| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tpstop | Structured version Visualization version GIF version | ||
| Description: The topology extractor on a topological space is a topology. (Contributed by FL, 27-Jun-2014.) |
| Ref | Expression |
|---|---|
| tpstop.j | ⊢ 𝐽 = (TopOpen‘𝐾) |
| Ref | Expression |
|---|---|
| tpstop | ⊢ (𝐾 ∈ TopSp → 𝐽 ∈ Top) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . 3 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
| 2 | tpstop.j | . . 3 ⊢ 𝐽 = (TopOpen‘𝐾) | |
| 3 | 1, 2 | istps2 22838 | . 2 ⊢ (𝐾 ∈ TopSp ↔ (𝐽 ∈ Top ∧ (Base‘𝐾) = ∪ 𝐽)) |
| 4 | 3 | simplbi 497 | 1 ⊢ (𝐾 ∈ TopSp → 𝐽 ∈ Top) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ∪ cuni 4861 ‘cfv 6486 Basecbs 17138 TopOpenctopn 17343 Topctop 22796 TopSpctps 22835 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-iota 6442 df-fun 6488 df-fv 6494 df-top 22797 df-topon 22814 df-topsp 22836 |
| This theorem is referenced by: mreclatdemoBAD 22999 prdstmdd 24027 invrcn 24084 cnextucn 24206 prdsxmslem2 24433 rlmbn 25277 sibfinima 34306 sibfof 34307 rrxtop 46271 |
| Copyright terms: Public domain | W3C validator |