Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  elptr Structured version   Visualization version   GIF version

Theorem elptr 22273
 Description: A basic open set in the product topology. (Contributed by Mario Carneiro, 3-Feb-2015.)
Hypothesis
Ref Expression
ptbas.1 𝐵 = {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑥 = X𝑦𝐴 (𝑔𝑦))}
Assertion
Ref Expression
elptr ((𝐴𝑉 ∧ (𝐺 Fn 𝐴 ∧ ∀𝑦𝐴 (𝐺𝑦) ∈ (𝐹𝑦)) ∧ (𝑊 ∈ Fin ∧ ∀𝑦 ∈ (𝐴𝑊)(𝐺𝑦) = (𝐹𝑦))) → X𝑦𝐴 (𝐺𝑦) ∈ 𝐵)
Distinct variable groups:   𝑥,𝑔,𝑦,𝐺   𝑧,𝑔,𝐴,𝑥,𝑦   𝑔,𝐹,𝑥,𝑦,𝑧   𝑔,𝑉,𝑥,𝑦,𝑧   𝑦,𝑊
Allowed substitution hints:   𝐵(𝑥,𝑦,𝑧,𝑔)   𝐺(𝑧)   𝑊(𝑥,𝑧,𝑔)

Proof of Theorem elptr
Dummy variables 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp2l 1196 . . . 4 ((𝐴𝑉 ∧ (𝐺 Fn 𝐴 ∧ ∀𝑦𝐴 (𝐺𝑦) ∈ (𝐹𝑦)) ∧ (𝑊 ∈ Fin ∧ ∀𝑦 ∈ (𝐴𝑊)(𝐺𝑦) = (𝐹𝑦))) → 𝐺 Fn 𝐴)
2 simp1 1133 . . . 4 ((𝐴𝑉 ∧ (𝐺 Fn 𝐴 ∧ ∀𝑦𝐴 (𝐺𝑦) ∈ (𝐹𝑦)) ∧ (𝑊 ∈ Fin ∧ ∀𝑦 ∈ (𝐴𝑊)(𝐺𝑦) = (𝐹𝑦))) → 𝐴𝑉)
31, 2fnexd 6972 . . 3 ((𝐴𝑉 ∧ (𝐺 Fn 𝐴 ∧ ∀𝑦𝐴 (𝐺𝑦) ∈ (𝐹𝑦)) ∧ (𝑊 ∈ Fin ∧ ∀𝑦 ∈ (𝐴𝑊)(𝐺𝑦) = (𝐹𝑦))) → 𝐺 ∈ V)
4 simp2r 1197 . . . 4 ((𝐴𝑉 ∧ (𝐺 Fn 𝐴 ∧ ∀𝑦𝐴 (𝐺𝑦) ∈ (𝐹𝑦)) ∧ (𝑊 ∈ Fin ∧ ∀𝑦 ∈ (𝐴𝑊)(𝐺𝑦) = (𝐹𝑦))) → ∀𝑦𝐴 (𝐺𝑦) ∈ (𝐹𝑦))
5 difeq2 4022 . . . . . . 7 (𝑤 = 𝑊 → (𝐴𝑤) = (𝐴𝑊))
65raleqdv 3329 . . . . . 6 (𝑤 = 𝑊 → (∀𝑦 ∈ (𝐴𝑤)(𝐺𝑦) = (𝐹𝑦) ↔ ∀𝑦 ∈ (𝐴𝑊)(𝐺𝑦) = (𝐹𝑦)))
76rspcev 3541 . . . . 5 ((𝑊 ∈ Fin ∧ ∀𝑦 ∈ (𝐴𝑊)(𝐺𝑦) = (𝐹𝑦)) → ∃𝑤 ∈ Fin ∀𝑦 ∈ (𝐴𝑤)(𝐺𝑦) = (𝐹𝑦))
873ad2ant3 1132 . . . 4 ((𝐴𝑉 ∧ (𝐺 Fn 𝐴 ∧ ∀𝑦𝐴 (𝐺𝑦) ∈ (𝐹𝑦)) ∧ (𝑊 ∈ Fin ∧ ∀𝑦 ∈ (𝐴𝑊)(𝐺𝑦) = (𝐹𝑦))) → ∃𝑤 ∈ Fin ∀𝑦 ∈ (𝐴𝑤)(𝐺𝑦) = (𝐹𝑦))
91, 4, 83jca 1125 . . 3 ((𝐴𝑉 ∧ (𝐺 Fn 𝐴 ∧ ∀𝑦𝐴 (𝐺𝑦) ∈ (𝐹𝑦)) ∧ (𝑊 ∈ Fin ∧ ∀𝑦 ∈ (𝐴𝑊)(𝐺𝑦) = (𝐹𝑦))) → (𝐺 Fn 𝐴 ∧ ∀𝑦𝐴 (𝐺𝑦) ∈ (𝐹𝑦) ∧ ∃𝑤 ∈ Fin ∀𝑦 ∈ (𝐴𝑤)(𝐺𝑦) = (𝐹𝑦)))
10 fveq1 6657 . . . . . . 7 ( = 𝐺 → (𝑦) = (𝐺𝑦))
1110eqcomd 2764 . . . . . 6 ( = 𝐺 → (𝐺𝑦) = (𝑦))
1211ixpeq2dv 8495 . . . . 5 ( = 𝐺X𝑦𝐴 (𝐺𝑦) = X𝑦𝐴 (𝑦))
1312biantrud 535 . . . 4 ( = 𝐺 → (( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦) ∧ ∃𝑤 ∈ Fin ∀𝑦 ∈ (𝐴𝑤)(𝑦) = (𝐹𝑦)) ↔ (( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦) ∧ ∃𝑤 ∈ Fin ∀𝑦 ∈ (𝐴𝑤)(𝑦) = (𝐹𝑦)) ∧ X𝑦𝐴 (𝐺𝑦) = X𝑦𝐴 (𝑦))))
14 fneq1 6425 . . . . 5 ( = 𝐺 → ( Fn 𝐴𝐺 Fn 𝐴))
1510eleq1d 2836 . . . . . 6 ( = 𝐺 → ((𝑦) ∈ (𝐹𝑦) ↔ (𝐺𝑦) ∈ (𝐹𝑦)))
1615ralbidv 3126 . . . . 5 ( = 𝐺 → (∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦) ↔ ∀𝑦𝐴 (𝐺𝑦) ∈ (𝐹𝑦)))
1710eqeq1d 2760 . . . . . 6 ( = 𝐺 → ((𝑦) = (𝐹𝑦) ↔ (𝐺𝑦) = (𝐹𝑦)))
1817rexralbidv 3225 . . . . 5 ( = 𝐺 → (∃𝑤 ∈ Fin ∀𝑦 ∈ (𝐴𝑤)(𝑦) = (𝐹𝑦) ↔ ∃𝑤 ∈ Fin ∀𝑦 ∈ (𝐴𝑤)(𝐺𝑦) = (𝐹𝑦)))
1914, 16, 183anbi123d 1433 . . . 4 ( = 𝐺 → (( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦) ∧ ∃𝑤 ∈ Fin ∀𝑦 ∈ (𝐴𝑤)(𝑦) = (𝐹𝑦)) ↔ (𝐺 Fn 𝐴 ∧ ∀𝑦𝐴 (𝐺𝑦) ∈ (𝐹𝑦) ∧ ∃𝑤 ∈ Fin ∀𝑦 ∈ (𝐴𝑤)(𝐺𝑦) = (𝐹𝑦))))
2013, 19bitr3d 284 . . 3 ( = 𝐺 → ((( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦) ∧ ∃𝑤 ∈ Fin ∀𝑦 ∈ (𝐴𝑤)(𝑦) = (𝐹𝑦)) ∧ X𝑦𝐴 (𝐺𝑦) = X𝑦𝐴 (𝑦)) ↔ (𝐺 Fn 𝐴 ∧ ∀𝑦𝐴 (𝐺𝑦) ∈ (𝐹𝑦) ∧ ∃𝑤 ∈ Fin ∀𝑦 ∈ (𝐴𝑤)(𝐺𝑦) = (𝐹𝑦))))
213, 9, 20spcedv 3517 . 2 ((𝐴𝑉 ∧ (𝐺 Fn 𝐴 ∧ ∀𝑦𝐴 (𝐺𝑦) ∈ (𝐹𝑦)) ∧ (𝑊 ∈ Fin ∧ ∀𝑦 ∈ (𝐴𝑊)(𝐺𝑦) = (𝐹𝑦))) → ∃(( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦) ∧ ∃𝑤 ∈ Fin ∀𝑦 ∈ (𝐴𝑤)(𝑦) = (𝐹𝑦)) ∧ X𝑦𝐴 (𝐺𝑦) = X𝑦𝐴 (𝑦)))
22 ptbas.1 . . 3 𝐵 = {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑥 = X𝑦𝐴 (𝑔𝑦))}
2322elpt 22272 . 2 (X𝑦𝐴 (𝐺𝑦) ∈ 𝐵 ↔ ∃(( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦) ∧ ∃𝑤 ∈ Fin ∀𝑦 ∈ (𝐴𝑤)(𝑦) = (𝐹𝑦)) ∧ X𝑦𝐴 (𝐺𝑦) = X𝑦𝐴 (𝑦)))
2421, 23sylibr 237 1 ((𝐴𝑉 ∧ (𝐺 Fn 𝐴 ∧ ∀𝑦𝐴 (𝐺𝑦) ∈ (𝐹𝑦)) ∧ (𝑊 ∈ Fin ∧ ∀𝑦 ∈ (𝐴𝑊)(𝐺𝑦) = (𝐹𝑦))) → X𝑦𝐴 (𝐺𝑦) ∈ 𝐵)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   ∧ w3a 1084   = wceq 1538  ∃wex 1781   ∈ wcel 2111  {cab 2735  ∀wral 3070  ∃wrex 3071  Vcvv 3409   ∖ cdif 3855  ∪ cuni 4798   Fn wfn 6330  ‘cfv 6335  Xcixp 8479  Fincfn 8527 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5156  ax-sep 5169  ax-nul 5176  ax-pow 5234  ax-pr 5298  ax-un 7459 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-ral 3075  df-rex 3076  df-reu 3077  df-rab 3079  df-v 3411  df-sbc 3697  df-csb 3806  df-dif 3861  df-un 3863  df-in 3865  df-ss 3875  df-nul 4226  df-if 4421  df-pw 4496  df-sn 4523  df-pr 4525  df-op 4529  df-uni 4799  df-iun 4885  df-br 5033  df-opab 5095  df-mpt 5113  df-id 5430  df-xp 5530  df-rel 5531  df-cnv 5532  df-co 5533  df-dm 5534  df-rn 5535  df-res 5536  df-ima 5537  df-iota 6294  df-fun 6337  df-fn 6338  df-f 6339  df-f1 6340  df-fo 6341  df-f1o 6342  df-fv 6343  df-ixp 8480 This theorem is referenced by:  elptr2  22274
 Copyright terms: Public domain W3C validator