MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tpsuni Structured version   Visualization version   GIF version

Theorem tpsuni 22085
Description: The base set of a topological space. (Contributed by FL, 27-Jun-2014.)
Hypotheses
Ref Expression
istps.a 𝐴 = (Base‘𝐾)
istps.j 𝐽 = (TopOpen‘𝐾)
Assertion
Ref Expression
tpsuni (𝐾 ∈ TopSp → 𝐴 = 𝐽)

Proof of Theorem tpsuni
StepHypRef Expression
1 istps.a . . 3 𝐴 = (Base‘𝐾)
2 istps.j . . 3 𝐽 = (TopOpen‘𝐾)
31, 2istps2 22084 . 2 (𝐾 ∈ TopSp ↔ (𝐽 ∈ Top ∧ 𝐴 = 𝐽))
43simprbi 497 1 (𝐾 ∈ TopSp → 𝐴 = 𝐽)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2106   cuni 4839  cfv 6433  Basecbs 16912  TopOpenctopn 17132  Topctop 22042  TopSpctps 22081
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-iota 6391  df-fun 6435  df-fv 6441  df-top 22043  df-topon 22060  df-topsp 22082
This theorem is referenced by:  mreclatdemoBAD  22247  haustsms  23287  cnextucn  23455  ressxms  23681  rlmbn  24525  rrhf  31948  esumcocn  32048  sibf0  32301  sibfof  32307  sitgclg  32309  sitgaddlemb  32315  sitmcl  32318  binomcxplemdvbinom  41971  binomcxplemnotnn0  41974  qndenserrn  43840
  Copyright terms: Public domain W3C validator