MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tpstop Structured version   Visualization version   GIF version

Theorem tpstop 21701
Description: The topology extractor on a topological space is a topology. (Contributed by FL, 27-Jun-2014.)
Hypothesis
Ref Expression
tpstop.j 𝐽 = (TopOpen‘𝐾)
Assertion
Ref Expression
tpstop (𝐾 ∈ TopSp → 𝐽 ∈ Top)

Proof of Theorem tpstop
StepHypRef Expression
1 eqid 2739 . . 3 (Base‘𝐾) = (Base‘𝐾)
2 tpstop.j . . 3 𝐽 = (TopOpen‘𝐾)
31, 2istps2 21699 . 2 (𝐾 ∈ TopSp ↔ (𝐽 ∈ Top ∧ (Base‘𝐾) = 𝐽))
43simplbi 501 1 (𝐾 ∈ TopSp → 𝐽 ∈ Top)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1542  wcel 2114   cuni 4806  cfv 6350  Basecbs 16599  TopOpenctopn 16811  Topctop 21657  TopSpctps 21696
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2711  ax-sep 5177  ax-nul 5184  ax-pow 5242  ax-pr 5306  ax-un 7492
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2541  df-eu 2571  df-clab 2718  df-cleq 2731  df-clel 2812  df-nfc 2882  df-ne 2936  df-ral 3059  df-rex 3060  df-rab 3063  df-v 3402  df-sbc 3686  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-nul 4222  df-if 4425  df-pw 4500  df-sn 4527  df-pr 4529  df-op 4533  df-uni 4807  df-br 5041  df-opab 5103  df-mpt 5121  df-id 5439  df-xp 5541  df-rel 5542  df-cnv 5543  df-co 5544  df-dm 5545  df-iota 6308  df-fun 6352  df-fv 6358  df-top 21658  df-topon 21675  df-topsp 21697
This theorem is referenced by:  mreclatdemoBAD  21860  prdstmdd  22888  invrcn  22945  cnextucn  23068  prdsxmslem2  23295  rlmbn  24126  sibfinima  31889  sibfof  31890  rrxtop  43413
  Copyright terms: Public domain W3C validator