Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  itgoss Structured version   Visualization version   GIF version

Theorem itgoss 43162
Description: An integral element is integral over a subset. (Contributed by Stefan O'Rear, 27-Nov-2014.)
Assertion
Ref Expression
itgoss ((𝑆𝑇𝑇 ⊆ ℂ) → (IntgOver‘𝑆) ⊆ (IntgOver‘𝑇))

Proof of Theorem itgoss
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 plyss 26161 . . . . 5 ((𝑆𝑇𝑇 ⊆ ℂ) → (Poly‘𝑆) ⊆ (Poly‘𝑇))
2 ssrexv 4033 . . . . 5 ((Poly‘𝑆) ⊆ (Poly‘𝑇) → (∃𝑏 ∈ (Poly‘𝑆)((𝑏𝑎) = 0 ∧ ((coeff‘𝑏)‘(deg‘𝑏)) = 1) → ∃𝑏 ∈ (Poly‘𝑇)((𝑏𝑎) = 0 ∧ ((coeff‘𝑏)‘(deg‘𝑏)) = 1)))
31, 2syl 17 . . . 4 ((𝑆𝑇𝑇 ⊆ ℂ) → (∃𝑏 ∈ (Poly‘𝑆)((𝑏𝑎) = 0 ∧ ((coeff‘𝑏)‘(deg‘𝑏)) = 1) → ∃𝑏 ∈ (Poly‘𝑇)((𝑏𝑎) = 0 ∧ ((coeff‘𝑏)‘(deg‘𝑏)) = 1)))
43adantr 480 . . 3 (((𝑆𝑇𝑇 ⊆ ℂ) ∧ 𝑎 ∈ ℂ) → (∃𝑏 ∈ (Poly‘𝑆)((𝑏𝑎) = 0 ∧ ((coeff‘𝑏)‘(deg‘𝑏)) = 1) → ∃𝑏 ∈ (Poly‘𝑇)((𝑏𝑎) = 0 ∧ ((coeff‘𝑏)‘(deg‘𝑏)) = 1)))
54ss2rabdv 4056 . 2 ((𝑆𝑇𝑇 ⊆ ℂ) → {𝑎 ∈ ℂ ∣ ∃𝑏 ∈ (Poly‘𝑆)((𝑏𝑎) = 0 ∧ ((coeff‘𝑏)‘(deg‘𝑏)) = 1)} ⊆ {𝑎 ∈ ℂ ∣ ∃𝑏 ∈ (Poly‘𝑇)((𝑏𝑎) = 0 ∧ ((coeff‘𝑏)‘(deg‘𝑏)) = 1)})
6 sstr 3972 . . 3 ((𝑆𝑇𝑇 ⊆ ℂ) → 𝑆 ⊆ ℂ)
7 itgoval 43160 . . 3 (𝑆 ⊆ ℂ → (IntgOver‘𝑆) = {𝑎 ∈ ℂ ∣ ∃𝑏 ∈ (Poly‘𝑆)((𝑏𝑎) = 0 ∧ ((coeff‘𝑏)‘(deg‘𝑏)) = 1)})
86, 7syl 17 . 2 ((𝑆𝑇𝑇 ⊆ ℂ) → (IntgOver‘𝑆) = {𝑎 ∈ ℂ ∣ ∃𝑏 ∈ (Poly‘𝑆)((𝑏𝑎) = 0 ∧ ((coeff‘𝑏)‘(deg‘𝑏)) = 1)})
9 itgoval 43160 . . 3 (𝑇 ⊆ ℂ → (IntgOver‘𝑇) = {𝑎 ∈ ℂ ∣ ∃𝑏 ∈ (Poly‘𝑇)((𝑏𝑎) = 0 ∧ ((coeff‘𝑏)‘(deg‘𝑏)) = 1)})
109adantl 481 . 2 ((𝑆𝑇𝑇 ⊆ ℂ) → (IntgOver‘𝑇) = {𝑎 ∈ ℂ ∣ ∃𝑏 ∈ (Poly‘𝑇)((𝑏𝑎) = 0 ∧ ((coeff‘𝑏)‘(deg‘𝑏)) = 1)})
115, 8, 103sstr4d 4019 1 ((𝑆𝑇𝑇 ⊆ ℂ) → (IntgOver‘𝑆) ⊆ (IntgOver‘𝑇))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wrex 3061  {crab 3420  wss 3931  cfv 6536  cc 11132  0cc0 11134  1c1 11135  Polycply 26146  coeffccoe 26148  degcdgr 26149  IntgOvercitgo 43156
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-1cn 11192  ax-addcl 11194
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-map 8847  df-nn 12246  df-n0 12507  df-ply 26150  df-itgo 43158
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator