MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  istps2 Structured version   Visualization version   GIF version

Theorem istps2 21832
Description: Express the predicate "is a topological space." (Contributed by NM, 20-Oct-2012.)
Hypotheses
Ref Expression
istps.a 𝐴 = (Base‘𝐾)
istps.j 𝐽 = (TopOpen‘𝐾)
Assertion
Ref Expression
istps2 (𝐾 ∈ TopSp ↔ (𝐽 ∈ Top ∧ 𝐴 = 𝐽))

Proof of Theorem istps2
StepHypRef Expression
1 istps.a . . 3 𝐴 = (Base‘𝐾)
2 istps.j . . 3 𝐽 = (TopOpen‘𝐾)
31, 2istps 21831 . 2 (𝐾 ∈ TopSp ↔ 𝐽 ∈ (TopOn‘𝐴))
4 istopon 21809 . 2 (𝐽 ∈ (TopOn‘𝐴) ↔ (𝐽 ∈ Top ∧ 𝐴 = 𝐽))
53, 4bitri 278 1 (𝐾 ∈ TopSp ↔ (𝐽 ∈ Top ∧ 𝐴 = 𝐽))
Colors of variables: wff setvar class
Syntax hints:  wb 209  wa 399   = wceq 1543  wcel 2110   cuni 4819  cfv 6380  Basecbs 16760  TopOpenctopn 16926  Topctop 21790  TopOnctopon 21807  TopSpctps 21829
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-ral 3066  df-rex 3067  df-rab 3070  df-v 3410  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-op 4548  df-uni 4820  df-br 5054  df-opab 5116  df-mpt 5136  df-id 5455  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-iota 6338  df-fun 6382  df-fv 6388  df-top 21791  df-topon 21808  df-topsp 21830
This theorem is referenced by:  tpsuni  21833  tpstop  21834  istpsi  21839
  Copyright terms: Public domain W3C validator