| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > istpsi | Structured version Visualization version GIF version | ||
| Description: Properties that determine a topological space. (Contributed by NM, 20-Oct-2012.) |
| Ref | Expression |
|---|---|
| istpsi.b | ⊢ (Base‘𝐾) = 𝐴 |
| istpsi.j | ⊢ (TopOpen‘𝐾) = 𝐽 |
| istpsi.1 | ⊢ 𝐴 = ∪ 𝐽 |
| istpsi.2 | ⊢ 𝐽 ∈ Top |
| Ref | Expression |
|---|---|
| istpsi | ⊢ 𝐾 ∈ TopSp |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | istpsi.2 | . 2 ⊢ 𝐽 ∈ Top | |
| 2 | istpsi.1 | . 2 ⊢ 𝐴 = ∪ 𝐽 | |
| 3 | istpsi.b | . . . 4 ⊢ (Base‘𝐾) = 𝐴 | |
| 4 | 3 | eqcomi 2742 | . . 3 ⊢ 𝐴 = (Base‘𝐾) |
| 5 | istpsi.j | . . . 4 ⊢ (TopOpen‘𝐾) = 𝐽 | |
| 6 | 5 | eqcomi 2742 | . . 3 ⊢ 𝐽 = (TopOpen‘𝐾) |
| 7 | 4, 6 | istps2 22851 | . 2 ⊢ (𝐾 ∈ TopSp ↔ (𝐽 ∈ Top ∧ 𝐴 = ∪ 𝐽)) |
| 8 | 1, 2, 7 | mpbir2an 711 | 1 ⊢ 𝐾 ∈ TopSp |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∈ wcel 2113 ∪ cuni 4858 ‘cfv 6486 Basecbs 17122 TopOpenctopn 17327 Topctop 22809 TopSpctps 22848 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-iota 6442 df-fun 6488 df-fv 6494 df-top 22810 df-topon 22827 df-topsp 22849 |
| This theorem is referenced by: indistps2 22928 |
| Copyright terms: Public domain | W3C validator |