MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  istps2 Structured version   Visualization version   GIF version

Theorem istps2 22851
Description: Express the predicate "is a topological space." (Contributed by NM, 20-Oct-2012.)
Hypotheses
Ref Expression
istps.a 𝐴 = (Base‘𝐾)
istps.j 𝐽 = (TopOpen‘𝐾)
Assertion
Ref Expression
istps2 (𝐾 ∈ TopSp ↔ (𝐽 ∈ Top ∧ 𝐴 = 𝐽))

Proof of Theorem istps2
StepHypRef Expression
1 istps.a . . 3 𝐴 = (Base‘𝐾)
2 istps.j . . 3 𝐽 = (TopOpen‘𝐾)
31, 2istps 22850 . 2 (𝐾 ∈ TopSp ↔ 𝐽 ∈ (TopOn‘𝐴))
4 istopon 22828 . 2 (𝐽 ∈ (TopOn‘𝐴) ↔ (𝐽 ∈ Top ∧ 𝐴 = 𝐽))
53, 4bitri 275 1 (𝐾 ∈ TopSp ↔ (𝐽 ∈ Top ∧ 𝐴 = 𝐽))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1541  wcel 2113   cuni 4858  cfv 6486  Basecbs 17122  TopOpenctopn 17327  Topctop 22809  TopOnctopon 22826  TopSpctps 22848
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-iota 6442  df-fun 6488  df-fv 6494  df-top 22810  df-topon 22827  df-topsp 22849
This theorem is referenced by:  tpsuni  22852  tpstop  22853  istpsi  22858
  Copyright terms: Public domain W3C validator