Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > opnvonmbl | Structured version Visualization version GIF version |
Description: An open subset of the n-dimensional Real numbers is Lebesgue measurable. This is Proposition 115G (a) of [Fremlin1] p. 32. (Contributed by Glauco Siliprandi, 24-Dec-2020.) |
Ref | Expression |
---|---|
opnvonmbl.x | ⊢ (𝜑 → 𝑋 ∈ Fin) |
opnvonmbl.s | ⊢ 𝑆 = dom (voln‘𝑋) |
opnvonmbl.g | ⊢ (𝜑 → 𝐺 ∈ (TopOpen‘(ℝ^‘𝑋))) |
Ref | Expression |
---|---|
opnvonmbl | ⊢ (𝜑 → 𝐺 ∈ 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opnvonmbl.x | . 2 ⊢ (𝜑 → 𝑋 ∈ Fin) | |
2 | opnvonmbl.s | . 2 ⊢ 𝑆 = dom (voln‘𝑋) | |
3 | opnvonmbl.g | . 2 ⊢ (𝜑 → 𝐺 ∈ (TopOpen‘(ℝ^‘𝑋))) | |
4 | fveq2 6663 | . . . . . . 7 ⊢ (𝑘 = 𝑖 → (([,) ∘ 𝑓)‘𝑘) = (([,) ∘ 𝑓)‘𝑖)) | |
5 | 4 | cbvixpv 8510 | . . . . . 6 ⊢ X𝑘 ∈ 𝑋 (([,) ∘ 𝑓)‘𝑘) = X𝑖 ∈ 𝑋 (([,) ∘ 𝑓)‘𝑖) |
6 | 5 | a1i 11 | . . . . 5 ⊢ (𝑓 = ℎ → X𝑘 ∈ 𝑋 (([,) ∘ 𝑓)‘𝑘) = X𝑖 ∈ 𝑋 (([,) ∘ 𝑓)‘𝑖)) |
7 | coeq2 5704 | . . . . . . 7 ⊢ (𝑓 = ℎ → ([,) ∘ 𝑓) = ([,) ∘ ℎ)) | |
8 | 7 | fveq1d 6665 | . . . . . 6 ⊢ (𝑓 = ℎ → (([,) ∘ 𝑓)‘𝑖) = (([,) ∘ ℎ)‘𝑖)) |
9 | 8 | ixpeq2dv 8508 | . . . . 5 ⊢ (𝑓 = ℎ → X𝑖 ∈ 𝑋 (([,) ∘ 𝑓)‘𝑖) = X𝑖 ∈ 𝑋 (([,) ∘ ℎ)‘𝑖)) |
10 | 6, 9 | eqtrd 2793 | . . . 4 ⊢ (𝑓 = ℎ → X𝑘 ∈ 𝑋 (([,) ∘ 𝑓)‘𝑘) = X𝑖 ∈ 𝑋 (([,) ∘ ℎ)‘𝑖)) |
11 | 10 | sseq1d 3925 | . . 3 ⊢ (𝑓 = ℎ → (X𝑘 ∈ 𝑋 (([,) ∘ 𝑓)‘𝑘) ⊆ 𝐺 ↔ X𝑖 ∈ 𝑋 (([,) ∘ ℎ)‘𝑖) ⊆ 𝐺)) |
12 | 11 | cbvrabv 3404 | . 2 ⊢ {𝑓 ∈ ((ℚ × ℚ) ↑m 𝑋) ∣ X𝑘 ∈ 𝑋 (([,) ∘ 𝑓)‘𝑘) ⊆ 𝐺} = {ℎ ∈ ((ℚ × ℚ) ↑m 𝑋) ∣ X𝑖 ∈ 𝑋 (([,) ∘ ℎ)‘𝑖) ⊆ 𝐺} |
13 | 1, 2, 3, 12 | opnvonmbllem2 43683 | 1 ⊢ (𝜑 → 𝐺 ∈ 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1538 ∈ wcel 2111 {crab 3074 ⊆ wss 3860 × cxp 5526 dom cdm 5528 ∘ ccom 5532 ‘cfv 6340 (class class class)co 7156 ↑m cmap 8422 Xcixp 8492 Fincfn 8540 ℚcq 12401 [,)cico 12794 TopOpenctopn 16767 ℝ^crrx 24097 volncvoln 43588 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-rep 5160 ax-sep 5173 ax-nul 5180 ax-pow 5238 ax-pr 5302 ax-un 7465 ax-inf2 9150 ax-cc 9908 ax-ac2 9936 ax-cnex 10644 ax-resscn 10645 ax-1cn 10646 ax-icn 10647 ax-addcl 10648 ax-addrcl 10649 ax-mulcl 10650 ax-mulrcl 10651 ax-mulcom 10652 ax-addass 10653 ax-mulass 10654 ax-distr 10655 ax-i2m1 10656 ax-1ne0 10657 ax-1rid 10658 ax-rnegex 10659 ax-rrecex 10660 ax-cnre 10661 ax-pre-lttri 10662 ax-pre-lttrn 10663 ax-pre-ltadd 10664 ax-pre-mulgt0 10665 ax-pre-sup 10666 ax-addf 10667 ax-mulf 10668 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-reu 3077 df-rmo 3078 df-rab 3079 df-v 3411 df-sbc 3699 df-csb 3808 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-pss 3879 df-nul 4228 df-if 4424 df-pw 4499 df-sn 4526 df-pr 4528 df-tp 4530 df-op 4532 df-uni 4802 df-int 4842 df-iun 4888 df-iin 4889 df-disj 5002 df-br 5037 df-opab 5099 df-mpt 5117 df-tr 5143 df-id 5434 df-eprel 5439 df-po 5447 df-so 5448 df-fr 5487 df-se 5488 df-we 5489 df-xp 5534 df-rel 5535 df-cnv 5536 df-co 5537 df-dm 5538 df-rn 5539 df-res 5540 df-ima 5541 df-pred 6131 df-ord 6177 df-on 6178 df-lim 6179 df-suc 6180 df-iota 6299 df-fun 6342 df-fn 6343 df-f 6344 df-f1 6345 df-fo 6346 df-f1o 6347 df-fv 6348 df-isom 6349 df-riota 7114 df-ov 7159 df-oprab 7160 df-mpo 7161 df-of 7411 df-om 7586 df-1st 7699 df-2nd 7700 df-supp 7842 df-tpos 7908 df-wrecs 7963 df-recs 8024 df-rdg 8062 df-1o 8118 df-2o 8119 df-oadd 8122 df-omul 8123 df-er 8305 df-map 8424 df-pm 8425 df-ixp 8493 df-en 8541 df-dom 8542 df-sdom 8543 df-fin 8544 df-fsupp 8880 df-fi 8921 df-sup 8952 df-inf 8953 df-oi 9020 df-dju 9376 df-card 9414 df-acn 9417 df-ac 9589 df-pnf 10728 df-mnf 10729 df-xr 10730 df-ltxr 10731 df-le 10732 df-sub 10923 df-neg 10924 df-div 11349 df-nn 11688 df-2 11750 df-3 11751 df-4 11752 df-5 11753 df-6 11754 df-7 11755 df-8 11756 df-9 11757 df-n0 11948 df-z 12034 df-dec 12151 df-uz 12296 df-q 12402 df-rp 12444 df-xneg 12561 df-xadd 12562 df-xmul 12563 df-ioo 12796 df-ico 12798 df-icc 12799 df-fz 12953 df-fzo 13096 df-fl 13224 df-seq 13432 df-exp 13493 df-hash 13754 df-cj 14519 df-re 14520 df-im 14521 df-sqrt 14655 df-abs 14656 df-clim 14906 df-rlim 14907 df-sum 15104 df-prod 15321 df-struct 16557 df-ndx 16558 df-slot 16559 df-base 16561 df-sets 16562 df-ress 16563 df-plusg 16650 df-mulr 16651 df-starv 16652 df-sca 16653 df-vsca 16654 df-ip 16655 df-tset 16656 df-ple 16657 df-ds 16659 df-unif 16660 df-hom 16661 df-cco 16662 df-rest 16768 df-topn 16769 df-0g 16787 df-gsum 16788 df-topgen 16789 df-prds 16793 df-pws 16795 df-mgm 17932 df-sgrp 17981 df-mnd 17992 df-mhm 18036 df-submnd 18037 df-grp 18186 df-minusg 18187 df-sbg 18188 df-subg 18357 df-ghm 18437 df-cntz 18528 df-cmn 18989 df-abl 18990 df-mgp 19322 df-ur 19334 df-ring 19381 df-cring 19382 df-oppr 19458 df-dvdsr 19476 df-unit 19477 df-invr 19507 df-dvr 19518 df-rnghom 19552 df-drng 19586 df-field 19587 df-subrg 19615 df-abv 19670 df-staf 19698 df-srng 19699 df-lmod 19718 df-lss 19786 df-lmhm 19876 df-lvec 19957 df-sra 20026 df-rgmod 20027 df-psmet 20172 df-xmet 20173 df-met 20174 df-bl 20175 df-mopn 20176 df-cnfld 20181 df-refld 20384 df-phl 20405 df-dsmm 20511 df-frlm 20526 df-top 21608 df-topon 21625 df-topsp 21647 df-bases 21660 df-cmp 22101 df-xms 23036 df-ms 23037 df-nm 23298 df-ngp 23299 df-tng 23300 df-nrg 23301 df-nlm 23302 df-clm 23778 df-cph 23883 df-tcph 23884 df-rrx 24099 df-ovol 24178 df-vol 24179 df-salg 43362 df-sumge0 43413 df-mea 43500 df-ome 43540 df-caragen 43542 df-ovoln 43587 df-voln 43589 |
This theorem is referenced by: borelmbl 43686 ioovonmbl 43727 |
Copyright terms: Public domain | W3C validator |