MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ist0-4 Structured version   Visualization version   GIF version

Theorem ist0-4 23616
Description: The topological indistinguishability map is injective iff the space is T0. (Contributed by Mario Carneiro, 25-Aug-2015.)
Hypothesis
Ref Expression
kqval.2 𝐹 = (𝑥𝑋 ↦ {𝑦𝐽𝑥𝑦})
Assertion
Ref Expression
ist0-4 (𝐽 ∈ (TopOn‘𝑋) → (𝐽 ∈ Kol2 ↔ 𝐹:𝑋1-1→V))
Distinct variable groups:   𝑥,𝑦,𝐽   𝑥,𝑋,𝑦
Allowed substitution hints:   𝐹(𝑥,𝑦)

Proof of Theorem ist0-4
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 kqval.2 . . . . . 6 𝐹 = (𝑥𝑋 ↦ {𝑦𝐽𝑥𝑦})
21kqfeq 23611 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑧𝑋𝑤𝑋) → ((𝐹𝑧) = (𝐹𝑤) ↔ ∀𝑦𝐽 (𝑧𝑦𝑤𝑦)))
323expb 1120 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑧𝑋𝑤𝑋)) → ((𝐹𝑧) = (𝐹𝑤) ↔ ∀𝑦𝐽 (𝑧𝑦𝑤𝑦)))
43imbi1d 341 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑧𝑋𝑤𝑋)) → (((𝐹𝑧) = (𝐹𝑤) → 𝑧 = 𝑤) ↔ (∀𝑦𝐽 (𝑧𝑦𝑤𝑦) → 𝑧 = 𝑤)))
542ralbidva 3199 . 2 (𝐽 ∈ (TopOn‘𝑋) → (∀𝑧𝑋𝑤𝑋 ((𝐹𝑧) = (𝐹𝑤) → 𝑧 = 𝑤) ↔ ∀𝑧𝑋𝑤𝑋 (∀𝑦𝐽 (𝑧𝑦𝑤𝑦) → 𝑧 = 𝑤)))
61kqffn 23612 . . . 4 (𝐽 ∈ (TopOn‘𝑋) → 𝐹 Fn 𝑋)
7 dffn2 6690 . . . 4 (𝐹 Fn 𝑋𝐹:𝑋⟶V)
86, 7sylib 218 . . 3 (𝐽 ∈ (TopOn‘𝑋) → 𝐹:𝑋⟶V)
9 dff13 7229 . . . 4 (𝐹:𝑋1-1→V ↔ (𝐹:𝑋⟶V ∧ ∀𝑧𝑋𝑤𝑋 ((𝐹𝑧) = (𝐹𝑤) → 𝑧 = 𝑤)))
109baib 535 . . 3 (𝐹:𝑋⟶V → (𝐹:𝑋1-1→V ↔ ∀𝑧𝑋𝑤𝑋 ((𝐹𝑧) = (𝐹𝑤) → 𝑧 = 𝑤)))
118, 10syl 17 . 2 (𝐽 ∈ (TopOn‘𝑋) → (𝐹:𝑋1-1→V ↔ ∀𝑧𝑋𝑤𝑋 ((𝐹𝑧) = (𝐹𝑤) → 𝑧 = 𝑤)))
12 ist0-2 23231 . 2 (𝐽 ∈ (TopOn‘𝑋) → (𝐽 ∈ Kol2 ↔ ∀𝑧𝑋𝑤𝑋 (∀𝑦𝐽 (𝑧𝑦𝑤𝑦) → 𝑧 = 𝑤)))
135, 11, 123bitr4rd 312 1 (𝐽 ∈ (TopOn‘𝑋) → (𝐽 ∈ Kol2 ↔ 𝐹:𝑋1-1→V))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044  {crab 3405  Vcvv 3447  cmpt 5188   Fn wfn 6506  wf 6507  1-1wf1 6508  cfv 6511  TopOnctopon 22797  Kol2ct0 23193
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fv 6519  df-topon 22798  df-t0 23200
This theorem is referenced by:  t0kq  23705
  Copyright terms: Public domain W3C validator