Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  itgoss Structured version   Visualization version   GIF version

Theorem itgoss 43175
Description: An integral element is integral over a subset. (Contributed by Stefan O'Rear, 27-Nov-2014.)
Assertion
Ref Expression
itgoss ((𝑆𝑇𝑇 ⊆ ℂ) → (IntgOver‘𝑆) ⊆ (IntgOver‘𝑇))

Proof of Theorem itgoss
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 plyss 26238 . . . . 5 ((𝑆𝑇𝑇 ⊆ ℂ) → (Poly‘𝑆) ⊆ (Poly‘𝑇))
2 ssrexv 4053 . . . . 5 ((Poly‘𝑆) ⊆ (Poly‘𝑇) → (∃𝑏 ∈ (Poly‘𝑆)((𝑏𝑎) = 0 ∧ ((coeff‘𝑏)‘(deg‘𝑏)) = 1) → ∃𝑏 ∈ (Poly‘𝑇)((𝑏𝑎) = 0 ∧ ((coeff‘𝑏)‘(deg‘𝑏)) = 1)))
31, 2syl 17 . . . 4 ((𝑆𝑇𝑇 ⊆ ℂ) → (∃𝑏 ∈ (Poly‘𝑆)((𝑏𝑎) = 0 ∧ ((coeff‘𝑏)‘(deg‘𝑏)) = 1) → ∃𝑏 ∈ (Poly‘𝑇)((𝑏𝑎) = 0 ∧ ((coeff‘𝑏)‘(deg‘𝑏)) = 1)))
43adantr 480 . . 3 (((𝑆𝑇𝑇 ⊆ ℂ) ∧ 𝑎 ∈ ℂ) → (∃𝑏 ∈ (Poly‘𝑆)((𝑏𝑎) = 0 ∧ ((coeff‘𝑏)‘(deg‘𝑏)) = 1) → ∃𝑏 ∈ (Poly‘𝑇)((𝑏𝑎) = 0 ∧ ((coeff‘𝑏)‘(deg‘𝑏)) = 1)))
54ss2rabdv 4076 . 2 ((𝑆𝑇𝑇 ⊆ ℂ) → {𝑎 ∈ ℂ ∣ ∃𝑏 ∈ (Poly‘𝑆)((𝑏𝑎) = 0 ∧ ((coeff‘𝑏)‘(deg‘𝑏)) = 1)} ⊆ {𝑎 ∈ ℂ ∣ ∃𝑏 ∈ (Poly‘𝑇)((𝑏𝑎) = 0 ∧ ((coeff‘𝑏)‘(deg‘𝑏)) = 1)})
6 sstr 3992 . . 3 ((𝑆𝑇𝑇 ⊆ ℂ) → 𝑆 ⊆ ℂ)
7 itgoval 43173 . . 3 (𝑆 ⊆ ℂ → (IntgOver‘𝑆) = {𝑎 ∈ ℂ ∣ ∃𝑏 ∈ (Poly‘𝑆)((𝑏𝑎) = 0 ∧ ((coeff‘𝑏)‘(deg‘𝑏)) = 1)})
86, 7syl 17 . 2 ((𝑆𝑇𝑇 ⊆ ℂ) → (IntgOver‘𝑆) = {𝑎 ∈ ℂ ∣ ∃𝑏 ∈ (Poly‘𝑆)((𝑏𝑎) = 0 ∧ ((coeff‘𝑏)‘(deg‘𝑏)) = 1)})
9 itgoval 43173 . . 3 (𝑇 ⊆ ℂ → (IntgOver‘𝑇) = {𝑎 ∈ ℂ ∣ ∃𝑏 ∈ (Poly‘𝑇)((𝑏𝑎) = 0 ∧ ((coeff‘𝑏)‘(deg‘𝑏)) = 1)})
109adantl 481 . 2 ((𝑆𝑇𝑇 ⊆ ℂ) → (IntgOver‘𝑇) = {𝑎 ∈ ℂ ∣ ∃𝑏 ∈ (Poly‘𝑇)((𝑏𝑎) = 0 ∧ ((coeff‘𝑏)‘(deg‘𝑏)) = 1)})
115, 8, 103sstr4d 4039 1 ((𝑆𝑇𝑇 ⊆ ℂ) → (IntgOver‘𝑆) ⊆ (IntgOver‘𝑇))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  wrex 3070  {crab 3436  wss 3951  cfv 6561  cc 11153  0cc0 11155  1c1 11156  Polycply 26223  coeffccoe 26225  degcdgr 26226  IntgOvercitgo 43169
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-1cn 11213  ax-addcl 11215
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-map 8868  df-nn 12267  df-n0 12527  df-ply 26227  df-itgo 43171
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator