MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  kqt0lem Structured version   Visualization version   GIF version

Theorem kqt0lem 23623
Description: Lemma for kqt0 23633. (Contributed by Mario Carneiro, 23-Mar-2015.)
Hypothesis
Ref Expression
kqval.2 𝐹 = (𝑥𝑋 ↦ {𝑦𝐽𝑥𝑦})
Assertion
Ref Expression
kqt0lem (𝐽 ∈ (TopOn‘𝑋) → (KQ‘𝐽) ∈ Kol2)
Distinct variable groups:   𝑥,𝑦,𝐽   𝑥,𝑋,𝑦
Allowed substitution hints:   𝐹(𝑥,𝑦)

Proof of Theorem kqt0lem
Dummy variables 𝑤 𝑧 𝑎 𝑏 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 kqval.2 . . . . . . . . . 10 𝐹 = (𝑥𝑋 ↦ {𝑦𝐽𝑥𝑦})
21kqopn 23621 . . . . . . . . 9 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑤𝐽) → (𝐹𝑤) ∈ (KQ‘𝐽))
32adantlr 715 . . . . . . . 8 (((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑎𝑋𝑏𝑋)) ∧ 𝑤𝐽) → (𝐹𝑤) ∈ (KQ‘𝐽))
4 eleq2 2817 . . . . . . . . . 10 (𝑧 = (𝐹𝑤) → ((𝐹𝑎) ∈ 𝑧 ↔ (𝐹𝑎) ∈ (𝐹𝑤)))
5 eleq2 2817 . . . . . . . . . 10 (𝑧 = (𝐹𝑤) → ((𝐹𝑏) ∈ 𝑧 ↔ (𝐹𝑏) ∈ (𝐹𝑤)))
64, 5bibi12d 345 . . . . . . . . 9 (𝑧 = (𝐹𝑤) → (((𝐹𝑎) ∈ 𝑧 ↔ (𝐹𝑏) ∈ 𝑧) ↔ ((𝐹𝑎) ∈ (𝐹𝑤) ↔ (𝐹𝑏) ∈ (𝐹𝑤))))
76rspcv 3584 . . . . . . . 8 ((𝐹𝑤) ∈ (KQ‘𝐽) → (∀𝑧 ∈ (KQ‘𝐽)((𝐹𝑎) ∈ 𝑧 ↔ (𝐹𝑏) ∈ 𝑧) → ((𝐹𝑎) ∈ (𝐹𝑤) ↔ (𝐹𝑏) ∈ (𝐹𝑤))))
83, 7syl 17 . . . . . . 7 (((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑎𝑋𝑏𝑋)) ∧ 𝑤𝐽) → (∀𝑧 ∈ (KQ‘𝐽)((𝐹𝑎) ∈ 𝑧 ↔ (𝐹𝑏) ∈ 𝑧) → ((𝐹𝑎) ∈ (𝐹𝑤) ↔ (𝐹𝑏) ∈ (𝐹𝑤))))
91kqfvima 23617 . . . . . . . . . . 11 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑤𝐽𝑎𝑋) → (𝑎𝑤 ↔ (𝐹𝑎) ∈ (𝐹𝑤)))
1093expa 1118 . . . . . . . . . 10 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑤𝐽) ∧ 𝑎𝑋) → (𝑎𝑤 ↔ (𝐹𝑎) ∈ (𝐹𝑤)))
1110adantrr 717 . . . . . . . . 9 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑤𝐽) ∧ (𝑎𝑋𝑏𝑋)) → (𝑎𝑤 ↔ (𝐹𝑎) ∈ (𝐹𝑤)))
121kqfvima 23617 . . . . . . . . . . 11 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑤𝐽𝑏𝑋) → (𝑏𝑤 ↔ (𝐹𝑏) ∈ (𝐹𝑤)))
13123expa 1118 . . . . . . . . . 10 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑤𝐽) ∧ 𝑏𝑋) → (𝑏𝑤 ↔ (𝐹𝑏) ∈ (𝐹𝑤)))
1413adantrl 716 . . . . . . . . 9 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑤𝐽) ∧ (𝑎𝑋𝑏𝑋)) → (𝑏𝑤 ↔ (𝐹𝑏) ∈ (𝐹𝑤)))
1511, 14bibi12d 345 . . . . . . . 8 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑤𝐽) ∧ (𝑎𝑋𝑏𝑋)) → ((𝑎𝑤𝑏𝑤) ↔ ((𝐹𝑎) ∈ (𝐹𝑤) ↔ (𝐹𝑏) ∈ (𝐹𝑤))))
1615an32s 652 . . . . . . 7 (((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑎𝑋𝑏𝑋)) ∧ 𝑤𝐽) → ((𝑎𝑤𝑏𝑤) ↔ ((𝐹𝑎) ∈ (𝐹𝑤) ↔ (𝐹𝑏) ∈ (𝐹𝑤))))
178, 16sylibrd 259 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑎𝑋𝑏𝑋)) ∧ 𝑤𝐽) → (∀𝑧 ∈ (KQ‘𝐽)((𝐹𝑎) ∈ 𝑧 ↔ (𝐹𝑏) ∈ 𝑧) → (𝑎𝑤𝑏𝑤)))
1817ralrimdva 3133 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑎𝑋𝑏𝑋)) → (∀𝑧 ∈ (KQ‘𝐽)((𝐹𝑎) ∈ 𝑧 ↔ (𝐹𝑏) ∈ 𝑧) → ∀𝑤𝐽 (𝑎𝑤𝑏𝑤)))
191kqfeq 23611 . . . . . . 7 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑎𝑋𝑏𝑋) → ((𝐹𝑎) = (𝐹𝑏) ↔ ∀𝑦𝐽 (𝑎𝑦𝑏𝑦)))
20193expb 1120 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑎𝑋𝑏𝑋)) → ((𝐹𝑎) = (𝐹𝑏) ↔ ∀𝑦𝐽 (𝑎𝑦𝑏𝑦)))
21 elequ2 2124 . . . . . . . 8 (𝑦 = 𝑤 → (𝑎𝑦𝑎𝑤))
22 elequ2 2124 . . . . . . . 8 (𝑦 = 𝑤 → (𝑏𝑦𝑏𝑤))
2321, 22bibi12d 345 . . . . . . 7 (𝑦 = 𝑤 → ((𝑎𝑦𝑏𝑦) ↔ (𝑎𝑤𝑏𝑤)))
2423cbvralvw 3215 . . . . . 6 (∀𝑦𝐽 (𝑎𝑦𝑏𝑦) ↔ ∀𝑤𝐽 (𝑎𝑤𝑏𝑤))
2520, 24bitrdi 287 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑎𝑋𝑏𝑋)) → ((𝐹𝑎) = (𝐹𝑏) ↔ ∀𝑤𝐽 (𝑎𝑤𝑏𝑤)))
2618, 25sylibrd 259 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑎𝑋𝑏𝑋)) → (∀𝑧 ∈ (KQ‘𝐽)((𝐹𝑎) ∈ 𝑧 ↔ (𝐹𝑏) ∈ 𝑧) → (𝐹𝑎) = (𝐹𝑏)))
2726ralrimivva 3180 . . 3 (𝐽 ∈ (TopOn‘𝑋) → ∀𝑎𝑋𝑏𝑋 (∀𝑧 ∈ (KQ‘𝐽)((𝐹𝑎) ∈ 𝑧 ↔ (𝐹𝑏) ∈ 𝑧) → (𝐹𝑎) = (𝐹𝑏)))
281kqffn 23612 . . . 4 (𝐽 ∈ (TopOn‘𝑋) → 𝐹 Fn 𝑋)
29 eleq1 2816 . . . . . . . . . 10 (𝑢 = (𝐹𝑎) → (𝑢𝑧 ↔ (𝐹𝑎) ∈ 𝑧))
3029bibi1d 343 . . . . . . . . 9 (𝑢 = (𝐹𝑎) → ((𝑢𝑧𝑣𝑧) ↔ ((𝐹𝑎) ∈ 𝑧𝑣𝑧)))
3130ralbidv 3156 . . . . . . . 8 (𝑢 = (𝐹𝑎) → (∀𝑧 ∈ (KQ‘𝐽)(𝑢𝑧𝑣𝑧) ↔ ∀𝑧 ∈ (KQ‘𝐽)((𝐹𝑎) ∈ 𝑧𝑣𝑧)))
32 eqeq1 2733 . . . . . . . 8 (𝑢 = (𝐹𝑎) → (𝑢 = 𝑣 ↔ (𝐹𝑎) = 𝑣))
3331, 32imbi12d 344 . . . . . . 7 (𝑢 = (𝐹𝑎) → ((∀𝑧 ∈ (KQ‘𝐽)(𝑢𝑧𝑣𝑧) → 𝑢 = 𝑣) ↔ (∀𝑧 ∈ (KQ‘𝐽)((𝐹𝑎) ∈ 𝑧𝑣𝑧) → (𝐹𝑎) = 𝑣)))
3433ralbidv 3156 . . . . . 6 (𝑢 = (𝐹𝑎) → (∀𝑣 ∈ ran 𝐹(∀𝑧 ∈ (KQ‘𝐽)(𝑢𝑧𝑣𝑧) → 𝑢 = 𝑣) ↔ ∀𝑣 ∈ ran 𝐹(∀𝑧 ∈ (KQ‘𝐽)((𝐹𝑎) ∈ 𝑧𝑣𝑧) → (𝐹𝑎) = 𝑣)))
3534ralrn 7060 . . . . 5 (𝐹 Fn 𝑋 → (∀𝑢 ∈ ran 𝐹𝑣 ∈ ran 𝐹(∀𝑧 ∈ (KQ‘𝐽)(𝑢𝑧𝑣𝑧) → 𝑢 = 𝑣) ↔ ∀𝑎𝑋𝑣 ∈ ran 𝐹(∀𝑧 ∈ (KQ‘𝐽)((𝐹𝑎) ∈ 𝑧𝑣𝑧) → (𝐹𝑎) = 𝑣)))
36 eleq1 2816 . . . . . . . . . 10 (𝑣 = (𝐹𝑏) → (𝑣𝑧 ↔ (𝐹𝑏) ∈ 𝑧))
3736bibi2d 342 . . . . . . . . 9 (𝑣 = (𝐹𝑏) → (((𝐹𝑎) ∈ 𝑧𝑣𝑧) ↔ ((𝐹𝑎) ∈ 𝑧 ↔ (𝐹𝑏) ∈ 𝑧)))
3837ralbidv 3156 . . . . . . . 8 (𝑣 = (𝐹𝑏) → (∀𝑧 ∈ (KQ‘𝐽)((𝐹𝑎) ∈ 𝑧𝑣𝑧) ↔ ∀𝑧 ∈ (KQ‘𝐽)((𝐹𝑎) ∈ 𝑧 ↔ (𝐹𝑏) ∈ 𝑧)))
39 eqeq2 2741 . . . . . . . 8 (𝑣 = (𝐹𝑏) → ((𝐹𝑎) = 𝑣 ↔ (𝐹𝑎) = (𝐹𝑏)))
4038, 39imbi12d 344 . . . . . . 7 (𝑣 = (𝐹𝑏) → ((∀𝑧 ∈ (KQ‘𝐽)((𝐹𝑎) ∈ 𝑧𝑣𝑧) → (𝐹𝑎) = 𝑣) ↔ (∀𝑧 ∈ (KQ‘𝐽)((𝐹𝑎) ∈ 𝑧 ↔ (𝐹𝑏) ∈ 𝑧) → (𝐹𝑎) = (𝐹𝑏))))
4140ralrn 7060 . . . . . 6 (𝐹 Fn 𝑋 → (∀𝑣 ∈ ran 𝐹(∀𝑧 ∈ (KQ‘𝐽)((𝐹𝑎) ∈ 𝑧𝑣𝑧) → (𝐹𝑎) = 𝑣) ↔ ∀𝑏𝑋 (∀𝑧 ∈ (KQ‘𝐽)((𝐹𝑎) ∈ 𝑧 ↔ (𝐹𝑏) ∈ 𝑧) → (𝐹𝑎) = (𝐹𝑏))))
4241ralbidv 3156 . . . . 5 (𝐹 Fn 𝑋 → (∀𝑎𝑋𝑣 ∈ ran 𝐹(∀𝑧 ∈ (KQ‘𝐽)((𝐹𝑎) ∈ 𝑧𝑣𝑧) → (𝐹𝑎) = 𝑣) ↔ ∀𝑎𝑋𝑏𝑋 (∀𝑧 ∈ (KQ‘𝐽)((𝐹𝑎) ∈ 𝑧 ↔ (𝐹𝑏) ∈ 𝑧) → (𝐹𝑎) = (𝐹𝑏))))
4335, 42bitrd 279 . . . 4 (𝐹 Fn 𝑋 → (∀𝑢 ∈ ran 𝐹𝑣 ∈ ran 𝐹(∀𝑧 ∈ (KQ‘𝐽)(𝑢𝑧𝑣𝑧) → 𝑢 = 𝑣) ↔ ∀𝑎𝑋𝑏𝑋 (∀𝑧 ∈ (KQ‘𝐽)((𝐹𝑎) ∈ 𝑧 ↔ (𝐹𝑏) ∈ 𝑧) → (𝐹𝑎) = (𝐹𝑏))))
4428, 43syl 17 . . 3 (𝐽 ∈ (TopOn‘𝑋) → (∀𝑢 ∈ ran 𝐹𝑣 ∈ ran 𝐹(∀𝑧 ∈ (KQ‘𝐽)(𝑢𝑧𝑣𝑧) → 𝑢 = 𝑣) ↔ ∀𝑎𝑋𝑏𝑋 (∀𝑧 ∈ (KQ‘𝐽)((𝐹𝑎) ∈ 𝑧 ↔ (𝐹𝑏) ∈ 𝑧) → (𝐹𝑎) = (𝐹𝑏))))
4527, 44mpbird 257 . 2 (𝐽 ∈ (TopOn‘𝑋) → ∀𝑢 ∈ ran 𝐹𝑣 ∈ ran 𝐹(∀𝑧 ∈ (KQ‘𝐽)(𝑢𝑧𝑣𝑧) → 𝑢 = 𝑣))
461kqtopon 23614 . . 3 (𝐽 ∈ (TopOn‘𝑋) → (KQ‘𝐽) ∈ (TopOn‘ran 𝐹))
47 ist0-2 23231 . . 3 ((KQ‘𝐽) ∈ (TopOn‘ran 𝐹) → ((KQ‘𝐽) ∈ Kol2 ↔ ∀𝑢 ∈ ran 𝐹𝑣 ∈ ran 𝐹(∀𝑧 ∈ (KQ‘𝐽)(𝑢𝑧𝑣𝑧) → 𝑢 = 𝑣)))
4846, 47syl 17 . 2 (𝐽 ∈ (TopOn‘𝑋) → ((KQ‘𝐽) ∈ Kol2 ↔ ∀𝑢 ∈ ran 𝐹𝑣 ∈ ran 𝐹(∀𝑧 ∈ (KQ‘𝐽)(𝑢𝑧𝑣𝑧) → 𝑢 = 𝑣)))
4945, 48mpbird 257 1 (𝐽 ∈ (TopOn‘𝑋) → (KQ‘𝐽) ∈ Kol2)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044  {crab 3405  cmpt 5188  ran crn 5639  cima 5641   Fn wfn 6506  cfv 6511  TopOnctopon 22797  Kol2ct0 23193  KQckq 23580
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-qtop 17470  df-top 22781  df-topon 22798  df-t0 23200  df-kq 23581
This theorem is referenced by:  kqt0  23633  t0kq  23705
  Copyright terms: Public domain W3C validator