| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tsettps | Structured version Visualization version GIF version | ||
| Description: If the topology component is already correctly truncated, then it forms a topological space (with the topology extractor function coming out the same as the component). (Contributed by Mario Carneiro, 13-Aug-2015.) |
| Ref | Expression |
|---|---|
| tsettps.a | ⊢ 𝐴 = (Base‘𝐾) |
| tsettps.j | ⊢ 𝐽 = (TopSet‘𝐾) |
| Ref | Expression |
|---|---|
| tsettps | ⊢ (𝐽 ∈ (TopOn‘𝐴) → 𝐾 ∈ TopSp) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tsettps.a | . . . 4 ⊢ 𝐴 = (Base‘𝐾) | |
| 2 | tsettps.j | . . . 4 ⊢ 𝐽 = (TopSet‘𝐾) | |
| 3 | 1, 2 | topontopn 22850 | . . 3 ⊢ (𝐽 ∈ (TopOn‘𝐴) → 𝐽 = (TopOpen‘𝐾)) |
| 4 | id 22 | . . 3 ⊢ (𝐽 ∈ (TopOn‘𝐴) → 𝐽 ∈ (TopOn‘𝐴)) | |
| 5 | 3, 4 | eqeltrrd 2832 | . 2 ⊢ (𝐽 ∈ (TopOn‘𝐴) → (TopOpen‘𝐾) ∈ (TopOn‘𝐴)) |
| 6 | eqid 2731 | . . 3 ⊢ (TopOpen‘𝐾) = (TopOpen‘𝐾) | |
| 7 | 1, 6 | istps 22844 | . 2 ⊢ (𝐾 ∈ TopSp ↔ (TopOpen‘𝐾) ∈ (TopOn‘𝐴)) |
| 8 | 5, 7 | sylibr 234 | 1 ⊢ (𝐽 ∈ (TopOn‘𝐴) → 𝐾 ∈ TopSp) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 ‘cfv 6476 Basecbs 17115 TopSetcts 17162 TopOpenctopn 17320 TopOnctopon 22820 TopSpctps 22842 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5212 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-id 5506 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-ov 7344 df-oprab 7345 df-mpo 7346 df-1st 7916 df-2nd 7917 df-rest 17321 df-topn 17322 df-top 22804 df-topon 22821 df-topsp 22843 |
| This theorem is referenced by: eltpsg 22853 indistpsALT 22923 xrstps 23119 prdstps 23539 |
| Copyright terms: Public domain | W3C validator |