| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ist0-4 | Structured version Visualization version GIF version | ||
| Description: The topological indistinguishability map is injective iff the space is T0. (Contributed by Mario Carneiro, 25-Aug-2015.) |
| Ref | Expression |
|---|---|
| kqval.2 | ⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ {𝑦 ∈ 𝐽 ∣ 𝑥 ∈ 𝑦}) |
| Ref | Expression |
|---|---|
| ist0-4 | ⊢ (𝐽 ∈ (TopOn‘𝑋) → (𝐽 ∈ Kol2 ↔ 𝐹:𝑋–1-1→V)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | kqval.2 | . . . . . 6 ⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ {𝑦 ∈ 𝐽 ∣ 𝑥 ∈ 𝑦}) | |
| 2 | 1 | kqfeq 23611 | . . . . 5 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋) → ((𝐹‘𝑧) = (𝐹‘𝑤) ↔ ∀𝑦 ∈ 𝐽 (𝑧 ∈ 𝑦 ↔ 𝑤 ∈ 𝑦))) |
| 3 | 2 | 3expb 1120 | . . . 4 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋)) → ((𝐹‘𝑧) = (𝐹‘𝑤) ↔ ∀𝑦 ∈ 𝐽 (𝑧 ∈ 𝑦 ↔ 𝑤 ∈ 𝑦))) |
| 4 | 3 | imbi1d 341 | . . 3 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋)) → (((𝐹‘𝑧) = (𝐹‘𝑤) → 𝑧 = 𝑤) ↔ (∀𝑦 ∈ 𝐽 (𝑧 ∈ 𝑦 ↔ 𝑤 ∈ 𝑦) → 𝑧 = 𝑤))) |
| 5 | 4 | 2ralbidva 3199 | . 2 ⊢ (𝐽 ∈ (TopOn‘𝑋) → (∀𝑧 ∈ 𝑋 ∀𝑤 ∈ 𝑋 ((𝐹‘𝑧) = (𝐹‘𝑤) → 𝑧 = 𝑤) ↔ ∀𝑧 ∈ 𝑋 ∀𝑤 ∈ 𝑋 (∀𝑦 ∈ 𝐽 (𝑧 ∈ 𝑦 ↔ 𝑤 ∈ 𝑦) → 𝑧 = 𝑤))) |
| 6 | 1 | kqffn 23612 | . . . 4 ⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝐹 Fn 𝑋) |
| 7 | dffn2 6690 | . . . 4 ⊢ (𝐹 Fn 𝑋 ↔ 𝐹:𝑋⟶V) | |
| 8 | 6, 7 | sylib 218 | . . 3 ⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝐹:𝑋⟶V) |
| 9 | dff13 7229 | . . . 4 ⊢ (𝐹:𝑋–1-1→V ↔ (𝐹:𝑋⟶V ∧ ∀𝑧 ∈ 𝑋 ∀𝑤 ∈ 𝑋 ((𝐹‘𝑧) = (𝐹‘𝑤) → 𝑧 = 𝑤))) | |
| 10 | 9 | baib 535 | . . 3 ⊢ (𝐹:𝑋⟶V → (𝐹:𝑋–1-1→V ↔ ∀𝑧 ∈ 𝑋 ∀𝑤 ∈ 𝑋 ((𝐹‘𝑧) = (𝐹‘𝑤) → 𝑧 = 𝑤))) |
| 11 | 8, 10 | syl 17 | . 2 ⊢ (𝐽 ∈ (TopOn‘𝑋) → (𝐹:𝑋–1-1→V ↔ ∀𝑧 ∈ 𝑋 ∀𝑤 ∈ 𝑋 ((𝐹‘𝑧) = (𝐹‘𝑤) → 𝑧 = 𝑤))) |
| 12 | ist0-2 23231 | . 2 ⊢ (𝐽 ∈ (TopOn‘𝑋) → (𝐽 ∈ Kol2 ↔ ∀𝑧 ∈ 𝑋 ∀𝑤 ∈ 𝑋 (∀𝑦 ∈ 𝐽 (𝑧 ∈ 𝑦 ↔ 𝑤 ∈ 𝑦) → 𝑧 = 𝑤))) | |
| 13 | 5, 11, 12 | 3bitr4rd 312 | 1 ⊢ (𝐽 ∈ (TopOn‘𝑋) → (𝐽 ∈ Kol2 ↔ 𝐹:𝑋–1-1→V)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 {crab 3405 Vcvv 3447 ↦ cmpt 5188 Fn wfn 6506 ⟶wf 6507 –1-1→wf1 6508 ‘cfv 6511 TopOnctopon 22797 Kol2ct0 23193 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fv 6519 df-topon 22798 df-t0 23200 |
| This theorem is referenced by: t0kq 23705 |
| Copyright terms: Public domain | W3C validator |