![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ist0-4 | Structured version Visualization version GIF version |
Description: The topological indistinguishability map is injective iff the space is T0. (Contributed by Mario Carneiro, 25-Aug-2015.) |
Ref | Expression |
---|---|
kqval.2 | ⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ {𝑦 ∈ 𝐽 ∣ 𝑥 ∈ 𝑦}) |
Ref | Expression |
---|---|
ist0-4 | ⊢ (𝐽 ∈ (TopOn‘𝑋) → (𝐽 ∈ Kol2 ↔ 𝐹:𝑋–1-1→V)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | kqval.2 | . . . . . 6 ⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ {𝑦 ∈ 𝐽 ∣ 𝑥 ∈ 𝑦}) | |
2 | 1 | kqfeq 21897 | . . . . 5 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋) → ((𝐹‘𝑧) = (𝐹‘𝑤) ↔ ∀𝑦 ∈ 𝐽 (𝑧 ∈ 𝑦 ↔ 𝑤 ∈ 𝑦))) |
3 | 2 | 3expb 1155 | . . . 4 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋)) → ((𝐹‘𝑧) = (𝐹‘𝑤) ↔ ∀𝑦 ∈ 𝐽 (𝑧 ∈ 𝑦 ↔ 𝑤 ∈ 𝑦))) |
4 | 3 | imbi1d 333 | . . 3 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋)) → (((𝐹‘𝑧) = (𝐹‘𝑤) → 𝑧 = 𝑤) ↔ (∀𝑦 ∈ 𝐽 (𝑧 ∈ 𝑦 ↔ 𝑤 ∈ 𝑦) → 𝑧 = 𝑤))) |
5 | 4 | 2ralbidva 3196 | . 2 ⊢ (𝐽 ∈ (TopOn‘𝑋) → (∀𝑧 ∈ 𝑋 ∀𝑤 ∈ 𝑋 ((𝐹‘𝑧) = (𝐹‘𝑤) → 𝑧 = 𝑤) ↔ ∀𝑧 ∈ 𝑋 ∀𝑤 ∈ 𝑋 (∀𝑦 ∈ 𝐽 (𝑧 ∈ 𝑦 ↔ 𝑤 ∈ 𝑦) → 𝑧 = 𝑤))) |
6 | 1 | kqffn 21898 | . . . 4 ⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝐹 Fn 𝑋) |
7 | dffn2 6279 | . . . 4 ⊢ (𝐹 Fn 𝑋 ↔ 𝐹:𝑋⟶V) | |
8 | 6, 7 | sylib 210 | . . 3 ⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝐹:𝑋⟶V) |
9 | dff13 6766 | . . . 4 ⊢ (𝐹:𝑋–1-1→V ↔ (𝐹:𝑋⟶V ∧ ∀𝑧 ∈ 𝑋 ∀𝑤 ∈ 𝑋 ((𝐹‘𝑧) = (𝐹‘𝑤) → 𝑧 = 𝑤))) | |
10 | 9 | baib 533 | . . 3 ⊢ (𝐹:𝑋⟶V → (𝐹:𝑋–1-1→V ↔ ∀𝑧 ∈ 𝑋 ∀𝑤 ∈ 𝑋 ((𝐹‘𝑧) = (𝐹‘𝑤) → 𝑧 = 𝑤))) |
11 | 8, 10 | syl 17 | . 2 ⊢ (𝐽 ∈ (TopOn‘𝑋) → (𝐹:𝑋–1-1→V ↔ ∀𝑧 ∈ 𝑋 ∀𝑤 ∈ 𝑋 ((𝐹‘𝑧) = (𝐹‘𝑤) → 𝑧 = 𝑤))) |
12 | ist0-2 21518 | . 2 ⊢ (𝐽 ∈ (TopOn‘𝑋) → (𝐽 ∈ Kol2 ↔ ∀𝑧 ∈ 𝑋 ∀𝑤 ∈ 𝑋 (∀𝑦 ∈ 𝐽 (𝑧 ∈ 𝑦 ↔ 𝑤 ∈ 𝑦) → 𝑧 = 𝑤))) | |
13 | 5, 11, 12 | 3bitr4rd 304 | 1 ⊢ (𝐽 ∈ (TopOn‘𝑋) → (𝐽 ∈ Kol2 ↔ 𝐹:𝑋–1-1→V)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 386 = wceq 1658 ∈ wcel 2166 ∀wral 3116 {crab 3120 Vcvv 3413 ↦ cmpt 4951 Fn wfn 6117 ⟶wf 6118 –1-1→wf1 6119 ‘cfv 6122 TopOnctopon 21084 Kol2ct0 21480 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-8 2168 ax-9 2175 ax-10 2194 ax-11 2209 ax-12 2222 ax-13 2390 ax-ext 2802 ax-sep 5004 ax-nul 5012 ax-pow 5064 ax-pr 5126 ax-un 7208 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 881 df-3an 1115 df-tru 1662 df-ex 1881 df-nf 1885 df-sb 2070 df-mo 2604 df-eu 2639 df-clab 2811 df-cleq 2817 df-clel 2820 df-nfc 2957 df-ne 2999 df-ral 3121 df-rex 3122 df-rab 3125 df-v 3415 df-sbc 3662 df-dif 3800 df-un 3802 df-in 3804 df-ss 3811 df-nul 4144 df-if 4306 df-pw 4379 df-sn 4397 df-pr 4399 df-op 4403 df-uni 4658 df-br 4873 df-opab 4935 df-mpt 4952 df-id 5249 df-xp 5347 df-rel 5348 df-cnv 5349 df-co 5350 df-dm 5351 df-rn 5352 df-res 5353 df-ima 5354 df-iota 6085 df-fun 6124 df-fn 6125 df-f 6126 df-f1 6127 df-fv 6130 df-topon 21085 df-t0 21487 |
This theorem is referenced by: t0kq 21991 |
Copyright terms: Public domain | W3C validator |