![]() |
Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > itgoss | Structured version Visualization version GIF version |
Description: An integral element is integral over a subset. (Contributed by Stefan O'Rear, 27-Nov-2014.) |
Ref | Expression |
---|---|
itgoss | β’ ((π β π β§ π β β) β (IntgOverβπ) β (IntgOverβπ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | plyss 25713 | . . . . 5 β’ ((π β π β§ π β β) β (Polyβπ) β (Polyβπ)) | |
2 | ssrexv 4052 | . . . . 5 β’ ((Polyβπ) β (Polyβπ) β (βπ β (Polyβπ)((πβπ) = 0 β§ ((coeffβπ)β(degβπ)) = 1) β βπ β (Polyβπ)((πβπ) = 0 β§ ((coeffβπ)β(degβπ)) = 1))) | |
3 | 1, 2 | syl 17 | . . . 4 β’ ((π β π β§ π β β) β (βπ β (Polyβπ)((πβπ) = 0 β§ ((coeffβπ)β(degβπ)) = 1) β βπ β (Polyβπ)((πβπ) = 0 β§ ((coeffβπ)β(degβπ)) = 1))) |
4 | 3 | adantr 482 | . . 3 β’ (((π β π β§ π β β) β§ π β β) β (βπ β (Polyβπ)((πβπ) = 0 β§ ((coeffβπ)β(degβπ)) = 1) β βπ β (Polyβπ)((πβπ) = 0 β§ ((coeffβπ)β(degβπ)) = 1))) |
5 | 4 | ss2rabdv 4074 | . 2 β’ ((π β π β§ π β β) β {π β β β£ βπ β (Polyβπ)((πβπ) = 0 β§ ((coeffβπ)β(degβπ)) = 1)} β {π β β β£ βπ β (Polyβπ)((πβπ) = 0 β§ ((coeffβπ)β(degβπ)) = 1)}) |
6 | sstr 3991 | . . 3 β’ ((π β π β§ π β β) β π β β) | |
7 | itgoval 41903 | . . 3 β’ (π β β β (IntgOverβπ) = {π β β β£ βπ β (Polyβπ)((πβπ) = 0 β§ ((coeffβπ)β(degβπ)) = 1)}) | |
8 | 6, 7 | syl 17 | . 2 β’ ((π β π β§ π β β) β (IntgOverβπ) = {π β β β£ βπ β (Polyβπ)((πβπ) = 0 β§ ((coeffβπ)β(degβπ)) = 1)}) |
9 | itgoval 41903 | . . 3 β’ (π β β β (IntgOverβπ) = {π β β β£ βπ β (Polyβπ)((πβπ) = 0 β§ ((coeffβπ)β(degβπ)) = 1)}) | |
10 | 9 | adantl 483 | . 2 β’ ((π β π β§ π β β) β (IntgOverβπ) = {π β β β£ βπ β (Polyβπ)((πβπ) = 0 β§ ((coeffβπ)β(degβπ)) = 1)}) |
11 | 5, 8, 10 | 3sstr4d 4030 | 1 β’ ((π β π β§ π β β) β (IntgOverβπ) β (IntgOverβπ)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 397 = wceq 1542 β wcel 2107 βwrex 3071 {crab 3433 β wss 3949 βcfv 6544 βcc 11108 0cc0 11110 1c1 11111 Polycply 25698 coeffccoe 25700 degcdgr 25701 IntgOvercitgo 41899 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 ax-cnex 11166 ax-1cn 11168 ax-addcl 11170 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-ov 7412 df-oprab 7413 df-mpo 7414 df-om 7856 df-1st 7975 df-2nd 7976 df-frecs 8266 df-wrecs 8297 df-recs 8371 df-rdg 8410 df-map 8822 df-nn 12213 df-n0 12473 df-ply 25702 df-itgo 41901 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |