  Hom chom 16568  Catccat 16927  InitOcinito 17240
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pr 5295
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ral 3111  df-rex 3112  df-rab 3115  df-v 3443  df-sbc 3721  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-iota 6283  df-fun 6326  df-fv 6332  df-ov 7138  df-inito 17243
This theorem is referenced by:  isinitoi  17255  initoeu2  17268  zrinitorngc  44619  irinitoringc  44688  zrninitoringc  44690
  Copyright terms: Public domain W3C validator