Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > eltpsg | Structured version Visualization version GIF version |
Description: Properties that determine a topological space from a construction (using no explicit indices). (Contributed by Mario Carneiro, 13-Aug-2015.) (Revised by AV, 31-Oct-2024.) |
Ref | Expression |
---|---|
eltpsi.k | ⊢ 𝐾 = {〈(Base‘ndx), 𝐴〉, 〈(TopSet‘ndx), 𝐽〉} |
Ref | Expression |
---|---|
eltpsg | ⊢ (𝐽 ∈ (TopOn‘𝐴) → 𝐾 ∈ TopSp) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eltpsi.k | . . . . 5 ⊢ 𝐾 = {〈(Base‘ndx), 𝐴〉, 〈(TopSet‘ndx), 𝐽〉} | |
2 | basendxlttsetndx 17139 | . . . . 5 ⊢ (Base‘ndx) < (TopSet‘ndx) | |
3 | tsetndxnn 17138 | . . . . 5 ⊢ (TopSet‘ndx) ∈ ℕ | |
4 | tsetid 17137 | . . . . 5 ⊢ TopSet = Slot (TopSet‘ndx) | |
5 | 1, 2, 3, 4 | 2strop1 17014 | . . . 4 ⊢ (𝐽 ∈ (TopOn‘𝐴) → 𝐽 = (TopSet‘𝐾)) |
6 | toponmax 22155 | . . . . . 6 ⊢ (𝐽 ∈ (TopOn‘𝐴) → 𝐴 ∈ 𝐽) | |
7 | 1, 2, 3 | 2strbas1 17013 | . . . . . 6 ⊢ (𝐴 ∈ 𝐽 → 𝐴 = (Base‘𝐾)) |
8 | 6, 7 | syl 17 | . . . . 5 ⊢ (𝐽 ∈ (TopOn‘𝐴) → 𝐴 = (Base‘𝐾)) |
9 | 8 | fveq2d 6815 | . . . 4 ⊢ (𝐽 ∈ (TopOn‘𝐴) → (TopOn‘𝐴) = (TopOn‘(Base‘𝐾))) |
10 | 5, 9 | eleq12d 2831 | . . 3 ⊢ (𝐽 ∈ (TopOn‘𝐴) → (𝐽 ∈ (TopOn‘𝐴) ↔ (TopSet‘𝐾) ∈ (TopOn‘(Base‘𝐾)))) |
11 | 10 | ibi 266 | . 2 ⊢ (𝐽 ∈ (TopOn‘𝐴) → (TopSet‘𝐾) ∈ (TopOn‘(Base‘𝐾))) |
12 | eqid 2736 | . . 3 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
13 | eqid 2736 | . . 3 ⊢ (TopSet‘𝐾) = (TopSet‘𝐾) | |
14 | 12, 13 | tsettps 22170 | . 2 ⊢ ((TopSet‘𝐾) ∈ (TopOn‘(Base‘𝐾)) → 𝐾 ∈ TopSp) |
15 | 11, 14 | syl 17 | 1 ⊢ (𝐽 ∈ (TopOn‘𝐴) → 𝐾 ∈ TopSp) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2105 {cpr 4572 〈cop 4576 ‘cfv 6465 ndxcnx 16968 Basecbs 16986 TopSetcts 17042 TopOnctopon 22139 TopSpctps 22161 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-rep 5223 ax-sep 5237 ax-nul 5244 ax-pow 5302 ax-pr 5366 ax-un 7629 ax-cnex 11006 ax-resscn 11007 ax-1cn 11008 ax-icn 11009 ax-addcl 11010 ax-addrcl 11011 ax-mulcl 11012 ax-mulrcl 11013 ax-mulcom 11014 ax-addass 11015 ax-mulass 11016 ax-distr 11017 ax-i2m1 11018 ax-1ne0 11019 ax-1rid 11020 ax-rnegex 11021 ax-rrecex 11022 ax-cnre 11023 ax-pre-lttri 11024 ax-pre-lttrn 11025 ax-pre-ltadd 11026 ax-pre-mulgt0 11027 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3350 df-rab 3404 df-v 3442 df-sbc 3726 df-csb 3842 df-dif 3899 df-un 3901 df-in 3903 df-ss 3913 df-pss 3915 df-nul 4267 df-if 4471 df-pw 4546 df-sn 4571 df-pr 4573 df-op 4577 df-uni 4850 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5170 df-tr 5204 df-id 5506 df-eprel 5512 df-po 5520 df-so 5521 df-fr 5562 df-we 5564 df-xp 5613 df-rel 5614 df-cnv 5615 df-co 5616 df-dm 5617 df-rn 5618 df-res 5619 df-ima 5620 df-pred 6224 df-ord 6291 df-on 6292 df-lim 6293 df-suc 6294 df-iota 6417 df-fun 6467 df-fn 6468 df-f 6469 df-f1 6470 df-fo 6471 df-f1o 6472 df-fv 6473 df-riota 7273 df-ov 7319 df-oprab 7320 df-mpo 7321 df-om 7759 df-1st 7877 df-2nd 7878 df-frecs 8145 df-wrecs 8176 df-recs 8250 df-rdg 8289 df-1o 8345 df-er 8547 df-en 8783 df-dom 8784 df-sdom 8785 df-fin 8786 df-pnf 11090 df-mnf 11091 df-xr 11092 df-ltxr 11093 df-le 11094 df-sub 11286 df-neg 11287 df-nn 12053 df-2 12115 df-3 12116 df-4 12117 df-5 12118 df-6 12119 df-7 12120 df-8 12121 df-9 12122 df-n0 12313 df-z 12399 df-uz 12662 df-fz 13319 df-struct 16922 df-slot 16957 df-ndx 16969 df-base 16987 df-tset 17055 df-rest 17207 df-topn 17208 df-top 22123 df-topon 22140 df-topsp 22162 |
This theorem is referenced by: eltpsi 22174 stoig 22394 |
Copyright terms: Public domain | W3C validator |