| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > istpsi | Structured version Visualization version GIF version | ||
| Description: Properties that determine a topological space. (Contributed by NM, 20-Oct-2012.) |
| Ref | Expression |
|---|---|
| istpsi.b | ⊢ (Base‘𝐾) = 𝐴 |
| istpsi.j | ⊢ (TopOpen‘𝐾) = 𝐽 |
| istpsi.1 | ⊢ 𝐴 = ∪ 𝐽 |
| istpsi.2 | ⊢ 𝐽 ∈ Top |
| Ref | Expression |
|---|---|
| istpsi | ⊢ 𝐾 ∈ TopSp |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | istpsi.2 | . 2 ⊢ 𝐽 ∈ Top | |
| 2 | istpsi.1 | . 2 ⊢ 𝐴 = ∪ 𝐽 | |
| 3 | istpsi.b | . . . 4 ⊢ (Base‘𝐾) = 𝐴 | |
| 4 | 3 | eqcomi 2738 | . . 3 ⊢ 𝐴 = (Base‘𝐾) |
| 5 | istpsi.j | . . . 4 ⊢ (TopOpen‘𝐾) = 𝐽 | |
| 6 | 5 | eqcomi 2738 | . . 3 ⊢ 𝐽 = (TopOpen‘𝐾) |
| 7 | 4, 6 | istps2 22822 | . 2 ⊢ (𝐾 ∈ TopSp ↔ (𝐽 ∈ Top ∧ 𝐴 = ∪ 𝐽)) |
| 8 | 1, 2, 7 | mpbir2an 711 | 1 ⊢ 𝐾 ∈ TopSp |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 ∪ cuni 4871 ‘cfv 6511 Basecbs 17179 TopOpenctopn 17384 Topctop 22780 TopSpctps 22819 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-iota 6464 df-fun 6513 df-fv 6519 df-top 22781 df-topon 22798 df-topsp 22820 |
| This theorem is referenced by: indistps2 22899 |
| Copyright terms: Public domain | W3C validator |