MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  istpsi Structured version   Visualization version   GIF version

Theorem istpsi 22443
Description: Properties that determine a topological space. (Contributed by NM, 20-Oct-2012.)
Hypotheses
Ref Expression
istpsi.b (Base‘𝐾) = 𝐴
istpsi.j (TopOpen‘𝐾) = 𝐽
istpsi.1 𝐴 = 𝐽
istpsi.2 𝐽 ∈ Top
Assertion
Ref Expression
istpsi 𝐾 ∈ TopSp

Proof of Theorem istpsi
StepHypRef Expression
1 istpsi.2 . 2 𝐽 ∈ Top
2 istpsi.1 . 2 𝐴 = 𝐽
3 istpsi.b . . . 4 (Base‘𝐾) = 𝐴
43eqcomi 2741 . . 3 𝐴 = (Base‘𝐾)
5 istpsi.j . . . 4 (TopOpen‘𝐾) = 𝐽
65eqcomi 2741 . . 3 𝐽 = (TopOpen‘𝐾)
74, 6istps2 22436 . 2 (𝐾 ∈ TopSp ↔ (𝐽 ∈ Top ∧ 𝐴 = 𝐽))
81, 2, 7mpbir2an 709 1 𝐾 ∈ TopSp
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  wcel 2106   cuni 4908  cfv 6543  Basecbs 17143  TopOpenctopn 17366  Topctop 22394  TopSpctps 22433
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-iota 6495  df-fun 6545  df-fv 6551  df-top 22395  df-topon 22412  df-topsp 22434
This theorem is referenced by:  indistps2  22514
  Copyright terms: Public domain W3C validator