MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  istps2 Structured version   Visualization version   GIF version

Theorem istps2 22436
Description: Express the predicate "is a topological space." (Contributed by NM, 20-Oct-2012.)
Hypotheses
Ref Expression
istps.a 𝐴 = (Baseβ€˜πΎ)
istps.j 𝐽 = (TopOpenβ€˜πΎ)
Assertion
Ref Expression
istps2 (𝐾 ∈ TopSp ↔ (𝐽 ∈ Top ∧ 𝐴 = βˆͺ 𝐽))

Proof of Theorem istps2
StepHypRef Expression
1 istps.a . . 3 𝐴 = (Baseβ€˜πΎ)
2 istps.j . . 3 𝐽 = (TopOpenβ€˜πΎ)
31, 2istps 22435 . 2 (𝐾 ∈ TopSp ↔ 𝐽 ∈ (TopOnβ€˜π΄))
4 istopon 22413 . 2 (𝐽 ∈ (TopOnβ€˜π΄) ↔ (𝐽 ∈ Top ∧ 𝐴 = βˆͺ 𝐽))
53, 4bitri 274 1 (𝐾 ∈ TopSp ↔ (𝐽 ∈ Top ∧ 𝐴 = βˆͺ 𝐽))
Colors of variables: wff setvar class
Syntax hints:   ↔ wb 205   ∧ wa 396   = wceq 1541   ∈ wcel 2106  βˆͺ cuni 4908  β€˜cfv 6543  Basecbs 17143  TopOpenctopn 17366  Topctop 22394  TopOnctopon 22411  TopSpctps 22433
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-iota 6495  df-fun 6545  df-fv 6551  df-top 22395  df-topon 22412  df-topsp 22434
This theorem is referenced by:  tpsuni  22437  tpstop  22438  istpsi  22443
  Copyright terms: Public domain W3C validator