MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  istps2 Structured version   Visualization version   GIF version

Theorem istps2 21992
Description: Express the predicate "is a topological space." (Contributed by NM, 20-Oct-2012.)
Hypotheses
Ref Expression
istps.a 𝐴 = (Base‘𝐾)
istps.j 𝐽 = (TopOpen‘𝐾)
Assertion
Ref Expression
istps2 (𝐾 ∈ TopSp ↔ (𝐽 ∈ Top ∧ 𝐴 = 𝐽))

Proof of Theorem istps2
StepHypRef Expression
1 istps.a . . 3 𝐴 = (Base‘𝐾)
2 istps.j . . 3 𝐽 = (TopOpen‘𝐾)
31, 2istps 21991 . 2 (𝐾 ∈ TopSp ↔ 𝐽 ∈ (TopOn‘𝐴))
4 istopon 21969 . 2 (𝐽 ∈ (TopOn‘𝐴) ↔ (𝐽 ∈ Top ∧ 𝐴 = 𝐽))
53, 4bitri 274 1 (𝐾 ∈ TopSp ↔ (𝐽 ∈ Top ∧ 𝐴 = 𝐽))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 395   = wceq 1539  wcel 2108   cuni 4836  cfv 6418  Basecbs 16840  TopOpenctopn 17049  Topctop 21950  TopOnctopon 21967  TopSpctps 21989
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-iota 6376  df-fun 6420  df-fv 6426  df-top 21951  df-topon 21968  df-topsp 21990
This theorem is referenced by:  tpsuni  21993  tpstop  21994  istpsi  21999
  Copyright terms: Public domain W3C validator