MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tpsuni Structured version   Visualization version   GIF version

Theorem tpsuni 22823
Description: The base set of a topological space. (Contributed by FL, 27-Jun-2014.)
Hypotheses
Ref Expression
istps.a 𝐴 = (Base‘𝐾)
istps.j 𝐽 = (TopOpen‘𝐾)
Assertion
Ref Expression
tpsuni (𝐾 ∈ TopSp → 𝐴 = 𝐽)

Proof of Theorem tpsuni
StepHypRef Expression
1 istps.a . . 3 𝐴 = (Base‘𝐾)
2 istps.j . . 3 𝐽 = (TopOpen‘𝐾)
31, 2istps2 22822 . 2 (𝐾 ∈ TopSp ↔ (𝐽 ∈ Top ∧ 𝐴 = 𝐽))
43simprbi 496 1 (𝐾 ∈ TopSp → 𝐴 = 𝐽)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109   cuni 4871  cfv 6511  Basecbs 17179  TopOpenctopn 17384  Topctop 22780  TopSpctps 22819
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-iota 6464  df-fun 6513  df-fv 6519  df-top 22781  df-topon 22798  df-topsp 22820
This theorem is referenced by:  mreclatdemoBAD  22983  haustsms  24023  cnextucn  24190  ressxms  24413  rlmbn  25261  rrhf  33988  esumcocn  34070  sibf0  34325  sibfof  34331  sitgclg  34333  sitgaddlemb  34339  sitmcl  34342  binomcxplemdvbinom  44342  binomcxplemnotnn0  44345  qndenserrn  46297
  Copyright terms: Public domain W3C validator