MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elptr Structured version   Visualization version   GIF version

Theorem elptr 23467
Description: A basic open set in the product topology. (Contributed by Mario Carneiro, 3-Feb-2015.)
Hypothesis
Ref Expression
ptbas.1 𝐵 = {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑥 = X𝑦𝐴 (𝑔𝑦))}
Assertion
Ref Expression
elptr ((𝐴𝑉 ∧ (𝐺 Fn 𝐴 ∧ ∀𝑦𝐴 (𝐺𝑦) ∈ (𝐹𝑦)) ∧ (𝑊 ∈ Fin ∧ ∀𝑦 ∈ (𝐴𝑊)(𝐺𝑦) = (𝐹𝑦))) → X𝑦𝐴 (𝐺𝑦) ∈ 𝐵)
Distinct variable groups:   𝑥,𝑔,𝑦,𝐺   𝑧,𝑔,𝐴,𝑥,𝑦   𝑔,𝐹,𝑥,𝑦,𝑧   𝑔,𝑉,𝑥,𝑦,𝑧   𝑦,𝑊
Allowed substitution hints:   𝐵(𝑥,𝑦,𝑧,𝑔)   𝐺(𝑧)   𝑊(𝑥,𝑧,𝑔)

Proof of Theorem elptr
Dummy variables 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp2l 1200 . . . 4 ((𝐴𝑉 ∧ (𝐺 Fn 𝐴 ∧ ∀𝑦𝐴 (𝐺𝑦) ∈ (𝐹𝑦)) ∧ (𝑊 ∈ Fin ∧ ∀𝑦 ∈ (𝐴𝑊)(𝐺𝑦) = (𝐹𝑦))) → 𝐺 Fn 𝐴)
2 simp1 1136 . . . 4 ((𝐴𝑉 ∧ (𝐺 Fn 𝐴 ∧ ∀𝑦𝐴 (𝐺𝑦) ∈ (𝐹𝑦)) ∧ (𝑊 ∈ Fin ∧ ∀𝑦 ∈ (𝐴𝑊)(𝐺𝑦) = (𝐹𝑦))) → 𝐴𝑉)
31, 2fnexd 7195 . . 3 ((𝐴𝑉 ∧ (𝐺 Fn 𝐴 ∧ ∀𝑦𝐴 (𝐺𝑦) ∈ (𝐹𝑦)) ∧ (𝑊 ∈ Fin ∧ ∀𝑦 ∈ (𝐴𝑊)(𝐺𝑦) = (𝐹𝑦))) → 𝐺 ∈ V)
4 simp2r 1201 . . . 4 ((𝐴𝑉 ∧ (𝐺 Fn 𝐴 ∧ ∀𝑦𝐴 (𝐺𝑦) ∈ (𝐹𝑦)) ∧ (𝑊 ∈ Fin ∧ ∀𝑦 ∈ (𝐴𝑊)(𝐺𝑦) = (𝐹𝑦))) → ∀𝑦𝐴 (𝐺𝑦) ∈ (𝐹𝑦))
5 difeq2 4086 . . . . . . 7 (𝑤 = 𝑊 → (𝐴𝑤) = (𝐴𝑊))
65raleqdv 3301 . . . . . 6 (𝑤 = 𝑊 → (∀𝑦 ∈ (𝐴𝑤)(𝐺𝑦) = (𝐹𝑦) ↔ ∀𝑦 ∈ (𝐴𝑊)(𝐺𝑦) = (𝐹𝑦)))
76rspcev 3591 . . . . 5 ((𝑊 ∈ Fin ∧ ∀𝑦 ∈ (𝐴𝑊)(𝐺𝑦) = (𝐹𝑦)) → ∃𝑤 ∈ Fin ∀𝑦 ∈ (𝐴𝑤)(𝐺𝑦) = (𝐹𝑦))
873ad2ant3 1135 . . . 4 ((𝐴𝑉 ∧ (𝐺 Fn 𝐴 ∧ ∀𝑦𝐴 (𝐺𝑦) ∈ (𝐹𝑦)) ∧ (𝑊 ∈ Fin ∧ ∀𝑦 ∈ (𝐴𝑊)(𝐺𝑦) = (𝐹𝑦))) → ∃𝑤 ∈ Fin ∀𝑦 ∈ (𝐴𝑤)(𝐺𝑦) = (𝐹𝑦))
91, 4, 83jca 1128 . . 3 ((𝐴𝑉 ∧ (𝐺 Fn 𝐴 ∧ ∀𝑦𝐴 (𝐺𝑦) ∈ (𝐹𝑦)) ∧ (𝑊 ∈ Fin ∧ ∀𝑦 ∈ (𝐴𝑊)(𝐺𝑦) = (𝐹𝑦))) → (𝐺 Fn 𝐴 ∧ ∀𝑦𝐴 (𝐺𝑦) ∈ (𝐹𝑦) ∧ ∃𝑤 ∈ Fin ∀𝑦 ∈ (𝐴𝑤)(𝐺𝑦) = (𝐹𝑦)))
10 fveq1 6860 . . . . . . 7 ( = 𝐺 → (𝑦) = (𝐺𝑦))
1110eqcomd 2736 . . . . . 6 ( = 𝐺 → (𝐺𝑦) = (𝑦))
1211ixpeq2dv 8889 . . . . 5 ( = 𝐺X𝑦𝐴 (𝐺𝑦) = X𝑦𝐴 (𝑦))
1312biantrud 531 . . . 4 ( = 𝐺 → (( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦) ∧ ∃𝑤 ∈ Fin ∀𝑦 ∈ (𝐴𝑤)(𝑦) = (𝐹𝑦)) ↔ (( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦) ∧ ∃𝑤 ∈ Fin ∀𝑦 ∈ (𝐴𝑤)(𝑦) = (𝐹𝑦)) ∧ X𝑦𝐴 (𝐺𝑦) = X𝑦𝐴 (𝑦))))
14 fneq1 6612 . . . . 5 ( = 𝐺 → ( Fn 𝐴𝐺 Fn 𝐴))
1510eleq1d 2814 . . . . . 6 ( = 𝐺 → ((𝑦) ∈ (𝐹𝑦) ↔ (𝐺𝑦) ∈ (𝐹𝑦)))
1615ralbidv 3157 . . . . 5 ( = 𝐺 → (∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦) ↔ ∀𝑦𝐴 (𝐺𝑦) ∈ (𝐹𝑦)))
1710eqeq1d 2732 . . . . . 6 ( = 𝐺 → ((𝑦) = (𝐹𝑦) ↔ (𝐺𝑦) = (𝐹𝑦)))
1817rexralbidv 3204 . . . . 5 ( = 𝐺 → (∃𝑤 ∈ Fin ∀𝑦 ∈ (𝐴𝑤)(𝑦) = (𝐹𝑦) ↔ ∃𝑤 ∈ Fin ∀𝑦 ∈ (𝐴𝑤)(𝐺𝑦) = (𝐹𝑦)))
1914, 16, 183anbi123d 1438 . . . 4 ( = 𝐺 → (( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦) ∧ ∃𝑤 ∈ Fin ∀𝑦 ∈ (𝐴𝑤)(𝑦) = (𝐹𝑦)) ↔ (𝐺 Fn 𝐴 ∧ ∀𝑦𝐴 (𝐺𝑦) ∈ (𝐹𝑦) ∧ ∃𝑤 ∈ Fin ∀𝑦 ∈ (𝐴𝑤)(𝐺𝑦) = (𝐹𝑦))))
2013, 19bitr3d 281 . . 3 ( = 𝐺 → ((( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦) ∧ ∃𝑤 ∈ Fin ∀𝑦 ∈ (𝐴𝑤)(𝑦) = (𝐹𝑦)) ∧ X𝑦𝐴 (𝐺𝑦) = X𝑦𝐴 (𝑦)) ↔ (𝐺 Fn 𝐴 ∧ ∀𝑦𝐴 (𝐺𝑦) ∈ (𝐹𝑦) ∧ ∃𝑤 ∈ Fin ∀𝑦 ∈ (𝐴𝑤)(𝐺𝑦) = (𝐹𝑦))))
213, 9, 20spcedv 3567 . 2 ((𝐴𝑉 ∧ (𝐺 Fn 𝐴 ∧ ∀𝑦𝐴 (𝐺𝑦) ∈ (𝐹𝑦)) ∧ (𝑊 ∈ Fin ∧ ∀𝑦 ∈ (𝐴𝑊)(𝐺𝑦) = (𝐹𝑦))) → ∃(( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦) ∧ ∃𝑤 ∈ Fin ∀𝑦 ∈ (𝐴𝑤)(𝑦) = (𝐹𝑦)) ∧ X𝑦𝐴 (𝐺𝑦) = X𝑦𝐴 (𝑦)))
22 ptbas.1 . . 3 𝐵 = {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑥 = X𝑦𝐴 (𝑔𝑦))}
2322elpt 23466 . 2 (X𝑦𝐴 (𝐺𝑦) ∈ 𝐵 ↔ ∃(( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦) ∧ ∃𝑤 ∈ Fin ∀𝑦 ∈ (𝐴𝑤)(𝑦) = (𝐹𝑦)) ∧ X𝑦𝐴 (𝐺𝑦) = X𝑦𝐴 (𝑦)))
2421, 23sylibr 234 1 ((𝐴𝑉 ∧ (𝐺 Fn 𝐴 ∧ ∀𝑦𝐴 (𝐺𝑦) ∈ (𝐹𝑦)) ∧ (𝑊 ∈ Fin ∧ ∀𝑦 ∈ (𝐴𝑊)(𝐺𝑦) = (𝐹𝑦))) → X𝑦𝐴 (𝐺𝑦) ∈ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wex 1779  wcel 2109  {cab 2708  wral 3045  wrex 3054  Vcvv 3450  cdif 3914   cuni 4874   Fn wfn 6509  cfv 6514  Xcixp 8873  Fincfn 8921
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ixp 8874
This theorem is referenced by:  elptr2  23468
  Copyright terms: Public domain W3C validator