MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  kqt0lem Structured version   Visualization version   GIF version

Theorem kqt0lem 22887
Description: Lemma for kqt0 22897. (Contributed by Mario Carneiro, 23-Mar-2015.)
Hypothesis
Ref Expression
kqval.2 𝐹 = (𝑥𝑋 ↦ {𝑦𝐽𝑥𝑦})
Assertion
Ref Expression
kqt0lem (𝐽 ∈ (TopOn‘𝑋) → (KQ‘𝐽) ∈ Kol2)
Distinct variable groups:   𝑥,𝑦,𝐽   𝑥,𝑋,𝑦
Allowed substitution hints:   𝐹(𝑥,𝑦)

Proof of Theorem kqt0lem
Dummy variables 𝑤 𝑧 𝑎 𝑏 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 kqval.2 . . . . . . . . . 10 𝐹 = (𝑥𝑋 ↦ {𝑦𝐽𝑥𝑦})
21kqopn 22885 . . . . . . . . 9 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑤𝐽) → (𝐹𝑤) ∈ (KQ‘𝐽))
32adantlr 712 . . . . . . . 8 (((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑎𝑋𝑏𝑋)) ∧ 𝑤𝐽) → (𝐹𝑤) ∈ (KQ‘𝐽))
4 eleq2 2827 . . . . . . . . . 10 (𝑧 = (𝐹𝑤) → ((𝐹𝑎) ∈ 𝑧 ↔ (𝐹𝑎) ∈ (𝐹𝑤)))
5 eleq2 2827 . . . . . . . . . 10 (𝑧 = (𝐹𝑤) → ((𝐹𝑏) ∈ 𝑧 ↔ (𝐹𝑏) ∈ (𝐹𝑤)))
64, 5bibi12d 346 . . . . . . . . 9 (𝑧 = (𝐹𝑤) → (((𝐹𝑎) ∈ 𝑧 ↔ (𝐹𝑏) ∈ 𝑧) ↔ ((𝐹𝑎) ∈ (𝐹𝑤) ↔ (𝐹𝑏) ∈ (𝐹𝑤))))
76rspcv 3557 . . . . . . . 8 ((𝐹𝑤) ∈ (KQ‘𝐽) → (∀𝑧 ∈ (KQ‘𝐽)((𝐹𝑎) ∈ 𝑧 ↔ (𝐹𝑏) ∈ 𝑧) → ((𝐹𝑎) ∈ (𝐹𝑤) ↔ (𝐹𝑏) ∈ (𝐹𝑤))))
83, 7syl 17 . . . . . . 7 (((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑎𝑋𝑏𝑋)) ∧ 𝑤𝐽) → (∀𝑧 ∈ (KQ‘𝐽)((𝐹𝑎) ∈ 𝑧 ↔ (𝐹𝑏) ∈ 𝑧) → ((𝐹𝑎) ∈ (𝐹𝑤) ↔ (𝐹𝑏) ∈ (𝐹𝑤))))
91kqfvima 22881 . . . . . . . . . . 11 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑤𝐽𝑎𝑋) → (𝑎𝑤 ↔ (𝐹𝑎) ∈ (𝐹𝑤)))
1093expa 1117 . . . . . . . . . 10 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑤𝐽) ∧ 𝑎𝑋) → (𝑎𝑤 ↔ (𝐹𝑎) ∈ (𝐹𝑤)))
1110adantrr 714 . . . . . . . . 9 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑤𝐽) ∧ (𝑎𝑋𝑏𝑋)) → (𝑎𝑤 ↔ (𝐹𝑎) ∈ (𝐹𝑤)))
121kqfvima 22881 . . . . . . . . . . 11 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑤𝐽𝑏𝑋) → (𝑏𝑤 ↔ (𝐹𝑏) ∈ (𝐹𝑤)))
13123expa 1117 . . . . . . . . . 10 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑤𝐽) ∧ 𝑏𝑋) → (𝑏𝑤 ↔ (𝐹𝑏) ∈ (𝐹𝑤)))
1413adantrl 713 . . . . . . . . 9 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑤𝐽) ∧ (𝑎𝑋𝑏𝑋)) → (𝑏𝑤 ↔ (𝐹𝑏) ∈ (𝐹𝑤)))
1511, 14bibi12d 346 . . . . . . . 8 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑤𝐽) ∧ (𝑎𝑋𝑏𝑋)) → ((𝑎𝑤𝑏𝑤) ↔ ((𝐹𝑎) ∈ (𝐹𝑤) ↔ (𝐹𝑏) ∈ (𝐹𝑤))))
1615an32s 649 . . . . . . 7 (((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑎𝑋𝑏𝑋)) ∧ 𝑤𝐽) → ((𝑎𝑤𝑏𝑤) ↔ ((𝐹𝑎) ∈ (𝐹𝑤) ↔ (𝐹𝑏) ∈ (𝐹𝑤))))
178, 16sylibrd 258 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑎𝑋𝑏𝑋)) ∧ 𝑤𝐽) → (∀𝑧 ∈ (KQ‘𝐽)((𝐹𝑎) ∈ 𝑧 ↔ (𝐹𝑏) ∈ 𝑧) → (𝑎𝑤𝑏𝑤)))
1817ralrimdva 3106 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑎𝑋𝑏𝑋)) → (∀𝑧 ∈ (KQ‘𝐽)((𝐹𝑎) ∈ 𝑧 ↔ (𝐹𝑏) ∈ 𝑧) → ∀𝑤𝐽 (𝑎𝑤𝑏𝑤)))
191kqfeq 22875 . . . . . . 7 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑎𝑋𝑏𝑋) → ((𝐹𝑎) = (𝐹𝑏) ↔ ∀𝑦𝐽 (𝑎𝑦𝑏𝑦)))
20193expb 1119 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑎𝑋𝑏𝑋)) → ((𝐹𝑎) = (𝐹𝑏) ↔ ∀𝑦𝐽 (𝑎𝑦𝑏𝑦)))
21 elequ2 2121 . . . . . . . 8 (𝑦 = 𝑤 → (𝑎𝑦𝑎𝑤))
22 elequ2 2121 . . . . . . . 8 (𝑦 = 𝑤 → (𝑏𝑦𝑏𝑤))
2321, 22bibi12d 346 . . . . . . 7 (𝑦 = 𝑤 → ((𝑎𝑦𝑏𝑦) ↔ (𝑎𝑤𝑏𝑤)))
2423cbvralvw 3383 . . . . . 6 (∀𝑦𝐽 (𝑎𝑦𝑏𝑦) ↔ ∀𝑤𝐽 (𝑎𝑤𝑏𝑤))
2520, 24bitrdi 287 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑎𝑋𝑏𝑋)) → ((𝐹𝑎) = (𝐹𝑏) ↔ ∀𝑤𝐽 (𝑎𝑤𝑏𝑤)))
2618, 25sylibrd 258 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑎𝑋𝑏𝑋)) → (∀𝑧 ∈ (KQ‘𝐽)((𝐹𝑎) ∈ 𝑧 ↔ (𝐹𝑏) ∈ 𝑧) → (𝐹𝑎) = (𝐹𝑏)))
2726ralrimivva 3123 . . 3 (𝐽 ∈ (TopOn‘𝑋) → ∀𝑎𝑋𝑏𝑋 (∀𝑧 ∈ (KQ‘𝐽)((𝐹𝑎) ∈ 𝑧 ↔ (𝐹𝑏) ∈ 𝑧) → (𝐹𝑎) = (𝐹𝑏)))
281kqffn 22876 . . . 4 (𝐽 ∈ (TopOn‘𝑋) → 𝐹 Fn 𝑋)
29 eleq1 2826 . . . . . . . . . 10 (𝑢 = (𝐹𝑎) → (𝑢𝑧 ↔ (𝐹𝑎) ∈ 𝑧))
3029bibi1d 344 . . . . . . . . 9 (𝑢 = (𝐹𝑎) → ((𝑢𝑧𝑣𝑧) ↔ ((𝐹𝑎) ∈ 𝑧𝑣𝑧)))
3130ralbidv 3112 . . . . . . . 8 (𝑢 = (𝐹𝑎) → (∀𝑧 ∈ (KQ‘𝐽)(𝑢𝑧𝑣𝑧) ↔ ∀𝑧 ∈ (KQ‘𝐽)((𝐹𝑎) ∈ 𝑧𝑣𝑧)))
32 eqeq1 2742 . . . . . . . 8 (𝑢 = (𝐹𝑎) → (𝑢 = 𝑣 ↔ (𝐹𝑎) = 𝑣))
3331, 32imbi12d 345 . . . . . . 7 (𝑢 = (𝐹𝑎) → ((∀𝑧 ∈ (KQ‘𝐽)(𝑢𝑧𝑣𝑧) → 𝑢 = 𝑣) ↔ (∀𝑧 ∈ (KQ‘𝐽)((𝐹𝑎) ∈ 𝑧𝑣𝑧) → (𝐹𝑎) = 𝑣)))
3433ralbidv 3112 . . . . . 6 (𝑢 = (𝐹𝑎) → (∀𝑣 ∈ ran 𝐹(∀𝑧 ∈ (KQ‘𝐽)(𝑢𝑧𝑣𝑧) → 𝑢 = 𝑣) ↔ ∀𝑣 ∈ ran 𝐹(∀𝑧 ∈ (KQ‘𝐽)((𝐹𝑎) ∈ 𝑧𝑣𝑧) → (𝐹𝑎) = 𝑣)))
3534ralrn 6964 . . . . 5 (𝐹 Fn 𝑋 → (∀𝑢 ∈ ran 𝐹𝑣 ∈ ran 𝐹(∀𝑧 ∈ (KQ‘𝐽)(𝑢𝑧𝑣𝑧) → 𝑢 = 𝑣) ↔ ∀𝑎𝑋𝑣 ∈ ran 𝐹(∀𝑧 ∈ (KQ‘𝐽)((𝐹𝑎) ∈ 𝑧𝑣𝑧) → (𝐹𝑎) = 𝑣)))
36 eleq1 2826 . . . . . . . . . 10 (𝑣 = (𝐹𝑏) → (𝑣𝑧 ↔ (𝐹𝑏) ∈ 𝑧))
3736bibi2d 343 . . . . . . . . 9 (𝑣 = (𝐹𝑏) → (((𝐹𝑎) ∈ 𝑧𝑣𝑧) ↔ ((𝐹𝑎) ∈ 𝑧 ↔ (𝐹𝑏) ∈ 𝑧)))
3837ralbidv 3112 . . . . . . . 8 (𝑣 = (𝐹𝑏) → (∀𝑧 ∈ (KQ‘𝐽)((𝐹𝑎) ∈ 𝑧𝑣𝑧) ↔ ∀𝑧 ∈ (KQ‘𝐽)((𝐹𝑎) ∈ 𝑧 ↔ (𝐹𝑏) ∈ 𝑧)))
39 eqeq2 2750 . . . . . . . 8 (𝑣 = (𝐹𝑏) → ((𝐹𝑎) = 𝑣 ↔ (𝐹𝑎) = (𝐹𝑏)))
4038, 39imbi12d 345 . . . . . . 7 (𝑣 = (𝐹𝑏) → ((∀𝑧 ∈ (KQ‘𝐽)((𝐹𝑎) ∈ 𝑧𝑣𝑧) → (𝐹𝑎) = 𝑣) ↔ (∀𝑧 ∈ (KQ‘𝐽)((𝐹𝑎) ∈ 𝑧 ↔ (𝐹𝑏) ∈ 𝑧) → (𝐹𝑎) = (𝐹𝑏))))
4140ralrn 6964 . . . . . 6 (𝐹 Fn 𝑋 → (∀𝑣 ∈ ran 𝐹(∀𝑧 ∈ (KQ‘𝐽)((𝐹𝑎) ∈ 𝑧𝑣𝑧) → (𝐹𝑎) = 𝑣) ↔ ∀𝑏𝑋 (∀𝑧 ∈ (KQ‘𝐽)((𝐹𝑎) ∈ 𝑧 ↔ (𝐹𝑏) ∈ 𝑧) → (𝐹𝑎) = (𝐹𝑏))))
4241ralbidv 3112 . . . . 5 (𝐹 Fn 𝑋 → (∀𝑎𝑋𝑣 ∈ ran 𝐹(∀𝑧 ∈ (KQ‘𝐽)((𝐹𝑎) ∈ 𝑧𝑣𝑧) → (𝐹𝑎) = 𝑣) ↔ ∀𝑎𝑋𝑏𝑋 (∀𝑧 ∈ (KQ‘𝐽)((𝐹𝑎) ∈ 𝑧 ↔ (𝐹𝑏) ∈ 𝑧) → (𝐹𝑎) = (𝐹𝑏))))
4335, 42bitrd 278 . . . 4 (𝐹 Fn 𝑋 → (∀𝑢 ∈ ran 𝐹𝑣 ∈ ran 𝐹(∀𝑧 ∈ (KQ‘𝐽)(𝑢𝑧𝑣𝑧) → 𝑢 = 𝑣) ↔ ∀𝑎𝑋𝑏𝑋 (∀𝑧 ∈ (KQ‘𝐽)((𝐹𝑎) ∈ 𝑧 ↔ (𝐹𝑏) ∈ 𝑧) → (𝐹𝑎) = (𝐹𝑏))))
4428, 43syl 17 . . 3 (𝐽 ∈ (TopOn‘𝑋) → (∀𝑢 ∈ ran 𝐹𝑣 ∈ ran 𝐹(∀𝑧 ∈ (KQ‘𝐽)(𝑢𝑧𝑣𝑧) → 𝑢 = 𝑣) ↔ ∀𝑎𝑋𝑏𝑋 (∀𝑧 ∈ (KQ‘𝐽)((𝐹𝑎) ∈ 𝑧 ↔ (𝐹𝑏) ∈ 𝑧) → (𝐹𝑎) = (𝐹𝑏))))
4527, 44mpbird 256 . 2 (𝐽 ∈ (TopOn‘𝑋) → ∀𝑢 ∈ ran 𝐹𝑣 ∈ ran 𝐹(∀𝑧 ∈ (KQ‘𝐽)(𝑢𝑧𝑣𝑧) → 𝑢 = 𝑣))
461kqtopon 22878 . . 3 (𝐽 ∈ (TopOn‘𝑋) → (KQ‘𝐽) ∈ (TopOn‘ran 𝐹))
47 ist0-2 22495 . . 3 ((KQ‘𝐽) ∈ (TopOn‘ran 𝐹) → ((KQ‘𝐽) ∈ Kol2 ↔ ∀𝑢 ∈ ran 𝐹𝑣 ∈ ran 𝐹(∀𝑧 ∈ (KQ‘𝐽)(𝑢𝑧𝑣𝑧) → 𝑢 = 𝑣)))
4846, 47syl 17 . 2 (𝐽 ∈ (TopOn‘𝑋) → ((KQ‘𝐽) ∈ Kol2 ↔ ∀𝑢 ∈ ran 𝐹𝑣 ∈ ran 𝐹(∀𝑧 ∈ (KQ‘𝐽)(𝑢𝑧𝑣𝑧) → 𝑢 = 𝑣)))
4945, 48mpbird 256 1 (𝐽 ∈ (TopOn‘𝑋) → (KQ‘𝐽) ∈ Kol2)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  wral 3064  {crab 3068  cmpt 5157  ran crn 5590  cima 5592   Fn wfn 6428  cfv 6433  TopOnctopon 22059  Kol2ct0 22457  KQckq 22844
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-qtop 17218  df-top 22043  df-topon 22060  df-t0 22464  df-kq 22845
This theorem is referenced by:  kqt0  22897  t0kq  22969
  Copyright terms: Public domain W3C validator