| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > isinito | Structured version Visualization version GIF version | ||
| Description: The predicate "is an initial object" of a category. (Contributed by AV, 3-Apr-2020.) |
| Ref | Expression |
|---|---|
| isinito.b | ⊢ 𝐵 = (Base‘𝐶) |
| isinito.h | ⊢ 𝐻 = (Hom ‘𝐶) |
| isinito.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
| isinito.i | ⊢ (𝜑 → 𝐼 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| isinito | ⊢ (𝜑 → (𝐼 ∈ (InitO‘𝐶) ↔ ∀𝑏 ∈ 𝐵 ∃!ℎ ℎ ∈ (𝐼𝐻𝑏))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isinito.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
| 2 | isinito.b | . . . 4 ⊢ 𝐵 = (Base‘𝐶) | |
| 3 | isinito.h | . . . 4 ⊢ 𝐻 = (Hom ‘𝐶) | |
| 4 | 1, 2, 3 | initoval 17895 | . . 3 ⊢ (𝜑 → (InitO‘𝐶) = {𝑖 ∈ 𝐵 ∣ ∀𝑏 ∈ 𝐵 ∃!ℎ ℎ ∈ (𝑖𝐻𝑏)}) |
| 5 | 4 | eleq2d 2817 | . 2 ⊢ (𝜑 → (𝐼 ∈ (InitO‘𝐶) ↔ 𝐼 ∈ {𝑖 ∈ 𝐵 ∣ ∀𝑏 ∈ 𝐵 ∃!ℎ ℎ ∈ (𝑖𝐻𝑏)})) |
| 6 | isinito.i | . . 3 ⊢ (𝜑 → 𝐼 ∈ 𝐵) | |
| 7 | oveq1 7348 | . . . . . . 7 ⊢ (𝑖 = 𝐼 → (𝑖𝐻𝑏) = (𝐼𝐻𝑏)) | |
| 8 | 7 | eleq2d 2817 | . . . . . 6 ⊢ (𝑖 = 𝐼 → (ℎ ∈ (𝑖𝐻𝑏) ↔ ℎ ∈ (𝐼𝐻𝑏))) |
| 9 | 8 | eubidv 2581 | . . . . 5 ⊢ (𝑖 = 𝐼 → (∃!ℎ ℎ ∈ (𝑖𝐻𝑏) ↔ ∃!ℎ ℎ ∈ (𝐼𝐻𝑏))) |
| 10 | 9 | ralbidv 3155 | . . . 4 ⊢ (𝑖 = 𝐼 → (∀𝑏 ∈ 𝐵 ∃!ℎ ℎ ∈ (𝑖𝐻𝑏) ↔ ∀𝑏 ∈ 𝐵 ∃!ℎ ℎ ∈ (𝐼𝐻𝑏))) |
| 11 | 10 | elrab3 3643 | . . 3 ⊢ (𝐼 ∈ 𝐵 → (𝐼 ∈ {𝑖 ∈ 𝐵 ∣ ∀𝑏 ∈ 𝐵 ∃!ℎ ℎ ∈ (𝑖𝐻𝑏)} ↔ ∀𝑏 ∈ 𝐵 ∃!ℎ ℎ ∈ (𝐼𝐻𝑏))) |
| 12 | 6, 11 | syl 17 | . 2 ⊢ (𝜑 → (𝐼 ∈ {𝑖 ∈ 𝐵 ∣ ∀𝑏 ∈ 𝐵 ∃!ℎ ℎ ∈ (𝑖𝐻𝑏)} ↔ ∀𝑏 ∈ 𝐵 ∃!ℎ ℎ ∈ (𝐼𝐻𝑏))) |
| 13 | 5, 12 | bitrd 279 | 1 ⊢ (𝜑 → (𝐼 ∈ (InitO‘𝐶) ↔ ∀𝑏 ∈ 𝐵 ∃!ℎ ℎ ∈ (𝐼𝐻𝑏))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1541 ∈ wcel 2111 ∃!weu 2563 ∀wral 3047 {crab 3395 ‘cfv 6476 (class class class)co 7341 Basecbs 17115 Hom chom 17167 Catccat 17565 InitOcinito 17883 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pr 5365 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-br 5087 df-opab 5149 df-mpt 5168 df-id 5506 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-iota 6432 df-fun 6478 df-fv 6484 df-ov 7344 df-inito 17886 |
| This theorem is referenced by: isinitoi 17901 initoeu2 17918 zrinitorngc 20552 zrninitoringc 20586 irinitoringc 21411 isinito2lem 49530 |
| Copyright terms: Public domain | W3C validator |