MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  kqt0lem Structured version   Visualization version   GIF version

Theorem kqt0lem 21749
Description: Lemma for kqt0 21759. (Contributed by Mario Carneiro, 23-Mar-2015.)
Hypothesis
Ref Expression
kqval.2 𝐹 = (𝑥𝑋 ↦ {𝑦𝐽𝑥𝑦})
Assertion
Ref Expression
kqt0lem (𝐽 ∈ (TopOn‘𝑋) → (KQ‘𝐽) ∈ Kol2)
Distinct variable groups:   𝑥,𝑦,𝐽   𝑥,𝑋,𝑦
Allowed substitution hints:   𝐹(𝑥,𝑦)

Proof of Theorem kqt0lem
Dummy variables 𝑤 𝑧 𝑎 𝑏 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 kqval.2 . . . . . . . . . 10 𝐹 = (𝑥𝑋 ↦ {𝑦𝐽𝑥𝑦})
21kqopn 21747 . . . . . . . . 9 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑤𝐽) → (𝐹𝑤) ∈ (KQ‘𝐽))
32adantlr 697 . . . . . . . 8 (((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑎𝑋𝑏𝑋)) ∧ 𝑤𝐽) → (𝐹𝑤) ∈ (KQ‘𝐽))
4 eleq2 2874 . . . . . . . . . 10 (𝑧 = (𝐹𝑤) → ((𝐹𝑎) ∈ 𝑧 ↔ (𝐹𝑎) ∈ (𝐹𝑤)))
5 eleq2 2874 . . . . . . . . . 10 (𝑧 = (𝐹𝑤) → ((𝐹𝑏) ∈ 𝑧 ↔ (𝐹𝑏) ∈ (𝐹𝑤)))
64, 5bibi12d 336 . . . . . . . . 9 (𝑧 = (𝐹𝑤) → (((𝐹𝑎) ∈ 𝑧 ↔ (𝐹𝑏) ∈ 𝑧) ↔ ((𝐹𝑎) ∈ (𝐹𝑤) ↔ (𝐹𝑏) ∈ (𝐹𝑤))))
76rspcv 3498 . . . . . . . 8 ((𝐹𝑤) ∈ (KQ‘𝐽) → (∀𝑧 ∈ (KQ‘𝐽)((𝐹𝑎) ∈ 𝑧 ↔ (𝐹𝑏) ∈ 𝑧) → ((𝐹𝑎) ∈ (𝐹𝑤) ↔ (𝐹𝑏) ∈ (𝐹𝑤))))
83, 7syl 17 . . . . . . 7 (((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑎𝑋𝑏𝑋)) ∧ 𝑤𝐽) → (∀𝑧 ∈ (KQ‘𝐽)((𝐹𝑎) ∈ 𝑧 ↔ (𝐹𝑏) ∈ 𝑧) → ((𝐹𝑎) ∈ (𝐹𝑤) ↔ (𝐹𝑏) ∈ (𝐹𝑤))))
91kqfvima 21743 . . . . . . . . . . 11 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑤𝐽𝑎𝑋) → (𝑎𝑤 ↔ (𝐹𝑎) ∈ (𝐹𝑤)))
1093expa 1140 . . . . . . . . . 10 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑤𝐽) ∧ 𝑎𝑋) → (𝑎𝑤 ↔ (𝐹𝑎) ∈ (𝐹𝑤)))
1110adantrr 699 . . . . . . . . 9 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑤𝐽) ∧ (𝑎𝑋𝑏𝑋)) → (𝑎𝑤 ↔ (𝐹𝑎) ∈ (𝐹𝑤)))
121kqfvima 21743 . . . . . . . . . . 11 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑤𝐽𝑏𝑋) → (𝑏𝑤 ↔ (𝐹𝑏) ∈ (𝐹𝑤)))
13123expa 1140 . . . . . . . . . 10 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑤𝐽) ∧ 𝑏𝑋) → (𝑏𝑤 ↔ (𝐹𝑏) ∈ (𝐹𝑤)))
1413adantrl 698 . . . . . . . . 9 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑤𝐽) ∧ (𝑎𝑋𝑏𝑋)) → (𝑏𝑤 ↔ (𝐹𝑏) ∈ (𝐹𝑤)))
1511, 14bibi12d 336 . . . . . . . 8 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑤𝐽) ∧ (𝑎𝑋𝑏𝑋)) → ((𝑎𝑤𝑏𝑤) ↔ ((𝐹𝑎) ∈ (𝐹𝑤) ↔ (𝐹𝑏) ∈ (𝐹𝑤))))
1615an32s 634 . . . . . . 7 (((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑎𝑋𝑏𝑋)) ∧ 𝑤𝐽) → ((𝑎𝑤𝑏𝑤) ↔ ((𝐹𝑎) ∈ (𝐹𝑤) ↔ (𝐹𝑏) ∈ (𝐹𝑤))))
178, 16sylibrd 250 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑎𝑋𝑏𝑋)) ∧ 𝑤𝐽) → (∀𝑧 ∈ (KQ‘𝐽)((𝐹𝑎) ∈ 𝑧 ↔ (𝐹𝑏) ∈ 𝑧) → (𝑎𝑤𝑏𝑤)))
1817ralrimdva 3157 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑎𝑋𝑏𝑋)) → (∀𝑧 ∈ (KQ‘𝐽)((𝐹𝑎) ∈ 𝑧 ↔ (𝐹𝑏) ∈ 𝑧) → ∀𝑤𝐽 (𝑎𝑤𝑏𝑤)))
191kqfeq 21737 . . . . . . 7 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑎𝑋𝑏𝑋) → ((𝐹𝑎) = (𝐹𝑏) ↔ ∀𝑦𝐽 (𝑎𝑦𝑏𝑦)))
20193expb 1142 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑎𝑋𝑏𝑋)) → ((𝐹𝑎) = (𝐹𝑏) ↔ ∀𝑦𝐽 (𝑎𝑦𝑏𝑦)))
21 elequ2 2170 . . . . . . . 8 (𝑦 = 𝑤 → (𝑎𝑦𝑎𝑤))
22 elequ2 2170 . . . . . . . 8 (𝑦 = 𝑤 → (𝑏𝑦𝑏𝑤))
2321, 22bibi12d 336 . . . . . . 7 (𝑦 = 𝑤 → ((𝑎𝑦𝑏𝑦) ↔ (𝑎𝑤𝑏𝑤)))
2423cbvralv 3360 . . . . . 6 (∀𝑦𝐽 (𝑎𝑦𝑏𝑦) ↔ ∀𝑤𝐽 (𝑎𝑤𝑏𝑤))
2520, 24syl6bb 278 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑎𝑋𝑏𝑋)) → ((𝐹𝑎) = (𝐹𝑏) ↔ ∀𝑤𝐽 (𝑎𝑤𝑏𝑤)))
2618, 25sylibrd 250 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑎𝑋𝑏𝑋)) → (∀𝑧 ∈ (KQ‘𝐽)((𝐹𝑎) ∈ 𝑧 ↔ (𝐹𝑏) ∈ 𝑧) → (𝐹𝑎) = (𝐹𝑏)))
2726ralrimivva 3159 . . 3 (𝐽 ∈ (TopOn‘𝑋) → ∀𝑎𝑋𝑏𝑋 (∀𝑧 ∈ (KQ‘𝐽)((𝐹𝑎) ∈ 𝑧 ↔ (𝐹𝑏) ∈ 𝑧) → (𝐹𝑎) = (𝐹𝑏)))
281kqffn 21738 . . . 4 (𝐽 ∈ (TopOn‘𝑋) → 𝐹 Fn 𝑋)
29 eleq1 2873 . . . . . . . . . 10 (𝑢 = (𝐹𝑎) → (𝑢𝑧 ↔ (𝐹𝑎) ∈ 𝑧))
3029bibi1d 334 . . . . . . . . 9 (𝑢 = (𝐹𝑎) → ((𝑢𝑧𝑣𝑧) ↔ ((𝐹𝑎) ∈ 𝑧𝑣𝑧)))
3130ralbidv 3174 . . . . . . . 8 (𝑢 = (𝐹𝑎) → (∀𝑧 ∈ (KQ‘𝐽)(𝑢𝑧𝑣𝑧) ↔ ∀𝑧 ∈ (KQ‘𝐽)((𝐹𝑎) ∈ 𝑧𝑣𝑧)))
32 eqeq1 2810 . . . . . . . 8 (𝑢 = (𝐹𝑎) → (𝑢 = 𝑣 ↔ (𝐹𝑎) = 𝑣))
3331, 32imbi12d 335 . . . . . . 7 (𝑢 = (𝐹𝑎) → ((∀𝑧 ∈ (KQ‘𝐽)(𝑢𝑧𝑣𝑧) → 𝑢 = 𝑣) ↔ (∀𝑧 ∈ (KQ‘𝐽)((𝐹𝑎) ∈ 𝑧𝑣𝑧) → (𝐹𝑎) = 𝑣)))
3433ralbidv 3174 . . . . . 6 (𝑢 = (𝐹𝑎) → (∀𝑣 ∈ ran 𝐹(∀𝑧 ∈ (KQ‘𝐽)(𝑢𝑧𝑣𝑧) → 𝑢 = 𝑣) ↔ ∀𝑣 ∈ ran 𝐹(∀𝑧 ∈ (KQ‘𝐽)((𝐹𝑎) ∈ 𝑧𝑣𝑧) → (𝐹𝑎) = 𝑣)))
3534ralrn 6580 . . . . 5 (𝐹 Fn 𝑋 → (∀𝑢 ∈ ran 𝐹𝑣 ∈ ran 𝐹(∀𝑧 ∈ (KQ‘𝐽)(𝑢𝑧𝑣𝑧) → 𝑢 = 𝑣) ↔ ∀𝑎𝑋𝑣 ∈ ran 𝐹(∀𝑧 ∈ (KQ‘𝐽)((𝐹𝑎) ∈ 𝑧𝑣𝑧) → (𝐹𝑎) = 𝑣)))
36 eleq1 2873 . . . . . . . . . 10 (𝑣 = (𝐹𝑏) → (𝑣𝑧 ↔ (𝐹𝑏) ∈ 𝑧))
3736bibi2d 333 . . . . . . . . 9 (𝑣 = (𝐹𝑏) → (((𝐹𝑎) ∈ 𝑧𝑣𝑧) ↔ ((𝐹𝑎) ∈ 𝑧 ↔ (𝐹𝑏) ∈ 𝑧)))
3837ralbidv 3174 . . . . . . . 8 (𝑣 = (𝐹𝑏) → (∀𝑧 ∈ (KQ‘𝐽)((𝐹𝑎) ∈ 𝑧𝑣𝑧) ↔ ∀𝑧 ∈ (KQ‘𝐽)((𝐹𝑎) ∈ 𝑧 ↔ (𝐹𝑏) ∈ 𝑧)))
39 eqeq2 2817 . . . . . . . 8 (𝑣 = (𝐹𝑏) → ((𝐹𝑎) = 𝑣 ↔ (𝐹𝑎) = (𝐹𝑏)))
4038, 39imbi12d 335 . . . . . . 7 (𝑣 = (𝐹𝑏) → ((∀𝑧 ∈ (KQ‘𝐽)((𝐹𝑎) ∈ 𝑧𝑣𝑧) → (𝐹𝑎) = 𝑣) ↔ (∀𝑧 ∈ (KQ‘𝐽)((𝐹𝑎) ∈ 𝑧 ↔ (𝐹𝑏) ∈ 𝑧) → (𝐹𝑎) = (𝐹𝑏))))
4140ralrn 6580 . . . . . 6 (𝐹 Fn 𝑋 → (∀𝑣 ∈ ran 𝐹(∀𝑧 ∈ (KQ‘𝐽)((𝐹𝑎) ∈ 𝑧𝑣𝑧) → (𝐹𝑎) = 𝑣) ↔ ∀𝑏𝑋 (∀𝑧 ∈ (KQ‘𝐽)((𝐹𝑎) ∈ 𝑧 ↔ (𝐹𝑏) ∈ 𝑧) → (𝐹𝑎) = (𝐹𝑏))))
4241ralbidv 3174 . . . . 5 (𝐹 Fn 𝑋 → (∀𝑎𝑋𝑣 ∈ ran 𝐹(∀𝑧 ∈ (KQ‘𝐽)((𝐹𝑎) ∈ 𝑧𝑣𝑧) → (𝐹𝑎) = 𝑣) ↔ ∀𝑎𝑋𝑏𝑋 (∀𝑧 ∈ (KQ‘𝐽)((𝐹𝑎) ∈ 𝑧 ↔ (𝐹𝑏) ∈ 𝑧) → (𝐹𝑎) = (𝐹𝑏))))
4335, 42bitrd 270 . . . 4 (𝐹 Fn 𝑋 → (∀𝑢 ∈ ran 𝐹𝑣 ∈ ran 𝐹(∀𝑧 ∈ (KQ‘𝐽)(𝑢𝑧𝑣𝑧) → 𝑢 = 𝑣) ↔ ∀𝑎𝑋𝑏𝑋 (∀𝑧 ∈ (KQ‘𝐽)((𝐹𝑎) ∈ 𝑧 ↔ (𝐹𝑏) ∈ 𝑧) → (𝐹𝑎) = (𝐹𝑏))))
4428, 43syl 17 . . 3 (𝐽 ∈ (TopOn‘𝑋) → (∀𝑢 ∈ ran 𝐹𝑣 ∈ ran 𝐹(∀𝑧 ∈ (KQ‘𝐽)(𝑢𝑧𝑣𝑧) → 𝑢 = 𝑣) ↔ ∀𝑎𝑋𝑏𝑋 (∀𝑧 ∈ (KQ‘𝐽)((𝐹𝑎) ∈ 𝑧 ↔ (𝐹𝑏) ∈ 𝑧) → (𝐹𝑎) = (𝐹𝑏))))
4527, 44mpbird 248 . 2 (𝐽 ∈ (TopOn‘𝑋) → ∀𝑢 ∈ ran 𝐹𝑣 ∈ ran 𝐹(∀𝑧 ∈ (KQ‘𝐽)(𝑢𝑧𝑣𝑧) → 𝑢 = 𝑣))
461kqtopon 21740 . . 3 (𝐽 ∈ (TopOn‘𝑋) → (KQ‘𝐽) ∈ (TopOn‘ran 𝐹))
47 ist0-2 21358 . . 3 ((KQ‘𝐽) ∈ (TopOn‘ran 𝐹) → ((KQ‘𝐽) ∈ Kol2 ↔ ∀𝑢 ∈ ran 𝐹𝑣 ∈ ran 𝐹(∀𝑧 ∈ (KQ‘𝐽)(𝑢𝑧𝑣𝑧) → 𝑢 = 𝑣)))
4846, 47syl 17 . 2 (𝐽 ∈ (TopOn‘𝑋) → ((KQ‘𝐽) ∈ Kol2 ↔ ∀𝑢 ∈ ran 𝐹𝑣 ∈ ran 𝐹(∀𝑧 ∈ (KQ‘𝐽)(𝑢𝑧𝑣𝑧) → 𝑢 = 𝑣)))
4945, 48mpbird 248 1 (𝐽 ∈ (TopOn‘𝑋) → (KQ‘𝐽) ∈ Kol2)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 197  wa 384   = wceq 1637  wcel 2156  wral 3096  {crab 3100  cmpt 4923  ran crn 5312  cima 5314   Fn wfn 6092  cfv 6097  TopOnctopon 20924  Kol2ct0 21320  KQckq 21706
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1877  ax-4 1894  ax-5 2001  ax-6 2068  ax-7 2104  ax-8 2158  ax-9 2165  ax-10 2185  ax-11 2201  ax-12 2214  ax-13 2420  ax-ext 2784  ax-rep 4964  ax-sep 4975  ax-nul 4983  ax-pow 5035  ax-pr 5096  ax-un 7175
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 866  df-3an 1102  df-tru 1641  df-ex 1860  df-nf 1864  df-sb 2061  df-eu 2634  df-mo 2635  df-clab 2793  df-cleq 2799  df-clel 2802  df-nfc 2937  df-ne 2979  df-ral 3101  df-rex 3102  df-reu 3103  df-rab 3105  df-v 3393  df-sbc 3634  df-csb 3729  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-nul 4117  df-if 4280  df-pw 4353  df-sn 4371  df-pr 4373  df-op 4377  df-uni 4631  df-iun 4714  df-br 4845  df-opab 4907  df-mpt 4924  df-id 5219  df-xp 5317  df-rel 5318  df-cnv 5319  df-co 5320  df-dm 5321  df-rn 5322  df-res 5323  df-ima 5324  df-iota 6060  df-fun 6099  df-fn 6100  df-f 6101  df-f1 6102  df-fo 6103  df-f1o 6104  df-fv 6105  df-ov 6873  df-oprab 6874  df-mpt2 6875  df-qtop 16368  df-top 20908  df-topon 20925  df-t0 21327  df-kq 21707
This theorem is referenced by:  kqt0  21759  t0kq  21831
  Copyright terms: Public domain W3C validator