MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elptr Structured version   Visualization version   GIF version

Theorem elptr 22109
Description: A basic open set in the product topology. (Contributed by Mario Carneiro, 3-Feb-2015.)
Hypothesis
Ref Expression
ptbas.1 𝐵 = {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑥 = X𝑦𝐴 (𝑔𝑦))}
Assertion
Ref Expression
elptr ((𝐴𝑉 ∧ (𝐺 Fn 𝐴 ∧ ∀𝑦𝐴 (𝐺𝑦) ∈ (𝐹𝑦)) ∧ (𝑊 ∈ Fin ∧ ∀𝑦 ∈ (𝐴𝑊)(𝐺𝑦) = (𝐹𝑦))) → X𝑦𝐴 (𝐺𝑦) ∈ 𝐵)
Distinct variable groups:   𝑥,𝑔,𝑦,𝐺   𝑧,𝑔,𝐴,𝑥,𝑦   𝑔,𝐹,𝑥,𝑦,𝑧   𝑔,𝑉,𝑥,𝑦,𝑧   𝑦,𝑊
Allowed substitution hints:   𝐵(𝑥,𝑦,𝑧,𝑔)   𝐺(𝑧)   𝑊(𝑥,𝑧,𝑔)

Proof of Theorem elptr
Dummy variables 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp2l 1191 . . . 4 ((𝐴𝑉 ∧ (𝐺 Fn 𝐴 ∧ ∀𝑦𝐴 (𝐺𝑦) ∈ (𝐹𝑦)) ∧ (𝑊 ∈ Fin ∧ ∀𝑦 ∈ (𝐴𝑊)(𝐺𝑦) = (𝐹𝑦))) → 𝐺 Fn 𝐴)
2 simp1 1128 . . . 4 ((𝐴𝑉 ∧ (𝐺 Fn 𝐴 ∧ ∀𝑦𝐴 (𝐺𝑦) ∈ (𝐹𝑦)) ∧ (𝑊 ∈ Fin ∧ ∀𝑦 ∈ (𝐴𝑊)(𝐺𝑦) = (𝐹𝑦))) → 𝐴𝑉)
3 fnex 6971 . . . 4 ((𝐺 Fn 𝐴𝐴𝑉) → 𝐺 ∈ V)
41, 2, 3syl2anc 584 . . 3 ((𝐴𝑉 ∧ (𝐺 Fn 𝐴 ∧ ∀𝑦𝐴 (𝐺𝑦) ∈ (𝐹𝑦)) ∧ (𝑊 ∈ Fin ∧ ∀𝑦 ∈ (𝐴𝑊)(𝐺𝑦) = (𝐹𝑦))) → 𝐺 ∈ V)
5 simp2r 1192 . . . 4 ((𝐴𝑉 ∧ (𝐺 Fn 𝐴 ∧ ∀𝑦𝐴 (𝐺𝑦) ∈ (𝐹𝑦)) ∧ (𝑊 ∈ Fin ∧ ∀𝑦 ∈ (𝐴𝑊)(𝐺𝑦) = (𝐹𝑦))) → ∀𝑦𝐴 (𝐺𝑦) ∈ (𝐹𝑦))
6 difeq2 4090 . . . . . . 7 (𝑤 = 𝑊 → (𝐴𝑤) = (𝐴𝑊))
76raleqdv 3413 . . . . . 6 (𝑤 = 𝑊 → (∀𝑦 ∈ (𝐴𝑤)(𝐺𝑦) = (𝐹𝑦) ↔ ∀𝑦 ∈ (𝐴𝑊)(𝐺𝑦) = (𝐹𝑦)))
87rspcev 3620 . . . . 5 ((𝑊 ∈ Fin ∧ ∀𝑦 ∈ (𝐴𝑊)(𝐺𝑦) = (𝐹𝑦)) → ∃𝑤 ∈ Fin ∀𝑦 ∈ (𝐴𝑤)(𝐺𝑦) = (𝐹𝑦))
983ad2ant3 1127 . . . 4 ((𝐴𝑉 ∧ (𝐺 Fn 𝐴 ∧ ∀𝑦𝐴 (𝐺𝑦) ∈ (𝐹𝑦)) ∧ (𝑊 ∈ Fin ∧ ∀𝑦 ∈ (𝐴𝑊)(𝐺𝑦) = (𝐹𝑦))) → ∃𝑤 ∈ Fin ∀𝑦 ∈ (𝐴𝑤)(𝐺𝑦) = (𝐹𝑦))
101, 5, 93jca 1120 . . 3 ((𝐴𝑉 ∧ (𝐺 Fn 𝐴 ∧ ∀𝑦𝐴 (𝐺𝑦) ∈ (𝐹𝑦)) ∧ (𝑊 ∈ Fin ∧ ∀𝑦 ∈ (𝐴𝑊)(𝐺𝑦) = (𝐹𝑦))) → (𝐺 Fn 𝐴 ∧ ∀𝑦𝐴 (𝐺𝑦) ∈ (𝐹𝑦) ∧ ∃𝑤 ∈ Fin ∀𝑦 ∈ (𝐴𝑤)(𝐺𝑦) = (𝐹𝑦)))
11 fveq1 6662 . . . . . . 7 ( = 𝐺 → (𝑦) = (𝐺𝑦))
1211eqcomd 2824 . . . . . 6 ( = 𝐺 → (𝐺𝑦) = (𝑦))
1312ixpeq2dv 8465 . . . . 5 ( = 𝐺X𝑦𝐴 (𝐺𝑦) = X𝑦𝐴 (𝑦))
1413biantrud 532 . . . 4 ( = 𝐺 → (( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦) ∧ ∃𝑤 ∈ Fin ∀𝑦 ∈ (𝐴𝑤)(𝑦) = (𝐹𝑦)) ↔ (( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦) ∧ ∃𝑤 ∈ Fin ∀𝑦 ∈ (𝐴𝑤)(𝑦) = (𝐹𝑦)) ∧ X𝑦𝐴 (𝐺𝑦) = X𝑦𝐴 (𝑦))))
15 fneq1 6437 . . . . 5 ( = 𝐺 → ( Fn 𝐴𝐺 Fn 𝐴))
1611eleq1d 2894 . . . . . 6 ( = 𝐺 → ((𝑦) ∈ (𝐹𝑦) ↔ (𝐺𝑦) ∈ (𝐹𝑦)))
1716ralbidv 3194 . . . . 5 ( = 𝐺 → (∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦) ↔ ∀𝑦𝐴 (𝐺𝑦) ∈ (𝐹𝑦)))
1811eqeq1d 2820 . . . . . 6 ( = 𝐺 → ((𝑦) = (𝐹𝑦) ↔ (𝐺𝑦) = (𝐹𝑦)))
1918rexralbidv 3298 . . . . 5 ( = 𝐺 → (∃𝑤 ∈ Fin ∀𝑦 ∈ (𝐴𝑤)(𝑦) = (𝐹𝑦) ↔ ∃𝑤 ∈ Fin ∀𝑦 ∈ (𝐴𝑤)(𝐺𝑦) = (𝐹𝑦)))
2015, 17, 193anbi123d 1427 . . . 4 ( = 𝐺 → (( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦) ∧ ∃𝑤 ∈ Fin ∀𝑦 ∈ (𝐴𝑤)(𝑦) = (𝐹𝑦)) ↔ (𝐺 Fn 𝐴 ∧ ∀𝑦𝐴 (𝐺𝑦) ∈ (𝐹𝑦) ∧ ∃𝑤 ∈ Fin ∀𝑦 ∈ (𝐴𝑤)(𝐺𝑦) = (𝐹𝑦))))
2114, 20bitr3d 282 . . 3 ( = 𝐺 → ((( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦) ∧ ∃𝑤 ∈ Fin ∀𝑦 ∈ (𝐴𝑤)(𝑦) = (𝐹𝑦)) ∧ X𝑦𝐴 (𝐺𝑦) = X𝑦𝐴 (𝑦)) ↔ (𝐺 Fn 𝐴 ∧ ∀𝑦𝐴 (𝐺𝑦) ∈ (𝐹𝑦) ∧ ∃𝑤 ∈ Fin ∀𝑦 ∈ (𝐴𝑤)(𝐺𝑦) = (𝐹𝑦))))
224, 10, 21spcedv 3596 . 2 ((𝐴𝑉 ∧ (𝐺 Fn 𝐴 ∧ ∀𝑦𝐴 (𝐺𝑦) ∈ (𝐹𝑦)) ∧ (𝑊 ∈ Fin ∧ ∀𝑦 ∈ (𝐴𝑊)(𝐺𝑦) = (𝐹𝑦))) → ∃(( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦) ∧ ∃𝑤 ∈ Fin ∀𝑦 ∈ (𝐴𝑤)(𝑦) = (𝐹𝑦)) ∧ X𝑦𝐴 (𝐺𝑦) = X𝑦𝐴 (𝑦)))
23 ptbas.1 . . 3 𝐵 = {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑥 = X𝑦𝐴 (𝑔𝑦))}
2423elpt 22108 . 2 (X𝑦𝐴 (𝐺𝑦) ∈ 𝐵 ↔ ∃(( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦) ∧ ∃𝑤 ∈ Fin ∀𝑦 ∈ (𝐴𝑤)(𝑦) = (𝐹𝑦)) ∧ X𝑦𝐴 (𝐺𝑦) = X𝑦𝐴 (𝑦)))
2522, 24sylibr 235 1 ((𝐴𝑉 ∧ (𝐺 Fn 𝐴 ∧ ∀𝑦𝐴 (𝐺𝑦) ∈ (𝐹𝑦)) ∧ (𝑊 ∈ Fin ∧ ∀𝑦 ∈ (𝐴𝑊)(𝐺𝑦) = (𝐹𝑦))) → X𝑦𝐴 (𝐺𝑦) ∈ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1079   = wceq 1528  wex 1771  wcel 2105  {cab 2796  wral 3135  wrex 3136  Vcvv 3492  cdif 3930   cuni 4830   Fn wfn 6343  cfv 6348  Xcixp 8449  Fincfn 8497
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-ral 3140  df-rex 3141  df-reu 3142  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-op 4564  df-uni 4831  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-id 5453  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-ixp 8450
This theorem is referenced by:  elptr2  22110
  Copyright terms: Public domain W3C validator