Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > tpsuni | Structured version Visualization version GIF version |
Description: The base set of a topological space. (Contributed by FL, 27-Jun-2014.) |
Ref | Expression |
---|---|
istps.a | ⊢ 𝐴 = (Base‘𝐾) |
istps.j | ⊢ 𝐽 = (TopOpen‘𝐾) |
Ref | Expression |
---|---|
tpsuni | ⊢ (𝐾 ∈ TopSp → 𝐴 = ∪ 𝐽) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | istps.a | . . 3 ⊢ 𝐴 = (Base‘𝐾) | |
2 | istps.j | . . 3 ⊢ 𝐽 = (TopOpen‘𝐾) | |
3 | 1, 2 | istps2 22082 | . 2 ⊢ (𝐾 ∈ TopSp ↔ (𝐽 ∈ Top ∧ 𝐴 = ∪ 𝐽)) |
4 | 3 | simprbi 497 | 1 ⊢ (𝐾 ∈ TopSp → 𝐴 = ∪ 𝐽) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1542 ∈ wcel 2110 ∪ cuni 4845 ‘cfv 6432 Basecbs 16910 TopOpenctopn 17130 Topctop 22040 TopSpctps 22079 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-sep 5227 ax-nul 5234 ax-pow 5292 ax-pr 5356 ax-un 7582 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ral 3071 df-rex 3072 df-rab 3075 df-v 3433 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-br 5080 df-opab 5142 df-mpt 5163 df-id 5490 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-iota 6390 df-fun 6434 df-fv 6440 df-top 22041 df-topon 22058 df-topsp 22080 |
This theorem is referenced by: mreclatdemoBAD 22245 haustsms 23285 cnextucn 23453 ressxms 23679 rlmbn 24523 rrhf 31944 esumcocn 32044 sibf0 32297 sibfof 32303 sitgclg 32305 sitgaddlemb 32311 sitmcl 32314 binomcxplemdvbinom 41941 binomcxplemnotnn0 41944 qndenserrn 43811 |
Copyright terms: Public domain | W3C validator |