Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ist0-4 | Structured version Visualization version GIF version |
Description: The topological indistinguishability map is injective iff the space is T0. (Contributed by Mario Carneiro, 25-Aug-2015.) |
Ref | Expression |
---|---|
kqval.2 | ⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ {𝑦 ∈ 𝐽 ∣ 𝑥 ∈ 𝑦}) |
Ref | Expression |
---|---|
ist0-4 | ⊢ (𝐽 ∈ (TopOn‘𝑋) → (𝐽 ∈ Kol2 ↔ 𝐹:𝑋–1-1→V)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | kqval.2 | . . . . . 6 ⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ {𝑦 ∈ 𝐽 ∣ 𝑥 ∈ 𝑦}) | |
2 | 1 | kqfeq 22871 | . . . . 5 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋) → ((𝐹‘𝑧) = (𝐹‘𝑤) ↔ ∀𝑦 ∈ 𝐽 (𝑧 ∈ 𝑦 ↔ 𝑤 ∈ 𝑦))) |
3 | 2 | 3expb 1119 | . . . 4 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋)) → ((𝐹‘𝑧) = (𝐹‘𝑤) ↔ ∀𝑦 ∈ 𝐽 (𝑧 ∈ 𝑦 ↔ 𝑤 ∈ 𝑦))) |
4 | 3 | imbi1d 342 | . . 3 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋)) → (((𝐹‘𝑧) = (𝐹‘𝑤) → 𝑧 = 𝑤) ↔ (∀𝑦 ∈ 𝐽 (𝑧 ∈ 𝑦 ↔ 𝑤 ∈ 𝑦) → 𝑧 = 𝑤))) |
5 | 4 | 2ralbidva 3124 | . 2 ⊢ (𝐽 ∈ (TopOn‘𝑋) → (∀𝑧 ∈ 𝑋 ∀𝑤 ∈ 𝑋 ((𝐹‘𝑧) = (𝐹‘𝑤) → 𝑧 = 𝑤) ↔ ∀𝑧 ∈ 𝑋 ∀𝑤 ∈ 𝑋 (∀𝑦 ∈ 𝐽 (𝑧 ∈ 𝑦 ↔ 𝑤 ∈ 𝑦) → 𝑧 = 𝑤))) |
6 | 1 | kqffn 22872 | . . . 4 ⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝐹 Fn 𝑋) |
7 | dffn2 6599 | . . . 4 ⊢ (𝐹 Fn 𝑋 ↔ 𝐹:𝑋⟶V) | |
8 | 6, 7 | sylib 217 | . . 3 ⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝐹:𝑋⟶V) |
9 | dff13 7123 | . . . 4 ⊢ (𝐹:𝑋–1-1→V ↔ (𝐹:𝑋⟶V ∧ ∀𝑧 ∈ 𝑋 ∀𝑤 ∈ 𝑋 ((𝐹‘𝑧) = (𝐹‘𝑤) → 𝑧 = 𝑤))) | |
10 | 9 | baib 536 | . . 3 ⊢ (𝐹:𝑋⟶V → (𝐹:𝑋–1-1→V ↔ ∀𝑧 ∈ 𝑋 ∀𝑤 ∈ 𝑋 ((𝐹‘𝑧) = (𝐹‘𝑤) → 𝑧 = 𝑤))) |
11 | 8, 10 | syl 17 | . 2 ⊢ (𝐽 ∈ (TopOn‘𝑋) → (𝐹:𝑋–1-1→V ↔ ∀𝑧 ∈ 𝑋 ∀𝑤 ∈ 𝑋 ((𝐹‘𝑧) = (𝐹‘𝑤) → 𝑧 = 𝑤))) |
12 | ist0-2 22491 | . 2 ⊢ (𝐽 ∈ (TopOn‘𝑋) → (𝐽 ∈ Kol2 ↔ ∀𝑧 ∈ 𝑋 ∀𝑤 ∈ 𝑋 (∀𝑦 ∈ 𝐽 (𝑧 ∈ 𝑦 ↔ 𝑤 ∈ 𝑦) → 𝑧 = 𝑤))) | |
13 | 5, 11, 12 | 3bitr4rd 312 | 1 ⊢ (𝐽 ∈ (TopOn‘𝑋) → (𝐽 ∈ Kol2 ↔ 𝐹:𝑋–1-1→V)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1542 ∈ wcel 2110 ∀wral 3066 {crab 3070 Vcvv 3431 ↦ cmpt 5162 Fn wfn 6426 ⟶wf 6427 –1-1→wf1 6428 ‘cfv 6431 TopOnctopon 22055 Kol2ct0 22453 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-sep 5227 ax-nul 5234 ax-pow 5292 ax-pr 5356 ax-un 7580 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-ral 3071 df-rex 3072 df-rab 3075 df-v 3433 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-br 5080 df-opab 5142 df-mpt 5163 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6389 df-fun 6433 df-fn 6434 df-f 6435 df-f1 6436 df-fv 6439 df-topon 22056 df-t0 22460 |
This theorem is referenced by: t0kq 22965 |
Copyright terms: Public domain | W3C validator |