| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > istpsi | Structured version Visualization version GIF version | ||
| Description: Properties that determine a topological space. (Contributed by NM, 20-Oct-2012.) |
| Ref | Expression |
|---|---|
| istpsi.b | ⊢ (Base‘𝐾) = 𝐴 |
| istpsi.j | ⊢ (TopOpen‘𝐾) = 𝐽 |
| istpsi.1 | ⊢ 𝐴 = ∪ 𝐽 |
| istpsi.2 | ⊢ 𝐽 ∈ Top |
| Ref | Expression |
|---|---|
| istpsi | ⊢ 𝐾 ∈ TopSp |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | istpsi.2 | . 2 ⊢ 𝐽 ∈ Top | |
| 2 | istpsi.1 | . 2 ⊢ 𝐴 = ∪ 𝐽 | |
| 3 | istpsi.b | . . . 4 ⊢ (Base‘𝐾) = 𝐴 | |
| 4 | 3 | eqcomi 2740 | . . 3 ⊢ 𝐴 = (Base‘𝐾) |
| 5 | istpsi.j | . . . 4 ⊢ (TopOpen‘𝐾) = 𝐽 | |
| 6 | 5 | eqcomi 2740 | . . 3 ⊢ 𝐽 = (TopOpen‘𝐾) |
| 7 | 4, 6 | istps2 22848 | . 2 ⊢ (𝐾 ∈ TopSp ↔ (𝐽 ∈ Top ∧ 𝐴 = ∪ 𝐽)) |
| 8 | 1, 2, 7 | mpbir2an 711 | 1 ⊢ 𝐾 ∈ TopSp |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∈ wcel 2111 ∪ cuni 4859 ‘cfv 6481 Basecbs 17117 TopOpenctopn 17322 Topctop 22806 TopSpctps 22845 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-iota 6437 df-fun 6483 df-fv 6489 df-top 22807 df-topon 22824 df-topsp 22846 |
| This theorem is referenced by: indistps2 22925 |
| Copyright terms: Public domain | W3C validator |