MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ist0-4 Structured version   Visualization version   GIF version

Theorem ist0-4 23758
Description: The topological indistinguishability map is injective iff the space is T0. (Contributed by Mario Carneiro, 25-Aug-2015.)
Hypothesis
Ref Expression
kqval.2 𝐹 = (𝑥𝑋 ↦ {𝑦𝐽𝑥𝑦})
Assertion
Ref Expression
ist0-4 (𝐽 ∈ (TopOn‘𝑋) → (𝐽 ∈ Kol2 ↔ 𝐹:𝑋1-1→V))
Distinct variable groups:   𝑥,𝑦,𝐽   𝑥,𝑋,𝑦
Allowed substitution hints:   𝐹(𝑥,𝑦)

Proof of Theorem ist0-4
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 kqval.2 . . . . . 6 𝐹 = (𝑥𝑋 ↦ {𝑦𝐽𝑥𝑦})
21kqfeq 23753 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑧𝑋𝑤𝑋) → ((𝐹𝑧) = (𝐹𝑤) ↔ ∀𝑦𝐽 (𝑧𝑦𝑤𝑦)))
323expb 1120 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑧𝑋𝑤𝑋)) → ((𝐹𝑧) = (𝐹𝑤) ↔ ∀𝑦𝐽 (𝑧𝑦𝑤𝑦)))
43imbi1d 341 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑧𝑋𝑤𝑋)) → (((𝐹𝑧) = (𝐹𝑤) → 𝑧 = 𝑤) ↔ (∀𝑦𝐽 (𝑧𝑦𝑤𝑦) → 𝑧 = 𝑤)))
542ralbidva 3225 . 2 (𝐽 ∈ (TopOn‘𝑋) → (∀𝑧𝑋𝑤𝑋 ((𝐹𝑧) = (𝐹𝑤) → 𝑧 = 𝑤) ↔ ∀𝑧𝑋𝑤𝑋 (∀𝑦𝐽 (𝑧𝑦𝑤𝑦) → 𝑧 = 𝑤)))
61kqffn 23754 . . . 4 (𝐽 ∈ (TopOn‘𝑋) → 𝐹 Fn 𝑋)
7 dffn2 6749 . . . 4 (𝐹 Fn 𝑋𝐹:𝑋⟶V)
86, 7sylib 218 . . 3 (𝐽 ∈ (TopOn‘𝑋) → 𝐹:𝑋⟶V)
9 dff13 7292 . . . 4 (𝐹:𝑋1-1→V ↔ (𝐹:𝑋⟶V ∧ ∀𝑧𝑋𝑤𝑋 ((𝐹𝑧) = (𝐹𝑤) → 𝑧 = 𝑤)))
109baib 535 . . 3 (𝐹:𝑋⟶V → (𝐹:𝑋1-1→V ↔ ∀𝑧𝑋𝑤𝑋 ((𝐹𝑧) = (𝐹𝑤) → 𝑧 = 𝑤)))
118, 10syl 17 . 2 (𝐽 ∈ (TopOn‘𝑋) → (𝐹:𝑋1-1→V ↔ ∀𝑧𝑋𝑤𝑋 ((𝐹𝑧) = (𝐹𝑤) → 𝑧 = 𝑤)))
12 ist0-2 23373 . 2 (𝐽 ∈ (TopOn‘𝑋) → (𝐽 ∈ Kol2 ↔ ∀𝑧𝑋𝑤𝑋 (∀𝑦𝐽 (𝑧𝑦𝑤𝑦) → 𝑧 = 𝑤)))
135, 11, 123bitr4rd 312 1 (𝐽 ∈ (TopOn‘𝑋) → (𝐽 ∈ Kol2 ↔ 𝐹:𝑋1-1→V))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  wral 3067  {crab 3443  Vcvv 3488  cmpt 5249   Fn wfn 6568  wf 6569  1-1wf1 6570  cfv 6573  TopOnctopon 22937  Kol2ct0 23335
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fv 6581  df-topon 22938  df-t0 23342
This theorem is referenced by:  t0kq  23847
  Copyright terms: Public domain W3C validator