MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elptr Structured version   Visualization version   GIF version

Theorem elptr 23511
Description: A basic open set in the product topology. (Contributed by Mario Carneiro, 3-Feb-2015.)
Hypothesis
Ref Expression
ptbas.1 𝐵 = {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑥 = X𝑦𝐴 (𝑔𝑦))}
Assertion
Ref Expression
elptr ((𝐴𝑉 ∧ (𝐺 Fn 𝐴 ∧ ∀𝑦𝐴 (𝐺𝑦) ∈ (𝐹𝑦)) ∧ (𝑊 ∈ Fin ∧ ∀𝑦 ∈ (𝐴𝑊)(𝐺𝑦) = (𝐹𝑦))) → X𝑦𝐴 (𝐺𝑦) ∈ 𝐵)
Distinct variable groups:   𝑥,𝑔,𝑦,𝐺   𝑧,𝑔,𝐴,𝑥,𝑦   𝑔,𝐹,𝑥,𝑦,𝑧   𝑔,𝑉,𝑥,𝑦,𝑧   𝑦,𝑊
Allowed substitution hints:   𝐵(𝑥,𝑦,𝑧,𝑔)   𝐺(𝑧)   𝑊(𝑥,𝑧,𝑔)

Proof of Theorem elptr
Dummy variables 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp2l 1200 . . . 4 ((𝐴𝑉 ∧ (𝐺 Fn 𝐴 ∧ ∀𝑦𝐴 (𝐺𝑦) ∈ (𝐹𝑦)) ∧ (𝑊 ∈ Fin ∧ ∀𝑦 ∈ (𝐴𝑊)(𝐺𝑦) = (𝐹𝑦))) → 𝐺 Fn 𝐴)
2 simp1 1136 . . . 4 ((𝐴𝑉 ∧ (𝐺 Fn 𝐴 ∧ ∀𝑦𝐴 (𝐺𝑦) ∈ (𝐹𝑦)) ∧ (𝑊 ∈ Fin ∧ ∀𝑦 ∈ (𝐴𝑊)(𝐺𝑦) = (𝐹𝑦))) → 𝐴𝑉)
31, 2fnexd 7210 . . 3 ((𝐴𝑉 ∧ (𝐺 Fn 𝐴 ∧ ∀𝑦𝐴 (𝐺𝑦) ∈ (𝐹𝑦)) ∧ (𝑊 ∈ Fin ∧ ∀𝑦 ∈ (𝐴𝑊)(𝐺𝑦) = (𝐹𝑦))) → 𝐺 ∈ V)
4 simp2r 1201 . . . 4 ((𝐴𝑉 ∧ (𝐺 Fn 𝐴 ∧ ∀𝑦𝐴 (𝐺𝑦) ∈ (𝐹𝑦)) ∧ (𝑊 ∈ Fin ∧ ∀𝑦 ∈ (𝐴𝑊)(𝐺𝑦) = (𝐹𝑦))) → ∀𝑦𝐴 (𝐺𝑦) ∈ (𝐹𝑦))
5 difeq2 4095 . . . . . . 7 (𝑤 = 𝑊 → (𝐴𝑤) = (𝐴𝑊))
65raleqdv 3305 . . . . . 6 (𝑤 = 𝑊 → (∀𝑦 ∈ (𝐴𝑤)(𝐺𝑦) = (𝐹𝑦) ↔ ∀𝑦 ∈ (𝐴𝑊)(𝐺𝑦) = (𝐹𝑦)))
76rspcev 3601 . . . . 5 ((𝑊 ∈ Fin ∧ ∀𝑦 ∈ (𝐴𝑊)(𝐺𝑦) = (𝐹𝑦)) → ∃𝑤 ∈ Fin ∀𝑦 ∈ (𝐴𝑤)(𝐺𝑦) = (𝐹𝑦))
873ad2ant3 1135 . . . 4 ((𝐴𝑉 ∧ (𝐺 Fn 𝐴 ∧ ∀𝑦𝐴 (𝐺𝑦) ∈ (𝐹𝑦)) ∧ (𝑊 ∈ Fin ∧ ∀𝑦 ∈ (𝐴𝑊)(𝐺𝑦) = (𝐹𝑦))) → ∃𝑤 ∈ Fin ∀𝑦 ∈ (𝐴𝑤)(𝐺𝑦) = (𝐹𝑦))
91, 4, 83jca 1128 . . 3 ((𝐴𝑉 ∧ (𝐺 Fn 𝐴 ∧ ∀𝑦𝐴 (𝐺𝑦) ∈ (𝐹𝑦)) ∧ (𝑊 ∈ Fin ∧ ∀𝑦 ∈ (𝐴𝑊)(𝐺𝑦) = (𝐹𝑦))) → (𝐺 Fn 𝐴 ∧ ∀𝑦𝐴 (𝐺𝑦) ∈ (𝐹𝑦) ∧ ∃𝑤 ∈ Fin ∀𝑦 ∈ (𝐴𝑤)(𝐺𝑦) = (𝐹𝑦)))
10 fveq1 6875 . . . . . . 7 ( = 𝐺 → (𝑦) = (𝐺𝑦))
1110eqcomd 2741 . . . . . 6 ( = 𝐺 → (𝐺𝑦) = (𝑦))
1211ixpeq2dv 8927 . . . . 5 ( = 𝐺X𝑦𝐴 (𝐺𝑦) = X𝑦𝐴 (𝑦))
1312biantrud 531 . . . 4 ( = 𝐺 → (( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦) ∧ ∃𝑤 ∈ Fin ∀𝑦 ∈ (𝐴𝑤)(𝑦) = (𝐹𝑦)) ↔ (( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦) ∧ ∃𝑤 ∈ Fin ∀𝑦 ∈ (𝐴𝑤)(𝑦) = (𝐹𝑦)) ∧ X𝑦𝐴 (𝐺𝑦) = X𝑦𝐴 (𝑦))))
14 fneq1 6629 . . . . 5 ( = 𝐺 → ( Fn 𝐴𝐺 Fn 𝐴))
1510eleq1d 2819 . . . . . 6 ( = 𝐺 → ((𝑦) ∈ (𝐹𝑦) ↔ (𝐺𝑦) ∈ (𝐹𝑦)))
1615ralbidv 3163 . . . . 5 ( = 𝐺 → (∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦) ↔ ∀𝑦𝐴 (𝐺𝑦) ∈ (𝐹𝑦)))
1710eqeq1d 2737 . . . . . 6 ( = 𝐺 → ((𝑦) = (𝐹𝑦) ↔ (𝐺𝑦) = (𝐹𝑦)))
1817rexralbidv 3207 . . . . 5 ( = 𝐺 → (∃𝑤 ∈ Fin ∀𝑦 ∈ (𝐴𝑤)(𝑦) = (𝐹𝑦) ↔ ∃𝑤 ∈ Fin ∀𝑦 ∈ (𝐴𝑤)(𝐺𝑦) = (𝐹𝑦)))
1914, 16, 183anbi123d 1438 . . . 4 ( = 𝐺 → (( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦) ∧ ∃𝑤 ∈ Fin ∀𝑦 ∈ (𝐴𝑤)(𝑦) = (𝐹𝑦)) ↔ (𝐺 Fn 𝐴 ∧ ∀𝑦𝐴 (𝐺𝑦) ∈ (𝐹𝑦) ∧ ∃𝑤 ∈ Fin ∀𝑦 ∈ (𝐴𝑤)(𝐺𝑦) = (𝐹𝑦))))
2013, 19bitr3d 281 . . 3 ( = 𝐺 → ((( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦) ∧ ∃𝑤 ∈ Fin ∀𝑦 ∈ (𝐴𝑤)(𝑦) = (𝐹𝑦)) ∧ X𝑦𝐴 (𝐺𝑦) = X𝑦𝐴 (𝑦)) ↔ (𝐺 Fn 𝐴 ∧ ∀𝑦𝐴 (𝐺𝑦) ∈ (𝐹𝑦) ∧ ∃𝑤 ∈ Fin ∀𝑦 ∈ (𝐴𝑤)(𝐺𝑦) = (𝐹𝑦))))
213, 9, 20spcedv 3577 . 2 ((𝐴𝑉 ∧ (𝐺 Fn 𝐴 ∧ ∀𝑦𝐴 (𝐺𝑦) ∈ (𝐹𝑦)) ∧ (𝑊 ∈ Fin ∧ ∀𝑦 ∈ (𝐴𝑊)(𝐺𝑦) = (𝐹𝑦))) → ∃(( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦) ∧ ∃𝑤 ∈ Fin ∀𝑦 ∈ (𝐴𝑤)(𝑦) = (𝐹𝑦)) ∧ X𝑦𝐴 (𝐺𝑦) = X𝑦𝐴 (𝑦)))
22 ptbas.1 . . 3 𝐵 = {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑥 = X𝑦𝐴 (𝑔𝑦))}
2322elpt 23510 . 2 (X𝑦𝐴 (𝐺𝑦) ∈ 𝐵 ↔ ∃(( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦) ∧ ∃𝑤 ∈ Fin ∀𝑦 ∈ (𝐴𝑤)(𝑦) = (𝐹𝑦)) ∧ X𝑦𝐴 (𝐺𝑦) = X𝑦𝐴 (𝑦)))
2421, 23sylibr 234 1 ((𝐴𝑉 ∧ (𝐺 Fn 𝐴 ∧ ∀𝑦𝐴 (𝐺𝑦) ∈ (𝐹𝑦)) ∧ (𝑊 ∈ Fin ∧ ∀𝑦 ∈ (𝐴𝑊)(𝐺𝑦) = (𝐹𝑦))) → X𝑦𝐴 (𝐺𝑦) ∈ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wex 1779  wcel 2108  {cab 2713  wral 3051  wrex 3060  Vcvv 3459  cdif 3923   cuni 4883   Fn wfn 6526  cfv 6531  Xcixp 8911  Fincfn 8959
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-ixp 8912
This theorem is referenced by:  elptr2  23512
  Copyright terms: Public domain W3C validator