MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elixx1 Structured version   Visualization version   GIF version

Theorem elixx1 13254
Description: Membership in an interval of extended reals. (Contributed by Mario Carneiro, 3-Nov-2013.)
Hypothesis
Ref Expression
ixx.1 𝑂 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑅𝑧𝑧𝑆𝑦)})
Assertion
Ref Expression
elixx1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴𝑂𝐵) ↔ (𝐶 ∈ ℝ*𝐴𝑅𝐶𝐶𝑆𝐵)))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑥,𝐶,𝑦,𝑧   𝑥,𝐵,𝑦,𝑧   𝑥,𝑅,𝑦,𝑧   𝑥,𝑆,𝑦,𝑧
Allowed substitution hints:   𝑂(𝑥,𝑦,𝑧)

Proof of Theorem elixx1
StepHypRef Expression
1 ixx.1 . . . 4 𝑂 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑅𝑧𝑧𝑆𝑦)})
21ixxval 13253 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴𝑂𝐵) = {𝑧 ∈ ℝ* ∣ (𝐴𝑅𝑧𝑧𝑆𝐵)})
32eleq2d 2817 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴𝑂𝐵) ↔ 𝐶 ∈ {𝑧 ∈ ℝ* ∣ (𝐴𝑅𝑧𝑧𝑆𝐵)}))
4 breq2 5093 . . . . 5 (𝑧 = 𝐶 → (𝐴𝑅𝑧𝐴𝑅𝐶))
5 breq1 5092 . . . . 5 (𝑧 = 𝐶 → (𝑧𝑆𝐵𝐶𝑆𝐵))
64, 5anbi12d 632 . . . 4 (𝑧 = 𝐶 → ((𝐴𝑅𝑧𝑧𝑆𝐵) ↔ (𝐴𝑅𝐶𝐶𝑆𝐵)))
76elrab 3642 . . 3 (𝐶 ∈ {𝑧 ∈ ℝ* ∣ (𝐴𝑅𝑧𝑧𝑆𝐵)} ↔ (𝐶 ∈ ℝ* ∧ (𝐴𝑅𝐶𝐶𝑆𝐵)))
8 3anass 1094 . . 3 ((𝐶 ∈ ℝ*𝐴𝑅𝐶𝐶𝑆𝐵) ↔ (𝐶 ∈ ℝ* ∧ (𝐴𝑅𝐶𝐶𝑆𝐵)))
97, 8bitr4i 278 . 2 (𝐶 ∈ {𝑧 ∈ ℝ* ∣ (𝐴𝑅𝑧𝑧𝑆𝐵)} ↔ (𝐶 ∈ ℝ*𝐴𝑅𝐶𝐶𝑆𝐵))
103, 9bitrdi 287 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴𝑂𝐵) ↔ (𝐶 ∈ ℝ*𝐴𝑅𝐶𝐶𝑆𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  {crab 3395   class class class wbr 5089  (class class class)co 7346  cmpo 7348  *cxr 11145
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3737  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-iota 6437  df-fun 6483  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-xr 11150
This theorem is referenced by:  elixx3g  13258  ixxssixx  13259  ixxdisj  13260  ixxun  13261  ixxss1  13263  ixxss2  13264  ixxss12  13265  ixxub  13266  ixxlb  13267  elioo1  13285  elioc1  13287  elico1  13288  elicc1  13289
  Copyright terms: Public domain W3C validator