Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > itgoss | Structured version Visualization version GIF version |
Description: An integral element is integral over a subset. (Contributed by Stefan O'Rear, 27-Nov-2014.) |
Ref | Expression |
---|---|
itgoss | ⊢ ((𝑆 ⊆ 𝑇 ∧ 𝑇 ⊆ ℂ) → (IntgOver‘𝑆) ⊆ (IntgOver‘𝑇)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | plyss 25265 | . . . . 5 ⊢ ((𝑆 ⊆ 𝑇 ∧ 𝑇 ⊆ ℂ) → (Poly‘𝑆) ⊆ (Poly‘𝑇)) | |
2 | ssrexv 3984 | . . . . 5 ⊢ ((Poly‘𝑆) ⊆ (Poly‘𝑇) → (∃𝑏 ∈ (Poly‘𝑆)((𝑏‘𝑎) = 0 ∧ ((coeff‘𝑏)‘(deg‘𝑏)) = 1) → ∃𝑏 ∈ (Poly‘𝑇)((𝑏‘𝑎) = 0 ∧ ((coeff‘𝑏)‘(deg‘𝑏)) = 1))) | |
3 | 1, 2 | syl 17 | . . . 4 ⊢ ((𝑆 ⊆ 𝑇 ∧ 𝑇 ⊆ ℂ) → (∃𝑏 ∈ (Poly‘𝑆)((𝑏‘𝑎) = 0 ∧ ((coeff‘𝑏)‘(deg‘𝑏)) = 1) → ∃𝑏 ∈ (Poly‘𝑇)((𝑏‘𝑎) = 0 ∧ ((coeff‘𝑏)‘(deg‘𝑏)) = 1))) |
4 | 3 | ralrimivw 3108 | . . 3 ⊢ ((𝑆 ⊆ 𝑇 ∧ 𝑇 ⊆ ℂ) → ∀𝑎 ∈ ℂ (∃𝑏 ∈ (Poly‘𝑆)((𝑏‘𝑎) = 0 ∧ ((coeff‘𝑏)‘(deg‘𝑏)) = 1) → ∃𝑏 ∈ (Poly‘𝑇)((𝑏‘𝑎) = 0 ∧ ((coeff‘𝑏)‘(deg‘𝑏)) = 1))) |
5 | ss2rab 4000 | . . 3 ⊢ ({𝑎 ∈ ℂ ∣ ∃𝑏 ∈ (Poly‘𝑆)((𝑏‘𝑎) = 0 ∧ ((coeff‘𝑏)‘(deg‘𝑏)) = 1)} ⊆ {𝑎 ∈ ℂ ∣ ∃𝑏 ∈ (Poly‘𝑇)((𝑏‘𝑎) = 0 ∧ ((coeff‘𝑏)‘(deg‘𝑏)) = 1)} ↔ ∀𝑎 ∈ ℂ (∃𝑏 ∈ (Poly‘𝑆)((𝑏‘𝑎) = 0 ∧ ((coeff‘𝑏)‘(deg‘𝑏)) = 1) → ∃𝑏 ∈ (Poly‘𝑇)((𝑏‘𝑎) = 0 ∧ ((coeff‘𝑏)‘(deg‘𝑏)) = 1))) | |
6 | 4, 5 | sylibr 233 | . 2 ⊢ ((𝑆 ⊆ 𝑇 ∧ 𝑇 ⊆ ℂ) → {𝑎 ∈ ℂ ∣ ∃𝑏 ∈ (Poly‘𝑆)((𝑏‘𝑎) = 0 ∧ ((coeff‘𝑏)‘(deg‘𝑏)) = 1)} ⊆ {𝑎 ∈ ℂ ∣ ∃𝑏 ∈ (Poly‘𝑇)((𝑏‘𝑎) = 0 ∧ ((coeff‘𝑏)‘(deg‘𝑏)) = 1)}) |
7 | sstr 3925 | . . 3 ⊢ ((𝑆 ⊆ 𝑇 ∧ 𝑇 ⊆ ℂ) → 𝑆 ⊆ ℂ) | |
8 | itgoval 40902 | . . 3 ⊢ (𝑆 ⊆ ℂ → (IntgOver‘𝑆) = {𝑎 ∈ ℂ ∣ ∃𝑏 ∈ (Poly‘𝑆)((𝑏‘𝑎) = 0 ∧ ((coeff‘𝑏)‘(deg‘𝑏)) = 1)}) | |
9 | 7, 8 | syl 17 | . 2 ⊢ ((𝑆 ⊆ 𝑇 ∧ 𝑇 ⊆ ℂ) → (IntgOver‘𝑆) = {𝑎 ∈ ℂ ∣ ∃𝑏 ∈ (Poly‘𝑆)((𝑏‘𝑎) = 0 ∧ ((coeff‘𝑏)‘(deg‘𝑏)) = 1)}) |
10 | itgoval 40902 | . . 3 ⊢ (𝑇 ⊆ ℂ → (IntgOver‘𝑇) = {𝑎 ∈ ℂ ∣ ∃𝑏 ∈ (Poly‘𝑇)((𝑏‘𝑎) = 0 ∧ ((coeff‘𝑏)‘(deg‘𝑏)) = 1)}) | |
11 | 10 | adantl 481 | . 2 ⊢ ((𝑆 ⊆ 𝑇 ∧ 𝑇 ⊆ ℂ) → (IntgOver‘𝑇) = {𝑎 ∈ ℂ ∣ ∃𝑏 ∈ (Poly‘𝑇)((𝑏‘𝑎) = 0 ∧ ((coeff‘𝑏)‘(deg‘𝑏)) = 1)}) |
12 | 6, 9, 11 | 3sstr4d 3964 | 1 ⊢ ((𝑆 ⊆ 𝑇 ∧ 𝑇 ⊆ ℂ) → (IntgOver‘𝑆) ⊆ (IntgOver‘𝑇)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∀wral 3063 ∃wrex 3064 {crab 3067 ⊆ wss 3883 ‘cfv 6418 ℂcc 10800 0cc0 10802 1c1 10803 Polycply 25250 coeffccoe 25252 degcdgr 25253 IntgOvercitgo 40898 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-1cn 10860 ax-addcl 10862 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-map 8575 df-nn 11904 df-n0 12164 df-ply 25254 df-itgo 40900 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |