![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tsettps | Structured version Visualization version GIF version |
Description: If the topology component is already correctly truncated, then it forms a topological space (with the topology extractor function coming out the same as the component). (Contributed by Mario Carneiro, 13-Aug-2015.) |
Ref | Expression |
---|---|
tsettps.a | ⊢ 𝐴 = (Base‘𝐾) |
tsettps.j | ⊢ 𝐽 = (TopSet‘𝐾) |
Ref | Expression |
---|---|
tsettps | ⊢ (𝐽 ∈ (TopOn‘𝐴) → 𝐾 ∈ TopSp) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tsettps.a | . . . 4 ⊢ 𝐴 = (Base‘𝐾) | |
2 | tsettps.j | . . . 4 ⊢ 𝐽 = (TopSet‘𝐾) | |
3 | 1, 2 | topontopn 22967 | . . 3 ⊢ (𝐽 ∈ (TopOn‘𝐴) → 𝐽 = (TopOpen‘𝐾)) |
4 | id 22 | . . 3 ⊢ (𝐽 ∈ (TopOn‘𝐴) → 𝐽 ∈ (TopOn‘𝐴)) | |
5 | 3, 4 | eqeltrrd 2845 | . 2 ⊢ (𝐽 ∈ (TopOn‘𝐴) → (TopOpen‘𝐾) ∈ (TopOn‘𝐴)) |
6 | eqid 2740 | . . 3 ⊢ (TopOpen‘𝐾) = (TopOpen‘𝐾) | |
7 | 1, 6 | istps 22961 | . 2 ⊢ (𝐾 ∈ TopSp ↔ (TopOpen‘𝐾) ∈ (TopOn‘𝐴)) |
8 | 5, 7 | sylibr 234 | 1 ⊢ (𝐽 ∈ (TopOn‘𝐴) → 𝐾 ∈ TopSp) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 ‘cfv 6573 Basecbs 17258 TopSetcts 17317 TopOpenctopn 17481 TopOnctopon 22937 TopSpctps 22959 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-1st 8030 df-2nd 8031 df-rest 17482 df-topn 17483 df-top 22921 df-topon 22938 df-topsp 22960 |
This theorem is referenced by: eltpsg 22970 eltpsgOLD 22971 indistpsALT 23041 indistpsALTOLD 23042 xrstps 23238 prdstps 23658 |
Copyright terms: Public domain | W3C validator |