![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > istps2 | Structured version Visualization version GIF version |
Description: Express the predicate "is a topological space." (Contributed by NM, 20-Oct-2012.) |
Ref | Expression |
---|---|
istps.a | β’ π΄ = (BaseβπΎ) |
istps.j | β’ π½ = (TopOpenβπΎ) |
Ref | Expression |
---|---|
istps2 | β’ (πΎ β TopSp β (π½ β Top β§ π΄ = βͺ π½)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | istps.a | . . 3 β’ π΄ = (BaseβπΎ) | |
2 | istps.j | . . 3 β’ π½ = (TopOpenβπΎ) | |
3 | 1, 2 | istps 22787 | . 2 β’ (πΎ β TopSp β π½ β (TopOnβπ΄)) |
4 | istopon 22765 | . 2 β’ (π½ β (TopOnβπ΄) β (π½ β Top β§ π΄ = βͺ π½)) | |
5 | 3, 4 | bitri 275 | 1 β’ (πΎ β TopSp β (π½ β Top β§ π΄ = βͺ π½)) |
Colors of variables: wff setvar class |
Syntax hints: β wb 205 β§ wa 395 = wceq 1533 β wcel 2098 βͺ cuni 4902 βcfv 6536 Basecbs 17151 TopOpenctopn 17374 Topctop 22746 TopOnctopon 22763 TopSpctps 22785 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7721 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ral 3056 df-rex 3065 df-rab 3427 df-v 3470 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-br 5142 df-opab 5204 df-mpt 5225 df-id 5567 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-iota 6488 df-fun 6538 df-fv 6544 df-top 22747 df-topon 22764 df-topsp 22786 |
This theorem is referenced by: tpsuni 22789 tpstop 22790 istpsi 22795 |
Copyright terms: Public domain | W3C validator |