![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > istpsi | Structured version Visualization version GIF version |
Description: Properties that determine a topological space. (Contributed by NM, 20-Oct-2012.) |
Ref | Expression |
---|---|
istpsi.b | ⊢ (Base‘𝐾) = 𝐴 |
istpsi.j | ⊢ (TopOpen‘𝐾) = 𝐽 |
istpsi.1 | ⊢ 𝐴 = ∪ 𝐽 |
istpsi.2 | ⊢ 𝐽 ∈ Top |
Ref | Expression |
---|---|
istpsi | ⊢ 𝐾 ∈ TopSp |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | istpsi.2 | . 2 ⊢ 𝐽 ∈ Top | |
2 | istpsi.1 | . 2 ⊢ 𝐴 = ∪ 𝐽 | |
3 | istpsi.b | . . . 4 ⊢ (Base‘𝐾) = 𝐴 | |
4 | 3 | eqcomi 2735 | . . 3 ⊢ 𝐴 = (Base‘𝐾) |
5 | istpsi.j | . . . 4 ⊢ (TopOpen‘𝐾) = 𝐽 | |
6 | 5 | eqcomi 2735 | . . 3 ⊢ 𝐽 = (TopOpen‘𝐾) |
7 | 4, 6 | istps2 22925 | . 2 ⊢ (𝐾 ∈ TopSp ↔ (𝐽 ∈ Top ∧ 𝐴 = ∪ 𝐽)) |
8 | 1, 2, 7 | mpbir2an 709 | 1 ⊢ 𝐾 ∈ TopSp |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1534 ∈ wcel 2099 ∪ cuni 4905 ‘cfv 6546 Basecbs 17208 TopOpenctopn 17431 Topctop 22883 TopSpctps 22922 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-sep 5296 ax-nul 5303 ax-pow 5361 ax-pr 5425 ax-un 7738 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ral 3052 df-rex 3061 df-rab 3420 df-v 3464 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-nul 4323 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4906 df-br 5146 df-opab 5208 df-mpt 5229 df-id 5572 df-xp 5680 df-rel 5681 df-cnv 5682 df-co 5683 df-dm 5684 df-iota 6498 df-fun 6548 df-fv 6554 df-top 22884 df-topon 22901 df-topsp 22923 |
This theorem is referenced by: indistps2 23003 |
Copyright terms: Public domain | W3C validator |