MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  kqt0lem Structured version   Visualization version   GIF version

Theorem kqt0lem 21760
Description: Lemma for kqt0 21770. (Contributed by Mario Carneiro, 23-Mar-2015.)
Hypothesis
Ref Expression
kqval.2 𝐹 = (𝑥𝑋 ↦ {𝑦𝐽𝑥𝑦})
Assertion
Ref Expression
kqt0lem (𝐽 ∈ (TopOn‘𝑋) → (KQ‘𝐽) ∈ Kol2)
Distinct variable groups:   𝑥,𝑦,𝐽   𝑥,𝑋,𝑦
Allowed substitution hints:   𝐹(𝑥,𝑦)

Proof of Theorem kqt0lem
Dummy variables 𝑤 𝑧 𝑎 𝑏 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 kqval.2 . . . . . . . . . 10 𝐹 = (𝑥𝑋 ↦ {𝑦𝐽𝑥𝑦})
21kqopn 21758 . . . . . . . . 9 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑤𝐽) → (𝐹𝑤) ∈ (KQ‘𝐽))
32adantlr 694 . . . . . . . 8 (((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑎𝑋𝑏𝑋)) ∧ 𝑤𝐽) → (𝐹𝑤) ∈ (KQ‘𝐽))
4 eleq2 2839 . . . . . . . . . 10 (𝑧 = (𝐹𝑤) → ((𝐹𝑎) ∈ 𝑧 ↔ (𝐹𝑎) ∈ (𝐹𝑤)))
5 eleq2 2839 . . . . . . . . . 10 (𝑧 = (𝐹𝑤) → ((𝐹𝑏) ∈ 𝑧 ↔ (𝐹𝑏) ∈ (𝐹𝑤)))
64, 5bibi12d 334 . . . . . . . . 9 (𝑧 = (𝐹𝑤) → (((𝐹𝑎) ∈ 𝑧 ↔ (𝐹𝑏) ∈ 𝑧) ↔ ((𝐹𝑎) ∈ (𝐹𝑤) ↔ (𝐹𝑏) ∈ (𝐹𝑤))))
76rspcv 3456 . . . . . . . 8 ((𝐹𝑤) ∈ (KQ‘𝐽) → (∀𝑧 ∈ (KQ‘𝐽)((𝐹𝑎) ∈ 𝑧 ↔ (𝐹𝑏) ∈ 𝑧) → ((𝐹𝑎) ∈ (𝐹𝑤) ↔ (𝐹𝑏) ∈ (𝐹𝑤))))
83, 7syl 17 . . . . . . 7 (((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑎𝑋𝑏𝑋)) ∧ 𝑤𝐽) → (∀𝑧 ∈ (KQ‘𝐽)((𝐹𝑎) ∈ 𝑧 ↔ (𝐹𝑏) ∈ 𝑧) → ((𝐹𝑎) ∈ (𝐹𝑤) ↔ (𝐹𝑏) ∈ (𝐹𝑤))))
91kqfvima 21754 . . . . . . . . . . 11 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑤𝐽𝑎𝑋) → (𝑎𝑤 ↔ (𝐹𝑎) ∈ (𝐹𝑤)))
1093expa 1111 . . . . . . . . . 10 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑤𝐽) ∧ 𝑎𝑋) → (𝑎𝑤 ↔ (𝐹𝑎) ∈ (𝐹𝑤)))
1110adantrr 696 . . . . . . . . 9 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑤𝐽) ∧ (𝑎𝑋𝑏𝑋)) → (𝑎𝑤 ↔ (𝐹𝑎) ∈ (𝐹𝑤)))
121kqfvima 21754 . . . . . . . . . . 11 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑤𝐽𝑏𝑋) → (𝑏𝑤 ↔ (𝐹𝑏) ∈ (𝐹𝑤)))
13123expa 1111 . . . . . . . . . 10 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑤𝐽) ∧ 𝑏𝑋) → (𝑏𝑤 ↔ (𝐹𝑏) ∈ (𝐹𝑤)))
1413adantrl 695 . . . . . . . . 9 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑤𝐽) ∧ (𝑎𝑋𝑏𝑋)) → (𝑏𝑤 ↔ (𝐹𝑏) ∈ (𝐹𝑤)))
1511, 14bibi12d 334 . . . . . . . 8 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑤𝐽) ∧ (𝑎𝑋𝑏𝑋)) → ((𝑎𝑤𝑏𝑤) ↔ ((𝐹𝑎) ∈ (𝐹𝑤) ↔ (𝐹𝑏) ∈ (𝐹𝑤))))
1615an32s 631 . . . . . . 7 (((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑎𝑋𝑏𝑋)) ∧ 𝑤𝐽) → ((𝑎𝑤𝑏𝑤) ↔ ((𝐹𝑎) ∈ (𝐹𝑤) ↔ (𝐹𝑏) ∈ (𝐹𝑤))))
178, 16sylibrd 249 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑎𝑋𝑏𝑋)) ∧ 𝑤𝐽) → (∀𝑧 ∈ (KQ‘𝐽)((𝐹𝑎) ∈ 𝑧 ↔ (𝐹𝑏) ∈ 𝑧) → (𝑎𝑤𝑏𝑤)))
1817ralrimdva 3118 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑎𝑋𝑏𝑋)) → (∀𝑧 ∈ (KQ‘𝐽)((𝐹𝑎) ∈ 𝑧 ↔ (𝐹𝑏) ∈ 𝑧) → ∀𝑤𝐽 (𝑎𝑤𝑏𝑤)))
191kqfeq 21748 . . . . . . 7 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑎𝑋𝑏𝑋) → ((𝐹𝑎) = (𝐹𝑏) ↔ ∀𝑦𝐽 (𝑎𝑦𝑏𝑦)))
20193expb 1113 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑎𝑋𝑏𝑋)) → ((𝐹𝑎) = (𝐹𝑏) ↔ ∀𝑦𝐽 (𝑎𝑦𝑏𝑦)))
21 elequ2 2159 . . . . . . . 8 (𝑦 = 𝑤 → (𝑎𝑦𝑎𝑤))
22 elequ2 2159 . . . . . . . 8 (𝑦 = 𝑤 → (𝑏𝑦𝑏𝑤))
2321, 22bibi12d 334 . . . . . . 7 (𝑦 = 𝑤 → ((𝑎𝑦𝑏𝑦) ↔ (𝑎𝑤𝑏𝑤)))
2423cbvralv 3320 . . . . . 6 (∀𝑦𝐽 (𝑎𝑦𝑏𝑦) ↔ ∀𝑤𝐽 (𝑎𝑤𝑏𝑤))
2520, 24syl6bb 276 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑎𝑋𝑏𝑋)) → ((𝐹𝑎) = (𝐹𝑏) ↔ ∀𝑤𝐽 (𝑎𝑤𝑏𝑤)))
2618, 25sylibrd 249 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑎𝑋𝑏𝑋)) → (∀𝑧 ∈ (KQ‘𝐽)((𝐹𝑎) ∈ 𝑧 ↔ (𝐹𝑏) ∈ 𝑧) → (𝐹𝑎) = (𝐹𝑏)))
2726ralrimivva 3120 . . 3 (𝐽 ∈ (TopOn‘𝑋) → ∀𝑎𝑋𝑏𝑋 (∀𝑧 ∈ (KQ‘𝐽)((𝐹𝑎) ∈ 𝑧 ↔ (𝐹𝑏) ∈ 𝑧) → (𝐹𝑎) = (𝐹𝑏)))
281kqffn 21749 . . . 4 (𝐽 ∈ (TopOn‘𝑋) → 𝐹 Fn 𝑋)
29 eleq1 2838 . . . . . . . . . 10 (𝑢 = (𝐹𝑎) → (𝑢𝑧 ↔ (𝐹𝑎) ∈ 𝑧))
3029bibi1d 332 . . . . . . . . 9 (𝑢 = (𝐹𝑎) → ((𝑢𝑧𝑣𝑧) ↔ ((𝐹𝑎) ∈ 𝑧𝑣𝑧)))
3130ralbidv 3135 . . . . . . . 8 (𝑢 = (𝐹𝑎) → (∀𝑧 ∈ (KQ‘𝐽)(𝑢𝑧𝑣𝑧) ↔ ∀𝑧 ∈ (KQ‘𝐽)((𝐹𝑎) ∈ 𝑧𝑣𝑧)))
32 eqeq1 2775 . . . . . . . 8 (𝑢 = (𝐹𝑎) → (𝑢 = 𝑣 ↔ (𝐹𝑎) = 𝑣))
3331, 32imbi12d 333 . . . . . . 7 (𝑢 = (𝐹𝑎) → ((∀𝑧 ∈ (KQ‘𝐽)(𝑢𝑧𝑣𝑧) → 𝑢 = 𝑣) ↔ (∀𝑧 ∈ (KQ‘𝐽)((𝐹𝑎) ∈ 𝑧𝑣𝑧) → (𝐹𝑎) = 𝑣)))
3433ralbidv 3135 . . . . . 6 (𝑢 = (𝐹𝑎) → (∀𝑣 ∈ ran 𝐹(∀𝑧 ∈ (KQ‘𝐽)(𝑢𝑧𝑣𝑧) → 𝑢 = 𝑣) ↔ ∀𝑣 ∈ ran 𝐹(∀𝑧 ∈ (KQ‘𝐽)((𝐹𝑎) ∈ 𝑧𝑣𝑧) → (𝐹𝑎) = 𝑣)))
3534ralrn 6505 . . . . 5 (𝐹 Fn 𝑋 → (∀𝑢 ∈ ran 𝐹𝑣 ∈ ran 𝐹(∀𝑧 ∈ (KQ‘𝐽)(𝑢𝑧𝑣𝑧) → 𝑢 = 𝑣) ↔ ∀𝑎𝑋𝑣 ∈ ran 𝐹(∀𝑧 ∈ (KQ‘𝐽)((𝐹𝑎) ∈ 𝑧𝑣𝑧) → (𝐹𝑎) = 𝑣)))
36 eleq1 2838 . . . . . . . . . 10 (𝑣 = (𝐹𝑏) → (𝑣𝑧 ↔ (𝐹𝑏) ∈ 𝑧))
3736bibi2d 331 . . . . . . . . 9 (𝑣 = (𝐹𝑏) → (((𝐹𝑎) ∈ 𝑧𝑣𝑧) ↔ ((𝐹𝑎) ∈ 𝑧 ↔ (𝐹𝑏) ∈ 𝑧)))
3837ralbidv 3135 . . . . . . . 8 (𝑣 = (𝐹𝑏) → (∀𝑧 ∈ (KQ‘𝐽)((𝐹𝑎) ∈ 𝑧𝑣𝑧) ↔ ∀𝑧 ∈ (KQ‘𝐽)((𝐹𝑎) ∈ 𝑧 ↔ (𝐹𝑏) ∈ 𝑧)))
39 eqeq2 2782 . . . . . . . 8 (𝑣 = (𝐹𝑏) → ((𝐹𝑎) = 𝑣 ↔ (𝐹𝑎) = (𝐹𝑏)))
4038, 39imbi12d 333 . . . . . . 7 (𝑣 = (𝐹𝑏) → ((∀𝑧 ∈ (KQ‘𝐽)((𝐹𝑎) ∈ 𝑧𝑣𝑧) → (𝐹𝑎) = 𝑣) ↔ (∀𝑧 ∈ (KQ‘𝐽)((𝐹𝑎) ∈ 𝑧 ↔ (𝐹𝑏) ∈ 𝑧) → (𝐹𝑎) = (𝐹𝑏))))
4140ralrn 6505 . . . . . 6 (𝐹 Fn 𝑋 → (∀𝑣 ∈ ran 𝐹(∀𝑧 ∈ (KQ‘𝐽)((𝐹𝑎) ∈ 𝑧𝑣𝑧) → (𝐹𝑎) = 𝑣) ↔ ∀𝑏𝑋 (∀𝑧 ∈ (KQ‘𝐽)((𝐹𝑎) ∈ 𝑧 ↔ (𝐹𝑏) ∈ 𝑧) → (𝐹𝑎) = (𝐹𝑏))))
4241ralbidv 3135 . . . . 5 (𝐹 Fn 𝑋 → (∀𝑎𝑋𝑣 ∈ ran 𝐹(∀𝑧 ∈ (KQ‘𝐽)((𝐹𝑎) ∈ 𝑧𝑣𝑧) → (𝐹𝑎) = 𝑣) ↔ ∀𝑎𝑋𝑏𝑋 (∀𝑧 ∈ (KQ‘𝐽)((𝐹𝑎) ∈ 𝑧 ↔ (𝐹𝑏) ∈ 𝑧) → (𝐹𝑎) = (𝐹𝑏))))
4335, 42bitrd 268 . . . 4 (𝐹 Fn 𝑋 → (∀𝑢 ∈ ran 𝐹𝑣 ∈ ran 𝐹(∀𝑧 ∈ (KQ‘𝐽)(𝑢𝑧𝑣𝑧) → 𝑢 = 𝑣) ↔ ∀𝑎𝑋𝑏𝑋 (∀𝑧 ∈ (KQ‘𝐽)((𝐹𝑎) ∈ 𝑧 ↔ (𝐹𝑏) ∈ 𝑧) → (𝐹𝑎) = (𝐹𝑏))))
4428, 43syl 17 . . 3 (𝐽 ∈ (TopOn‘𝑋) → (∀𝑢 ∈ ran 𝐹𝑣 ∈ ran 𝐹(∀𝑧 ∈ (KQ‘𝐽)(𝑢𝑧𝑣𝑧) → 𝑢 = 𝑣) ↔ ∀𝑎𝑋𝑏𝑋 (∀𝑧 ∈ (KQ‘𝐽)((𝐹𝑎) ∈ 𝑧 ↔ (𝐹𝑏) ∈ 𝑧) → (𝐹𝑎) = (𝐹𝑏))))
4527, 44mpbird 247 . 2 (𝐽 ∈ (TopOn‘𝑋) → ∀𝑢 ∈ ran 𝐹𝑣 ∈ ran 𝐹(∀𝑧 ∈ (KQ‘𝐽)(𝑢𝑧𝑣𝑧) → 𝑢 = 𝑣))
461kqtopon 21751 . . 3 (𝐽 ∈ (TopOn‘𝑋) → (KQ‘𝐽) ∈ (TopOn‘ran 𝐹))
47 ist0-2 21369 . . 3 ((KQ‘𝐽) ∈ (TopOn‘ran 𝐹) → ((KQ‘𝐽) ∈ Kol2 ↔ ∀𝑢 ∈ ran 𝐹𝑣 ∈ ran 𝐹(∀𝑧 ∈ (KQ‘𝐽)(𝑢𝑧𝑣𝑧) → 𝑢 = 𝑣)))
4846, 47syl 17 . 2 (𝐽 ∈ (TopOn‘𝑋) → ((KQ‘𝐽) ∈ Kol2 ↔ ∀𝑢 ∈ ran 𝐹𝑣 ∈ ran 𝐹(∀𝑧 ∈ (KQ‘𝐽)(𝑢𝑧𝑣𝑧) → 𝑢 = 𝑣)))
4945, 48mpbird 247 1 (𝐽 ∈ (TopOn‘𝑋) → (KQ‘𝐽) ∈ Kol2)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 382   = wceq 1631  wcel 2145  wral 3061  {crab 3065  cmpt 4863  ran crn 5250  cima 5252   Fn wfn 6026  cfv 6031  TopOnctopon 20935  Kol2ct0 21331  KQckq 21717
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4904  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 835  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-op 4323  df-uni 4575  df-iun 4656  df-br 4787  df-opab 4847  df-mpt 4864  df-id 5157  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-ov 6796  df-oprab 6797  df-mpt2 6798  df-qtop 16375  df-top 20919  df-topon 20936  df-t0 21338  df-kq 21718
This theorem is referenced by:  kqt0  21770  t0kq  21842
  Copyright terms: Public domain W3C validator