![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tpstop | Structured version Visualization version GIF version |
Description: The topology extractor on a topological space is a topology. (Contributed by FL, 27-Jun-2014.) |
Ref | Expression |
---|---|
tpstop.j | ⊢ 𝐽 = (TopOpen‘𝐾) |
Ref | Expression |
---|---|
tpstop | ⊢ (𝐾 ∈ TopSp → 𝐽 ∈ Top) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2725 | . . 3 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
2 | tpstop.j | . . 3 ⊢ 𝐽 = (TopOpen‘𝐾) | |
3 | 1, 2 | istps2 22881 | . 2 ⊢ (𝐾 ∈ TopSp ↔ (𝐽 ∈ Top ∧ (Base‘𝐾) = ∪ 𝐽)) |
4 | 3 | simplbi 496 | 1 ⊢ (𝐾 ∈ TopSp → 𝐽 ∈ Top) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1533 ∈ wcel 2098 ∪ cuni 4909 ‘cfv 6549 Basecbs 17183 TopOpenctopn 17406 Topctop 22839 TopSpctps 22878 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5300 ax-nul 5307 ax-pow 5365 ax-pr 5429 ax-un 7741 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ral 3051 df-rex 3060 df-rab 3419 df-v 3463 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5576 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-iota 6501 df-fun 6551 df-fv 6557 df-top 22840 df-topon 22857 df-topsp 22879 |
This theorem is referenced by: mreclatdemoBAD 23044 prdstmdd 24072 invrcn 24129 cnextucn 24252 prdsxmslem2 24482 rlmbn 25333 sibfinima 34090 sibfof 34091 rrxtop 45815 |
Copyright terms: Public domain | W3C validator |