MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tsettps Structured version   Visualization version   GIF version

Theorem tsettps 22663
Description: If the topology component is already correctly truncated, then it forms a topological space (with the topology extractor function coming out the same as the component). (Contributed by Mario Carneiro, 13-Aug-2015.)
Hypotheses
Ref Expression
tsettps.a 𝐴 = (Base‘𝐾)
tsettps.j 𝐽 = (TopSet‘𝐾)
Assertion
Ref Expression
tsettps (𝐽 ∈ (TopOn‘𝐴) → 𝐾 ∈ TopSp)

Proof of Theorem tsettps
StepHypRef Expression
1 tsettps.a . . . 4 𝐴 = (Base‘𝐾)
2 tsettps.j . . . 4 𝐽 = (TopSet‘𝐾)
31, 2topontopn 22662 . . 3 (𝐽 ∈ (TopOn‘𝐴) → 𝐽 = (TopOpen‘𝐾))
4 id 22 . . 3 (𝐽 ∈ (TopOn‘𝐴) → 𝐽 ∈ (TopOn‘𝐴))
53, 4eqeltrrd 2832 . 2 (𝐽 ∈ (TopOn‘𝐴) → (TopOpen‘𝐾) ∈ (TopOn‘𝐴))
6 eqid 2730 . . 3 (TopOpen‘𝐾) = (TopOpen‘𝐾)
71, 6istps 22656 . 2 (𝐾 ∈ TopSp ↔ (TopOpen‘𝐾) ∈ (TopOn‘𝐴))
85, 7sylibr 233 1 (𝐽 ∈ (TopOn‘𝐴) → 𝐾 ∈ TopSp)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2104  cfv 6542  Basecbs 17148  TopSetcts 17207  TopOpenctopn 17371  TopOnctopon 22632  TopSpctps 22654
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7727
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3375  df-rab 3431  df-v 3474  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-ov 7414  df-oprab 7415  df-mpo 7416  df-1st 7977  df-2nd 7978  df-rest 17372  df-topn 17373  df-top 22616  df-topon 22633  df-topsp 22655
This theorem is referenced by:  eltpsg  22665  eltpsgOLD  22666  indistpsALT  22736  indistpsALTOLD  22737  xrstps  22933  prdstps  23353
  Copyright terms: Public domain W3C validator