Step | Hyp | Ref
| Expression |
1 | | kqval.2 |
. . . . . . . . . 10
⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ {𝑦 ∈ 𝐽 ∣ 𝑥 ∈ 𝑦}) |
2 | 1 | kqopn 22793 |
. . . . . . . . 9
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑤 ∈ 𝐽) → (𝐹 “ 𝑤) ∈ (KQ‘𝐽)) |
3 | 2 | adantlr 711 |
. . . . . . . 8
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋)) ∧ 𝑤 ∈ 𝐽) → (𝐹 “ 𝑤) ∈ (KQ‘𝐽)) |
4 | | eleq2 2827 |
. . . . . . . . . 10
⊢ (𝑧 = (𝐹 “ 𝑤) → ((𝐹‘𝑎) ∈ 𝑧 ↔ (𝐹‘𝑎) ∈ (𝐹 “ 𝑤))) |
5 | | eleq2 2827 |
. . . . . . . . . 10
⊢ (𝑧 = (𝐹 “ 𝑤) → ((𝐹‘𝑏) ∈ 𝑧 ↔ (𝐹‘𝑏) ∈ (𝐹 “ 𝑤))) |
6 | 4, 5 | bibi12d 345 |
. . . . . . . . 9
⊢ (𝑧 = (𝐹 “ 𝑤) → (((𝐹‘𝑎) ∈ 𝑧 ↔ (𝐹‘𝑏) ∈ 𝑧) ↔ ((𝐹‘𝑎) ∈ (𝐹 “ 𝑤) ↔ (𝐹‘𝑏) ∈ (𝐹 “ 𝑤)))) |
7 | 6 | rspcv 3547 |
. . . . . . . 8
⊢ ((𝐹 “ 𝑤) ∈ (KQ‘𝐽) → (∀𝑧 ∈ (KQ‘𝐽)((𝐹‘𝑎) ∈ 𝑧 ↔ (𝐹‘𝑏) ∈ 𝑧) → ((𝐹‘𝑎) ∈ (𝐹 “ 𝑤) ↔ (𝐹‘𝑏) ∈ (𝐹 “ 𝑤)))) |
8 | 3, 7 | syl 17 |
. . . . . . 7
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋)) ∧ 𝑤 ∈ 𝐽) → (∀𝑧 ∈ (KQ‘𝐽)((𝐹‘𝑎) ∈ 𝑧 ↔ (𝐹‘𝑏) ∈ 𝑧) → ((𝐹‘𝑎) ∈ (𝐹 “ 𝑤) ↔ (𝐹‘𝑏) ∈ (𝐹 “ 𝑤)))) |
9 | 1 | kqfvima 22789 |
. . . . . . . . . . 11
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑤 ∈ 𝐽 ∧ 𝑎 ∈ 𝑋) → (𝑎 ∈ 𝑤 ↔ (𝐹‘𝑎) ∈ (𝐹 “ 𝑤))) |
10 | 9 | 3expa 1116 |
. . . . . . . . . 10
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑤 ∈ 𝐽) ∧ 𝑎 ∈ 𝑋) → (𝑎 ∈ 𝑤 ↔ (𝐹‘𝑎) ∈ (𝐹 “ 𝑤))) |
11 | 10 | adantrr 713 |
. . . . . . . . 9
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑤 ∈ 𝐽) ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋)) → (𝑎 ∈ 𝑤 ↔ (𝐹‘𝑎) ∈ (𝐹 “ 𝑤))) |
12 | 1 | kqfvima 22789 |
. . . . . . . . . . 11
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑤 ∈ 𝐽 ∧ 𝑏 ∈ 𝑋) → (𝑏 ∈ 𝑤 ↔ (𝐹‘𝑏) ∈ (𝐹 “ 𝑤))) |
13 | 12 | 3expa 1116 |
. . . . . . . . . 10
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑤 ∈ 𝐽) ∧ 𝑏 ∈ 𝑋) → (𝑏 ∈ 𝑤 ↔ (𝐹‘𝑏) ∈ (𝐹 “ 𝑤))) |
14 | 13 | adantrl 712 |
. . . . . . . . 9
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑤 ∈ 𝐽) ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋)) → (𝑏 ∈ 𝑤 ↔ (𝐹‘𝑏) ∈ (𝐹 “ 𝑤))) |
15 | 11, 14 | bibi12d 345 |
. . . . . . . 8
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑤 ∈ 𝐽) ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋)) → ((𝑎 ∈ 𝑤 ↔ 𝑏 ∈ 𝑤) ↔ ((𝐹‘𝑎) ∈ (𝐹 “ 𝑤) ↔ (𝐹‘𝑏) ∈ (𝐹 “ 𝑤)))) |
16 | 15 | an32s 648 |
. . . . . . 7
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋)) ∧ 𝑤 ∈ 𝐽) → ((𝑎 ∈ 𝑤 ↔ 𝑏 ∈ 𝑤) ↔ ((𝐹‘𝑎) ∈ (𝐹 “ 𝑤) ↔ (𝐹‘𝑏) ∈ (𝐹 “ 𝑤)))) |
17 | 8, 16 | sylibrd 258 |
. . . . . 6
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋)) ∧ 𝑤 ∈ 𝐽) → (∀𝑧 ∈ (KQ‘𝐽)((𝐹‘𝑎) ∈ 𝑧 ↔ (𝐹‘𝑏) ∈ 𝑧) → (𝑎 ∈ 𝑤 ↔ 𝑏 ∈ 𝑤))) |
18 | 17 | ralrimdva 3112 |
. . . . 5
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋)) → (∀𝑧 ∈ (KQ‘𝐽)((𝐹‘𝑎) ∈ 𝑧 ↔ (𝐹‘𝑏) ∈ 𝑧) → ∀𝑤 ∈ 𝐽 (𝑎 ∈ 𝑤 ↔ 𝑏 ∈ 𝑤))) |
19 | 1 | kqfeq 22783 |
. . . . . . 7
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋) → ((𝐹‘𝑎) = (𝐹‘𝑏) ↔ ∀𝑦 ∈ 𝐽 (𝑎 ∈ 𝑦 ↔ 𝑏 ∈ 𝑦))) |
20 | 19 | 3expb 1118 |
. . . . . 6
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋)) → ((𝐹‘𝑎) = (𝐹‘𝑏) ↔ ∀𝑦 ∈ 𝐽 (𝑎 ∈ 𝑦 ↔ 𝑏 ∈ 𝑦))) |
21 | | elequ2 2123 |
. . . . . . . 8
⊢ (𝑦 = 𝑤 → (𝑎 ∈ 𝑦 ↔ 𝑎 ∈ 𝑤)) |
22 | | elequ2 2123 |
. . . . . . . 8
⊢ (𝑦 = 𝑤 → (𝑏 ∈ 𝑦 ↔ 𝑏 ∈ 𝑤)) |
23 | 21, 22 | bibi12d 345 |
. . . . . . 7
⊢ (𝑦 = 𝑤 → ((𝑎 ∈ 𝑦 ↔ 𝑏 ∈ 𝑦) ↔ (𝑎 ∈ 𝑤 ↔ 𝑏 ∈ 𝑤))) |
24 | 23 | cbvralvw 3372 |
. . . . . 6
⊢
(∀𝑦 ∈
𝐽 (𝑎 ∈ 𝑦 ↔ 𝑏 ∈ 𝑦) ↔ ∀𝑤 ∈ 𝐽 (𝑎 ∈ 𝑤 ↔ 𝑏 ∈ 𝑤)) |
25 | 20, 24 | bitrdi 286 |
. . . . 5
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋)) → ((𝐹‘𝑎) = (𝐹‘𝑏) ↔ ∀𝑤 ∈ 𝐽 (𝑎 ∈ 𝑤 ↔ 𝑏 ∈ 𝑤))) |
26 | 18, 25 | sylibrd 258 |
. . . 4
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋)) → (∀𝑧 ∈ (KQ‘𝐽)((𝐹‘𝑎) ∈ 𝑧 ↔ (𝐹‘𝑏) ∈ 𝑧) → (𝐹‘𝑎) = (𝐹‘𝑏))) |
27 | 26 | ralrimivva 3114 |
. . 3
⊢ (𝐽 ∈ (TopOn‘𝑋) → ∀𝑎 ∈ 𝑋 ∀𝑏 ∈ 𝑋 (∀𝑧 ∈ (KQ‘𝐽)((𝐹‘𝑎) ∈ 𝑧 ↔ (𝐹‘𝑏) ∈ 𝑧) → (𝐹‘𝑎) = (𝐹‘𝑏))) |
28 | 1 | kqffn 22784 |
. . . 4
⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝐹 Fn 𝑋) |
29 | | eleq1 2826 |
. . . . . . . . . 10
⊢ (𝑢 = (𝐹‘𝑎) → (𝑢 ∈ 𝑧 ↔ (𝐹‘𝑎) ∈ 𝑧)) |
30 | 29 | bibi1d 343 |
. . . . . . . . 9
⊢ (𝑢 = (𝐹‘𝑎) → ((𝑢 ∈ 𝑧 ↔ 𝑣 ∈ 𝑧) ↔ ((𝐹‘𝑎) ∈ 𝑧 ↔ 𝑣 ∈ 𝑧))) |
31 | 30 | ralbidv 3120 |
. . . . . . . 8
⊢ (𝑢 = (𝐹‘𝑎) → (∀𝑧 ∈ (KQ‘𝐽)(𝑢 ∈ 𝑧 ↔ 𝑣 ∈ 𝑧) ↔ ∀𝑧 ∈ (KQ‘𝐽)((𝐹‘𝑎) ∈ 𝑧 ↔ 𝑣 ∈ 𝑧))) |
32 | | eqeq1 2742 |
. . . . . . . 8
⊢ (𝑢 = (𝐹‘𝑎) → (𝑢 = 𝑣 ↔ (𝐹‘𝑎) = 𝑣)) |
33 | 31, 32 | imbi12d 344 |
. . . . . . 7
⊢ (𝑢 = (𝐹‘𝑎) → ((∀𝑧 ∈ (KQ‘𝐽)(𝑢 ∈ 𝑧 ↔ 𝑣 ∈ 𝑧) → 𝑢 = 𝑣) ↔ (∀𝑧 ∈ (KQ‘𝐽)((𝐹‘𝑎) ∈ 𝑧 ↔ 𝑣 ∈ 𝑧) → (𝐹‘𝑎) = 𝑣))) |
34 | 33 | ralbidv 3120 |
. . . . . 6
⊢ (𝑢 = (𝐹‘𝑎) → (∀𝑣 ∈ ran 𝐹(∀𝑧 ∈ (KQ‘𝐽)(𝑢 ∈ 𝑧 ↔ 𝑣 ∈ 𝑧) → 𝑢 = 𝑣) ↔ ∀𝑣 ∈ ran 𝐹(∀𝑧 ∈ (KQ‘𝐽)((𝐹‘𝑎) ∈ 𝑧 ↔ 𝑣 ∈ 𝑧) → (𝐹‘𝑎) = 𝑣))) |
35 | 34 | ralrn 6946 |
. . . . 5
⊢ (𝐹 Fn 𝑋 → (∀𝑢 ∈ ran 𝐹∀𝑣 ∈ ran 𝐹(∀𝑧 ∈ (KQ‘𝐽)(𝑢 ∈ 𝑧 ↔ 𝑣 ∈ 𝑧) → 𝑢 = 𝑣) ↔ ∀𝑎 ∈ 𝑋 ∀𝑣 ∈ ran 𝐹(∀𝑧 ∈ (KQ‘𝐽)((𝐹‘𝑎) ∈ 𝑧 ↔ 𝑣 ∈ 𝑧) → (𝐹‘𝑎) = 𝑣))) |
36 | | eleq1 2826 |
. . . . . . . . . 10
⊢ (𝑣 = (𝐹‘𝑏) → (𝑣 ∈ 𝑧 ↔ (𝐹‘𝑏) ∈ 𝑧)) |
37 | 36 | bibi2d 342 |
. . . . . . . . 9
⊢ (𝑣 = (𝐹‘𝑏) → (((𝐹‘𝑎) ∈ 𝑧 ↔ 𝑣 ∈ 𝑧) ↔ ((𝐹‘𝑎) ∈ 𝑧 ↔ (𝐹‘𝑏) ∈ 𝑧))) |
38 | 37 | ralbidv 3120 |
. . . . . . . 8
⊢ (𝑣 = (𝐹‘𝑏) → (∀𝑧 ∈ (KQ‘𝐽)((𝐹‘𝑎) ∈ 𝑧 ↔ 𝑣 ∈ 𝑧) ↔ ∀𝑧 ∈ (KQ‘𝐽)((𝐹‘𝑎) ∈ 𝑧 ↔ (𝐹‘𝑏) ∈ 𝑧))) |
39 | | eqeq2 2750 |
. . . . . . . 8
⊢ (𝑣 = (𝐹‘𝑏) → ((𝐹‘𝑎) = 𝑣 ↔ (𝐹‘𝑎) = (𝐹‘𝑏))) |
40 | 38, 39 | imbi12d 344 |
. . . . . . 7
⊢ (𝑣 = (𝐹‘𝑏) → ((∀𝑧 ∈ (KQ‘𝐽)((𝐹‘𝑎) ∈ 𝑧 ↔ 𝑣 ∈ 𝑧) → (𝐹‘𝑎) = 𝑣) ↔ (∀𝑧 ∈ (KQ‘𝐽)((𝐹‘𝑎) ∈ 𝑧 ↔ (𝐹‘𝑏) ∈ 𝑧) → (𝐹‘𝑎) = (𝐹‘𝑏)))) |
41 | 40 | ralrn 6946 |
. . . . . 6
⊢ (𝐹 Fn 𝑋 → (∀𝑣 ∈ ran 𝐹(∀𝑧 ∈ (KQ‘𝐽)((𝐹‘𝑎) ∈ 𝑧 ↔ 𝑣 ∈ 𝑧) → (𝐹‘𝑎) = 𝑣) ↔ ∀𝑏 ∈ 𝑋 (∀𝑧 ∈ (KQ‘𝐽)((𝐹‘𝑎) ∈ 𝑧 ↔ (𝐹‘𝑏) ∈ 𝑧) → (𝐹‘𝑎) = (𝐹‘𝑏)))) |
42 | 41 | ralbidv 3120 |
. . . . 5
⊢ (𝐹 Fn 𝑋 → (∀𝑎 ∈ 𝑋 ∀𝑣 ∈ ran 𝐹(∀𝑧 ∈ (KQ‘𝐽)((𝐹‘𝑎) ∈ 𝑧 ↔ 𝑣 ∈ 𝑧) → (𝐹‘𝑎) = 𝑣) ↔ ∀𝑎 ∈ 𝑋 ∀𝑏 ∈ 𝑋 (∀𝑧 ∈ (KQ‘𝐽)((𝐹‘𝑎) ∈ 𝑧 ↔ (𝐹‘𝑏) ∈ 𝑧) → (𝐹‘𝑎) = (𝐹‘𝑏)))) |
43 | 35, 42 | bitrd 278 |
. . . 4
⊢ (𝐹 Fn 𝑋 → (∀𝑢 ∈ ran 𝐹∀𝑣 ∈ ran 𝐹(∀𝑧 ∈ (KQ‘𝐽)(𝑢 ∈ 𝑧 ↔ 𝑣 ∈ 𝑧) → 𝑢 = 𝑣) ↔ ∀𝑎 ∈ 𝑋 ∀𝑏 ∈ 𝑋 (∀𝑧 ∈ (KQ‘𝐽)((𝐹‘𝑎) ∈ 𝑧 ↔ (𝐹‘𝑏) ∈ 𝑧) → (𝐹‘𝑎) = (𝐹‘𝑏)))) |
44 | 28, 43 | syl 17 |
. . 3
⊢ (𝐽 ∈ (TopOn‘𝑋) → (∀𝑢 ∈ ran 𝐹∀𝑣 ∈ ran 𝐹(∀𝑧 ∈ (KQ‘𝐽)(𝑢 ∈ 𝑧 ↔ 𝑣 ∈ 𝑧) → 𝑢 = 𝑣) ↔ ∀𝑎 ∈ 𝑋 ∀𝑏 ∈ 𝑋 (∀𝑧 ∈ (KQ‘𝐽)((𝐹‘𝑎) ∈ 𝑧 ↔ (𝐹‘𝑏) ∈ 𝑧) → (𝐹‘𝑎) = (𝐹‘𝑏)))) |
45 | 27, 44 | mpbird 256 |
. 2
⊢ (𝐽 ∈ (TopOn‘𝑋) → ∀𝑢 ∈ ran 𝐹∀𝑣 ∈ ran 𝐹(∀𝑧 ∈ (KQ‘𝐽)(𝑢 ∈ 𝑧 ↔ 𝑣 ∈ 𝑧) → 𝑢 = 𝑣)) |
46 | 1 | kqtopon 22786 |
. . 3
⊢ (𝐽 ∈ (TopOn‘𝑋) → (KQ‘𝐽) ∈ (TopOn‘ran 𝐹)) |
47 | | ist0-2 22403 |
. . 3
⊢
((KQ‘𝐽) ∈
(TopOn‘ran 𝐹) →
((KQ‘𝐽) ∈ Kol2
↔ ∀𝑢 ∈ ran
𝐹∀𝑣 ∈ ran 𝐹(∀𝑧 ∈ (KQ‘𝐽)(𝑢 ∈ 𝑧 ↔ 𝑣 ∈ 𝑧) → 𝑢 = 𝑣))) |
48 | 46, 47 | syl 17 |
. 2
⊢ (𝐽 ∈ (TopOn‘𝑋) → ((KQ‘𝐽) ∈ Kol2 ↔
∀𝑢 ∈ ran 𝐹∀𝑣 ∈ ran 𝐹(∀𝑧 ∈ (KQ‘𝐽)(𝑢 ∈ 𝑧 ↔ 𝑣 ∈ 𝑧) → 𝑢 = 𝑣))) |
49 | 45, 48 | mpbird 256 |
1
⊢ (𝐽 ∈ (TopOn‘𝑋) → (KQ‘𝐽) ∈ Kol2) |