![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > isinito | Structured version Visualization version GIF version |
Description: The predicate "is an initial object" of a category. (Contributed by AV, 3-Apr-2020.) |
Ref | Expression |
---|---|
isinito.b | ⊢ 𝐵 = (Base‘𝐶) |
isinito.h | ⊢ 𝐻 = (Hom ‘𝐶) |
isinito.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
isinito.i | ⊢ (𝜑 → 𝐼 ∈ 𝐵) |
Ref | Expression |
---|---|
isinito | ⊢ (𝜑 → (𝐼 ∈ (InitO‘𝐶) ↔ ∀𝑏 ∈ 𝐵 ∃!ℎ ℎ ∈ (𝐼𝐻𝑏))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isinito.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
2 | isinito.b | . . . 4 ⊢ 𝐵 = (Base‘𝐶) | |
3 | isinito.h | . . . 4 ⊢ 𝐻 = (Hom ‘𝐶) | |
4 | 1, 2, 3 | initoval 17925 | . . 3 ⊢ (𝜑 → (InitO‘𝐶) = {𝑖 ∈ 𝐵 ∣ ∀𝑏 ∈ 𝐵 ∃!ℎ ℎ ∈ (𝑖𝐻𝑏)}) |
5 | 4 | eleq2d 2818 | . 2 ⊢ (𝜑 → (𝐼 ∈ (InitO‘𝐶) ↔ 𝐼 ∈ {𝑖 ∈ 𝐵 ∣ ∀𝑏 ∈ 𝐵 ∃!ℎ ℎ ∈ (𝑖𝐻𝑏)})) |
6 | isinito.i | . . 3 ⊢ (𝜑 → 𝐼 ∈ 𝐵) | |
7 | oveq1 7400 | . . . . . . 7 ⊢ (𝑖 = 𝐼 → (𝑖𝐻𝑏) = (𝐼𝐻𝑏)) | |
8 | 7 | eleq2d 2818 | . . . . . 6 ⊢ (𝑖 = 𝐼 → (ℎ ∈ (𝑖𝐻𝑏) ↔ ℎ ∈ (𝐼𝐻𝑏))) |
9 | 8 | eubidv 2579 | . . . . 5 ⊢ (𝑖 = 𝐼 → (∃!ℎ ℎ ∈ (𝑖𝐻𝑏) ↔ ∃!ℎ ℎ ∈ (𝐼𝐻𝑏))) |
10 | 9 | ralbidv 3176 | . . . 4 ⊢ (𝑖 = 𝐼 → (∀𝑏 ∈ 𝐵 ∃!ℎ ℎ ∈ (𝑖𝐻𝑏) ↔ ∀𝑏 ∈ 𝐵 ∃!ℎ ℎ ∈ (𝐼𝐻𝑏))) |
11 | 10 | elrab3 3680 | . . 3 ⊢ (𝐼 ∈ 𝐵 → (𝐼 ∈ {𝑖 ∈ 𝐵 ∣ ∀𝑏 ∈ 𝐵 ∃!ℎ ℎ ∈ (𝑖𝐻𝑏)} ↔ ∀𝑏 ∈ 𝐵 ∃!ℎ ℎ ∈ (𝐼𝐻𝑏))) |
12 | 6, 11 | syl 17 | . 2 ⊢ (𝜑 → (𝐼 ∈ {𝑖 ∈ 𝐵 ∣ ∀𝑏 ∈ 𝐵 ∃!ℎ ℎ ∈ (𝑖𝐻𝑏)} ↔ ∀𝑏 ∈ 𝐵 ∃!ℎ ℎ ∈ (𝐼𝐻𝑏))) |
13 | 5, 12 | bitrd 278 | 1 ⊢ (𝜑 → (𝐼 ∈ (InitO‘𝐶) ↔ ∀𝑏 ∈ 𝐵 ∃!ℎ ℎ ∈ (𝐼𝐻𝑏))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1541 ∈ wcel 2106 ∃!weu 2561 ∀wral 3060 {crab 3431 ‘cfv 6532 (class class class)co 7393 Basecbs 17126 Hom chom 17190 Catccat 17590 InitOcinito 17913 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2702 ax-sep 5292 ax-nul 5299 ax-pr 5420 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3432 df-v 3475 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4319 df-if 4523 df-sn 4623 df-pr 4625 df-op 4629 df-uni 4902 df-br 5142 df-opab 5204 df-mpt 5225 df-id 5567 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-iota 6484 df-fun 6534 df-fv 6540 df-ov 7396 df-inito 17916 |
This theorem is referenced by: isinitoi 17931 initoeu2 17948 zrinitorngc 46544 irinitoringc 46613 zrninitoringc 46615 |
Copyright terms: Public domain | W3C validator |