MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eltpsg Structured version   Visualization version   GIF version

Theorem eltpsg 22172
Description: Properties that determine a topological space from a construction (using no explicit indices). (Contributed by Mario Carneiro, 13-Aug-2015.) (Revised by AV, 31-Oct-2024.)
Hypothesis
Ref Expression
eltpsi.k 𝐾 = {⟨(Base‘ndx), 𝐴⟩, ⟨(TopSet‘ndx), 𝐽⟩}
Assertion
Ref Expression
eltpsg (𝐽 ∈ (TopOn‘𝐴) → 𝐾 ∈ TopSp)

Proof of Theorem eltpsg
StepHypRef Expression
1 eltpsi.k . . . . 5 𝐾 = {⟨(Base‘ndx), 𝐴⟩, ⟨(TopSet‘ndx), 𝐽⟩}
2 basendxlttsetndx 17139 . . . . 5 (Base‘ndx) < (TopSet‘ndx)
3 tsetndxnn 17138 . . . . 5 (TopSet‘ndx) ∈ ℕ
4 tsetid 17137 . . . . 5 TopSet = Slot (TopSet‘ndx)
51, 2, 3, 42strop1 17014 . . . 4 (𝐽 ∈ (TopOn‘𝐴) → 𝐽 = (TopSet‘𝐾))
6 toponmax 22155 . . . . . 6 (𝐽 ∈ (TopOn‘𝐴) → 𝐴𝐽)
71, 2, 32strbas1 17013 . . . . . 6 (𝐴𝐽𝐴 = (Base‘𝐾))
86, 7syl 17 . . . . 5 (𝐽 ∈ (TopOn‘𝐴) → 𝐴 = (Base‘𝐾))
98fveq2d 6815 . . . 4 (𝐽 ∈ (TopOn‘𝐴) → (TopOn‘𝐴) = (TopOn‘(Base‘𝐾)))
105, 9eleq12d 2831 . . 3 (𝐽 ∈ (TopOn‘𝐴) → (𝐽 ∈ (TopOn‘𝐴) ↔ (TopSet‘𝐾) ∈ (TopOn‘(Base‘𝐾))))
1110ibi 266 . 2 (𝐽 ∈ (TopOn‘𝐴) → (TopSet‘𝐾) ∈ (TopOn‘(Base‘𝐾)))
12 eqid 2736 . . 3 (Base‘𝐾) = (Base‘𝐾)
13 eqid 2736 . . 3 (TopSet‘𝐾) = (TopSet‘𝐾)
1412, 13tsettps 22170 . 2 ((TopSet‘𝐾) ∈ (TopOn‘(Base‘𝐾)) → 𝐾 ∈ TopSp)
1511, 14syl 17 1 (𝐽 ∈ (TopOn‘𝐴) → 𝐾 ∈ TopSp)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2105  {cpr 4572  cop 4576  cfv 6465  ndxcnx 16968  Basecbs 16986  TopSetcts 17042  TopOnctopon 22139  TopSpctps 22161
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-rep 5223  ax-sep 5237  ax-nul 5244  ax-pow 5302  ax-pr 5366  ax-un 7629  ax-cnex 11006  ax-resscn 11007  ax-1cn 11008  ax-icn 11009  ax-addcl 11010  ax-addrcl 11011  ax-mulcl 11012  ax-mulrcl 11013  ax-mulcom 11014  ax-addass 11015  ax-mulass 11016  ax-distr 11017  ax-i2m1 11018  ax-1ne0 11019  ax-1rid 11020  ax-rnegex 11021  ax-rrecex 11022  ax-cnre 11023  ax-pre-lttri 11024  ax-pre-lttrn 11025  ax-pre-ltadd 11026  ax-pre-mulgt0 11027
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3350  df-rab 3404  df-v 3442  df-sbc 3726  df-csb 3842  df-dif 3899  df-un 3901  df-in 3903  df-ss 3913  df-pss 3915  df-nul 4267  df-if 4471  df-pw 4546  df-sn 4571  df-pr 4573  df-op 4577  df-uni 4850  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5170  df-tr 5204  df-id 5506  df-eprel 5512  df-po 5520  df-so 5521  df-fr 5562  df-we 5564  df-xp 5613  df-rel 5614  df-cnv 5615  df-co 5616  df-dm 5617  df-rn 5618  df-res 5619  df-ima 5620  df-pred 6224  df-ord 6291  df-on 6292  df-lim 6293  df-suc 6294  df-iota 6417  df-fun 6467  df-fn 6468  df-f 6469  df-f1 6470  df-fo 6471  df-f1o 6472  df-fv 6473  df-riota 7273  df-ov 7319  df-oprab 7320  df-mpo 7321  df-om 7759  df-1st 7877  df-2nd 7878  df-frecs 8145  df-wrecs 8176  df-recs 8250  df-rdg 8289  df-1o 8345  df-er 8547  df-en 8783  df-dom 8784  df-sdom 8785  df-fin 8786  df-pnf 11090  df-mnf 11091  df-xr 11092  df-ltxr 11093  df-le 11094  df-sub 11286  df-neg 11287  df-nn 12053  df-2 12115  df-3 12116  df-4 12117  df-5 12118  df-6 12119  df-7 12120  df-8 12121  df-9 12122  df-n0 12313  df-z 12399  df-uz 12662  df-fz 13319  df-struct 16922  df-slot 16957  df-ndx 16969  df-base 16987  df-tset 17055  df-rest 17207  df-topn 17208  df-top 22123  df-topon 22140  df-topsp 22162
This theorem is referenced by:  eltpsi  22174  stoig  22394
  Copyright terms: Public domain W3C validator