Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > istpsi | Structured version Visualization version GIF version |
Description: Properties that determine a topological space. (Contributed by NM, 20-Oct-2012.) |
Ref | Expression |
---|---|
istpsi.b | ⊢ (Base‘𝐾) = 𝐴 |
istpsi.j | ⊢ (TopOpen‘𝐾) = 𝐽 |
istpsi.1 | ⊢ 𝐴 = ∪ 𝐽 |
istpsi.2 | ⊢ 𝐽 ∈ Top |
Ref | Expression |
---|---|
istpsi | ⊢ 𝐾 ∈ TopSp |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | istpsi.2 | . 2 ⊢ 𝐽 ∈ Top | |
2 | istpsi.1 | . 2 ⊢ 𝐴 = ∪ 𝐽 | |
3 | istpsi.b | . . . 4 ⊢ (Base‘𝐾) = 𝐴 | |
4 | 3 | eqcomi 2747 | . . 3 ⊢ 𝐴 = (Base‘𝐾) |
5 | istpsi.j | . . . 4 ⊢ (TopOpen‘𝐾) = 𝐽 | |
6 | 5 | eqcomi 2747 | . . 3 ⊢ 𝐽 = (TopOpen‘𝐾) |
7 | 4, 6 | istps2 21992 | . 2 ⊢ (𝐾 ∈ TopSp ↔ (𝐽 ∈ Top ∧ 𝐴 = ∪ 𝐽)) |
8 | 1, 2, 7 | mpbir2an 707 | 1 ⊢ 𝐾 ∈ TopSp |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∈ wcel 2108 ∪ cuni 4836 ‘cfv 6418 Basecbs 16840 TopOpenctopn 17049 Topctop 21950 TopSpctps 21989 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-iota 6376 df-fun 6420 df-fv 6426 df-top 21951 df-topon 21968 df-topsp 21990 |
This theorem is referenced by: indistps2 22070 |
Copyright terms: Public domain | W3C validator |