Step | Hyp | Ref
| Expression |
1 | | simp2l 1196 |
. . . 4
⊢ ((𝐴 ∈ 𝑉 ∧ (𝐺 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝐺‘𝑦) ∈ (𝐹‘𝑦)) ∧ (𝑊 ∈ Fin ∧ ∀𝑦 ∈ (𝐴 ∖ 𝑊)(𝐺‘𝑦) = ∪ (𝐹‘𝑦))) → 𝐺 Fn 𝐴) |
2 | | simp1 1133 |
. . . 4
⊢ ((𝐴 ∈ 𝑉 ∧ (𝐺 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝐺‘𝑦) ∈ (𝐹‘𝑦)) ∧ (𝑊 ∈ Fin ∧ ∀𝑦 ∈ (𝐴 ∖ 𝑊)(𝐺‘𝑦) = ∪ (𝐹‘𝑦))) → 𝐴 ∈ 𝑉) |
3 | 1, 2 | fnexd 6972 |
. . 3
⊢ ((𝐴 ∈ 𝑉 ∧ (𝐺 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝐺‘𝑦) ∈ (𝐹‘𝑦)) ∧ (𝑊 ∈ Fin ∧ ∀𝑦 ∈ (𝐴 ∖ 𝑊)(𝐺‘𝑦) = ∪ (𝐹‘𝑦))) → 𝐺 ∈ V) |
4 | | simp2r 1197 |
. . . 4
⊢ ((𝐴 ∈ 𝑉 ∧ (𝐺 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝐺‘𝑦) ∈ (𝐹‘𝑦)) ∧ (𝑊 ∈ Fin ∧ ∀𝑦 ∈ (𝐴 ∖ 𝑊)(𝐺‘𝑦) = ∪ (𝐹‘𝑦))) → ∀𝑦 ∈ 𝐴 (𝐺‘𝑦) ∈ (𝐹‘𝑦)) |
5 | | difeq2 4022 |
. . . . . . 7
⊢ (𝑤 = 𝑊 → (𝐴 ∖ 𝑤) = (𝐴 ∖ 𝑊)) |
6 | 5 | raleqdv 3329 |
. . . . . 6
⊢ (𝑤 = 𝑊 → (∀𝑦 ∈ (𝐴 ∖ 𝑤)(𝐺‘𝑦) = ∪ (𝐹‘𝑦) ↔ ∀𝑦 ∈ (𝐴 ∖ 𝑊)(𝐺‘𝑦) = ∪ (𝐹‘𝑦))) |
7 | 6 | rspcev 3541 |
. . . . 5
⊢ ((𝑊 ∈ Fin ∧ ∀𝑦 ∈ (𝐴 ∖ 𝑊)(𝐺‘𝑦) = ∪ (𝐹‘𝑦)) → ∃𝑤 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑤)(𝐺‘𝑦) = ∪ (𝐹‘𝑦)) |
8 | 7 | 3ad2ant3 1132 |
. . . 4
⊢ ((𝐴 ∈ 𝑉 ∧ (𝐺 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝐺‘𝑦) ∈ (𝐹‘𝑦)) ∧ (𝑊 ∈ Fin ∧ ∀𝑦 ∈ (𝐴 ∖ 𝑊)(𝐺‘𝑦) = ∪ (𝐹‘𝑦))) → ∃𝑤 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑤)(𝐺‘𝑦) = ∪ (𝐹‘𝑦)) |
9 | 1, 4, 8 | 3jca 1125 |
. . 3
⊢ ((𝐴 ∈ 𝑉 ∧ (𝐺 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝐺‘𝑦) ∈ (𝐹‘𝑦)) ∧ (𝑊 ∈ Fin ∧ ∀𝑦 ∈ (𝐴 ∖ 𝑊)(𝐺‘𝑦) = ∪ (𝐹‘𝑦))) → (𝐺 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝐺‘𝑦) ∈ (𝐹‘𝑦) ∧ ∃𝑤 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑤)(𝐺‘𝑦) = ∪ (𝐹‘𝑦))) |
10 | | fveq1 6657 |
. . . . . . 7
⊢ (ℎ = 𝐺 → (ℎ‘𝑦) = (𝐺‘𝑦)) |
11 | 10 | eqcomd 2764 |
. . . . . 6
⊢ (ℎ = 𝐺 → (𝐺‘𝑦) = (ℎ‘𝑦)) |
12 | 11 | ixpeq2dv 8495 |
. . . . 5
⊢ (ℎ = 𝐺 → X𝑦 ∈ 𝐴 (𝐺‘𝑦) = X𝑦 ∈ 𝐴 (ℎ‘𝑦)) |
13 | 12 | biantrud 535 |
. . . 4
⊢ (ℎ = 𝐺 → ((ℎ Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (ℎ‘𝑦) ∈ (𝐹‘𝑦) ∧ ∃𝑤 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑤)(ℎ‘𝑦) = ∪ (𝐹‘𝑦)) ↔ ((ℎ Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (ℎ‘𝑦) ∈ (𝐹‘𝑦) ∧ ∃𝑤 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑤)(ℎ‘𝑦) = ∪ (𝐹‘𝑦)) ∧ X𝑦 ∈ 𝐴 (𝐺‘𝑦) = X𝑦 ∈ 𝐴 (ℎ‘𝑦)))) |
14 | | fneq1 6425 |
. . . . 5
⊢ (ℎ = 𝐺 → (ℎ Fn 𝐴 ↔ 𝐺 Fn 𝐴)) |
15 | 10 | eleq1d 2836 |
. . . . . 6
⊢ (ℎ = 𝐺 → ((ℎ‘𝑦) ∈ (𝐹‘𝑦) ↔ (𝐺‘𝑦) ∈ (𝐹‘𝑦))) |
16 | 15 | ralbidv 3126 |
. . . . 5
⊢ (ℎ = 𝐺 → (∀𝑦 ∈ 𝐴 (ℎ‘𝑦) ∈ (𝐹‘𝑦) ↔ ∀𝑦 ∈ 𝐴 (𝐺‘𝑦) ∈ (𝐹‘𝑦))) |
17 | 10 | eqeq1d 2760 |
. . . . . 6
⊢ (ℎ = 𝐺 → ((ℎ‘𝑦) = ∪ (𝐹‘𝑦) ↔ (𝐺‘𝑦) = ∪ (𝐹‘𝑦))) |
18 | 17 | rexralbidv 3225 |
. . . . 5
⊢ (ℎ = 𝐺 → (∃𝑤 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑤)(ℎ‘𝑦) = ∪ (𝐹‘𝑦) ↔ ∃𝑤 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑤)(𝐺‘𝑦) = ∪ (𝐹‘𝑦))) |
19 | 14, 16, 18 | 3anbi123d 1433 |
. . . 4
⊢ (ℎ = 𝐺 → ((ℎ Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (ℎ‘𝑦) ∈ (𝐹‘𝑦) ∧ ∃𝑤 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑤)(ℎ‘𝑦) = ∪ (𝐹‘𝑦)) ↔ (𝐺 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝐺‘𝑦) ∈ (𝐹‘𝑦) ∧ ∃𝑤 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑤)(𝐺‘𝑦) = ∪ (𝐹‘𝑦)))) |
20 | 13, 19 | bitr3d 284 |
. . 3
⊢ (ℎ = 𝐺 → (((ℎ Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (ℎ‘𝑦) ∈ (𝐹‘𝑦) ∧ ∃𝑤 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑤)(ℎ‘𝑦) = ∪ (𝐹‘𝑦)) ∧ X𝑦 ∈ 𝐴 (𝐺‘𝑦) = X𝑦 ∈ 𝐴 (ℎ‘𝑦)) ↔ (𝐺 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝐺‘𝑦) ∈ (𝐹‘𝑦) ∧ ∃𝑤 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑤)(𝐺‘𝑦) = ∪ (𝐹‘𝑦)))) |
21 | 3, 9, 20 | spcedv 3517 |
. 2
⊢ ((𝐴 ∈ 𝑉 ∧ (𝐺 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝐺‘𝑦) ∈ (𝐹‘𝑦)) ∧ (𝑊 ∈ Fin ∧ ∀𝑦 ∈ (𝐴 ∖ 𝑊)(𝐺‘𝑦) = ∪ (𝐹‘𝑦))) → ∃ℎ((ℎ Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (ℎ‘𝑦) ∈ (𝐹‘𝑦) ∧ ∃𝑤 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑤)(ℎ‘𝑦) = ∪ (𝐹‘𝑦)) ∧ X𝑦 ∈ 𝐴 (𝐺‘𝑦) = X𝑦 ∈ 𝐴 (ℎ‘𝑦))) |
22 | | ptbas.1 |
. . 3
⊢ 𝐵 = {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝐹‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝐹‘𝑦)) ∧ 𝑥 = X𝑦 ∈ 𝐴 (𝑔‘𝑦))} |
23 | 22 | elpt 22272 |
. 2
⊢ (X𝑦 ∈
𝐴 (𝐺‘𝑦) ∈ 𝐵 ↔ ∃ℎ((ℎ Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (ℎ‘𝑦) ∈ (𝐹‘𝑦) ∧ ∃𝑤 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑤)(ℎ‘𝑦) = ∪ (𝐹‘𝑦)) ∧ X𝑦 ∈ 𝐴 (𝐺‘𝑦) = X𝑦 ∈ 𝐴 (ℎ‘𝑦))) |
24 | 21, 23 | sylibr 237 |
1
⊢ ((𝐴 ∈ 𝑉 ∧ (𝐺 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝐺‘𝑦) ∈ (𝐹‘𝑦)) ∧ (𝑊 ∈ Fin ∧ ∀𝑦 ∈ (𝐴 ∖ 𝑊)(𝐺‘𝑦) = ∪ (𝐹‘𝑦))) → X𝑦 ∈ 𝐴 (𝐺‘𝑦) ∈ 𝐵) |