MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ist0-4 Structured version   Visualization version   GIF version

Theorem ist0-4 22788
Description: The topological indistinguishability map is injective iff the space is T0. (Contributed by Mario Carneiro, 25-Aug-2015.)
Hypothesis
Ref Expression
kqval.2 𝐹 = (𝑥𝑋 ↦ {𝑦𝐽𝑥𝑦})
Assertion
Ref Expression
ist0-4 (𝐽 ∈ (TopOn‘𝑋) → (𝐽 ∈ Kol2 ↔ 𝐹:𝑋1-1→V))
Distinct variable groups:   𝑥,𝑦,𝐽   𝑥,𝑋,𝑦
Allowed substitution hints:   𝐹(𝑥,𝑦)

Proof of Theorem ist0-4
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 kqval.2 . . . . . 6 𝐹 = (𝑥𝑋 ↦ {𝑦𝐽𝑥𝑦})
21kqfeq 22783 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑧𝑋𝑤𝑋) → ((𝐹𝑧) = (𝐹𝑤) ↔ ∀𝑦𝐽 (𝑧𝑦𝑤𝑦)))
323expb 1118 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑧𝑋𝑤𝑋)) → ((𝐹𝑧) = (𝐹𝑤) ↔ ∀𝑦𝐽 (𝑧𝑦𝑤𝑦)))
43imbi1d 341 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑧𝑋𝑤𝑋)) → (((𝐹𝑧) = (𝐹𝑤) → 𝑧 = 𝑤) ↔ (∀𝑦𝐽 (𝑧𝑦𝑤𝑦) → 𝑧 = 𝑤)))
542ralbidva 3121 . 2 (𝐽 ∈ (TopOn‘𝑋) → (∀𝑧𝑋𝑤𝑋 ((𝐹𝑧) = (𝐹𝑤) → 𝑧 = 𝑤) ↔ ∀𝑧𝑋𝑤𝑋 (∀𝑦𝐽 (𝑧𝑦𝑤𝑦) → 𝑧 = 𝑤)))
61kqffn 22784 . . . 4 (𝐽 ∈ (TopOn‘𝑋) → 𝐹 Fn 𝑋)
7 dffn2 6586 . . . 4 (𝐹 Fn 𝑋𝐹:𝑋⟶V)
86, 7sylib 217 . . 3 (𝐽 ∈ (TopOn‘𝑋) → 𝐹:𝑋⟶V)
9 dff13 7109 . . . 4 (𝐹:𝑋1-1→V ↔ (𝐹:𝑋⟶V ∧ ∀𝑧𝑋𝑤𝑋 ((𝐹𝑧) = (𝐹𝑤) → 𝑧 = 𝑤)))
109baib 535 . . 3 (𝐹:𝑋⟶V → (𝐹:𝑋1-1→V ↔ ∀𝑧𝑋𝑤𝑋 ((𝐹𝑧) = (𝐹𝑤) → 𝑧 = 𝑤)))
118, 10syl 17 . 2 (𝐽 ∈ (TopOn‘𝑋) → (𝐹:𝑋1-1→V ↔ ∀𝑧𝑋𝑤𝑋 ((𝐹𝑧) = (𝐹𝑤) → 𝑧 = 𝑤)))
12 ist0-2 22403 . 2 (𝐽 ∈ (TopOn‘𝑋) → (𝐽 ∈ Kol2 ↔ ∀𝑧𝑋𝑤𝑋 (∀𝑦𝐽 (𝑧𝑦𝑤𝑦) → 𝑧 = 𝑤)))
135, 11, 123bitr4rd 311 1 (𝐽 ∈ (TopOn‘𝑋) → (𝐽 ∈ Kol2 ↔ 𝐹:𝑋1-1→V))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wral 3063  {crab 3067  Vcvv 3422  cmpt 5153   Fn wfn 6413  wf 6414  1-1wf1 6415  cfv 6418  TopOnctopon 21967  Kol2ct0 22365
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fv 6426  df-topon 21968  df-t0 22372
This theorem is referenced by:  t0kq  22877
  Copyright terms: Public domain W3C validator