| Step | Hyp | Ref
| Expression |
| 1 | | kqval.2 |
. . . . . . . . . 10
⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ {𝑦 ∈ 𝐽 ∣ 𝑥 ∈ 𝑦}) |
| 2 | 1 | kqopn 23742 |
. . . . . . . . 9
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑤 ∈ 𝐽) → (𝐹 “ 𝑤) ∈ (KQ‘𝐽)) |
| 3 | 2 | adantlr 715 |
. . . . . . . 8
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋)) ∧ 𝑤 ∈ 𝐽) → (𝐹 “ 𝑤) ∈ (KQ‘𝐽)) |
| 4 | | eleq2 2830 |
. . . . . . . . . 10
⊢ (𝑧 = (𝐹 “ 𝑤) → ((𝐹‘𝑎) ∈ 𝑧 ↔ (𝐹‘𝑎) ∈ (𝐹 “ 𝑤))) |
| 5 | | eleq2 2830 |
. . . . . . . . . 10
⊢ (𝑧 = (𝐹 “ 𝑤) → ((𝐹‘𝑏) ∈ 𝑧 ↔ (𝐹‘𝑏) ∈ (𝐹 “ 𝑤))) |
| 6 | 4, 5 | bibi12d 345 |
. . . . . . . . 9
⊢ (𝑧 = (𝐹 “ 𝑤) → (((𝐹‘𝑎) ∈ 𝑧 ↔ (𝐹‘𝑏) ∈ 𝑧) ↔ ((𝐹‘𝑎) ∈ (𝐹 “ 𝑤) ↔ (𝐹‘𝑏) ∈ (𝐹 “ 𝑤)))) |
| 7 | 6 | rspcv 3618 |
. . . . . . . 8
⊢ ((𝐹 “ 𝑤) ∈ (KQ‘𝐽) → (∀𝑧 ∈ (KQ‘𝐽)((𝐹‘𝑎) ∈ 𝑧 ↔ (𝐹‘𝑏) ∈ 𝑧) → ((𝐹‘𝑎) ∈ (𝐹 “ 𝑤) ↔ (𝐹‘𝑏) ∈ (𝐹 “ 𝑤)))) |
| 8 | 3, 7 | syl 17 |
. . . . . . 7
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋)) ∧ 𝑤 ∈ 𝐽) → (∀𝑧 ∈ (KQ‘𝐽)((𝐹‘𝑎) ∈ 𝑧 ↔ (𝐹‘𝑏) ∈ 𝑧) → ((𝐹‘𝑎) ∈ (𝐹 “ 𝑤) ↔ (𝐹‘𝑏) ∈ (𝐹 “ 𝑤)))) |
| 9 | 1 | kqfvima 23738 |
. . . . . . . . . . 11
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑤 ∈ 𝐽 ∧ 𝑎 ∈ 𝑋) → (𝑎 ∈ 𝑤 ↔ (𝐹‘𝑎) ∈ (𝐹 “ 𝑤))) |
| 10 | 9 | 3expa 1119 |
. . . . . . . . . 10
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑤 ∈ 𝐽) ∧ 𝑎 ∈ 𝑋) → (𝑎 ∈ 𝑤 ↔ (𝐹‘𝑎) ∈ (𝐹 “ 𝑤))) |
| 11 | 10 | adantrr 717 |
. . . . . . . . 9
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑤 ∈ 𝐽) ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋)) → (𝑎 ∈ 𝑤 ↔ (𝐹‘𝑎) ∈ (𝐹 “ 𝑤))) |
| 12 | 1 | kqfvima 23738 |
. . . . . . . . . . 11
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑤 ∈ 𝐽 ∧ 𝑏 ∈ 𝑋) → (𝑏 ∈ 𝑤 ↔ (𝐹‘𝑏) ∈ (𝐹 “ 𝑤))) |
| 13 | 12 | 3expa 1119 |
. . . . . . . . . 10
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑤 ∈ 𝐽) ∧ 𝑏 ∈ 𝑋) → (𝑏 ∈ 𝑤 ↔ (𝐹‘𝑏) ∈ (𝐹 “ 𝑤))) |
| 14 | 13 | adantrl 716 |
. . . . . . . . 9
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑤 ∈ 𝐽) ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋)) → (𝑏 ∈ 𝑤 ↔ (𝐹‘𝑏) ∈ (𝐹 “ 𝑤))) |
| 15 | 11, 14 | bibi12d 345 |
. . . . . . . 8
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑤 ∈ 𝐽) ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋)) → ((𝑎 ∈ 𝑤 ↔ 𝑏 ∈ 𝑤) ↔ ((𝐹‘𝑎) ∈ (𝐹 “ 𝑤) ↔ (𝐹‘𝑏) ∈ (𝐹 “ 𝑤)))) |
| 16 | 15 | an32s 652 |
. . . . . . 7
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋)) ∧ 𝑤 ∈ 𝐽) → ((𝑎 ∈ 𝑤 ↔ 𝑏 ∈ 𝑤) ↔ ((𝐹‘𝑎) ∈ (𝐹 “ 𝑤) ↔ (𝐹‘𝑏) ∈ (𝐹 “ 𝑤)))) |
| 17 | 8, 16 | sylibrd 259 |
. . . . . 6
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋)) ∧ 𝑤 ∈ 𝐽) → (∀𝑧 ∈ (KQ‘𝐽)((𝐹‘𝑎) ∈ 𝑧 ↔ (𝐹‘𝑏) ∈ 𝑧) → (𝑎 ∈ 𝑤 ↔ 𝑏 ∈ 𝑤))) |
| 18 | 17 | ralrimdva 3154 |
. . . . 5
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋)) → (∀𝑧 ∈ (KQ‘𝐽)((𝐹‘𝑎) ∈ 𝑧 ↔ (𝐹‘𝑏) ∈ 𝑧) → ∀𝑤 ∈ 𝐽 (𝑎 ∈ 𝑤 ↔ 𝑏 ∈ 𝑤))) |
| 19 | 1 | kqfeq 23732 |
. . . . . . 7
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋) → ((𝐹‘𝑎) = (𝐹‘𝑏) ↔ ∀𝑦 ∈ 𝐽 (𝑎 ∈ 𝑦 ↔ 𝑏 ∈ 𝑦))) |
| 20 | 19 | 3expb 1121 |
. . . . . 6
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋)) → ((𝐹‘𝑎) = (𝐹‘𝑏) ↔ ∀𝑦 ∈ 𝐽 (𝑎 ∈ 𝑦 ↔ 𝑏 ∈ 𝑦))) |
| 21 | | elequ2 2123 |
. . . . . . . 8
⊢ (𝑦 = 𝑤 → (𝑎 ∈ 𝑦 ↔ 𝑎 ∈ 𝑤)) |
| 22 | | elequ2 2123 |
. . . . . . . 8
⊢ (𝑦 = 𝑤 → (𝑏 ∈ 𝑦 ↔ 𝑏 ∈ 𝑤)) |
| 23 | 21, 22 | bibi12d 345 |
. . . . . . 7
⊢ (𝑦 = 𝑤 → ((𝑎 ∈ 𝑦 ↔ 𝑏 ∈ 𝑦) ↔ (𝑎 ∈ 𝑤 ↔ 𝑏 ∈ 𝑤))) |
| 24 | 23 | cbvralvw 3237 |
. . . . . 6
⊢
(∀𝑦 ∈
𝐽 (𝑎 ∈ 𝑦 ↔ 𝑏 ∈ 𝑦) ↔ ∀𝑤 ∈ 𝐽 (𝑎 ∈ 𝑤 ↔ 𝑏 ∈ 𝑤)) |
| 25 | 20, 24 | bitrdi 287 |
. . . . 5
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋)) → ((𝐹‘𝑎) = (𝐹‘𝑏) ↔ ∀𝑤 ∈ 𝐽 (𝑎 ∈ 𝑤 ↔ 𝑏 ∈ 𝑤))) |
| 26 | 18, 25 | sylibrd 259 |
. . . 4
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋)) → (∀𝑧 ∈ (KQ‘𝐽)((𝐹‘𝑎) ∈ 𝑧 ↔ (𝐹‘𝑏) ∈ 𝑧) → (𝐹‘𝑎) = (𝐹‘𝑏))) |
| 27 | 26 | ralrimivva 3202 |
. . 3
⊢ (𝐽 ∈ (TopOn‘𝑋) → ∀𝑎 ∈ 𝑋 ∀𝑏 ∈ 𝑋 (∀𝑧 ∈ (KQ‘𝐽)((𝐹‘𝑎) ∈ 𝑧 ↔ (𝐹‘𝑏) ∈ 𝑧) → (𝐹‘𝑎) = (𝐹‘𝑏))) |
| 28 | 1 | kqffn 23733 |
. . . 4
⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝐹 Fn 𝑋) |
| 29 | | eleq1 2829 |
. . . . . . . . . 10
⊢ (𝑢 = (𝐹‘𝑎) → (𝑢 ∈ 𝑧 ↔ (𝐹‘𝑎) ∈ 𝑧)) |
| 30 | 29 | bibi1d 343 |
. . . . . . . . 9
⊢ (𝑢 = (𝐹‘𝑎) → ((𝑢 ∈ 𝑧 ↔ 𝑣 ∈ 𝑧) ↔ ((𝐹‘𝑎) ∈ 𝑧 ↔ 𝑣 ∈ 𝑧))) |
| 31 | 30 | ralbidv 3178 |
. . . . . . . 8
⊢ (𝑢 = (𝐹‘𝑎) → (∀𝑧 ∈ (KQ‘𝐽)(𝑢 ∈ 𝑧 ↔ 𝑣 ∈ 𝑧) ↔ ∀𝑧 ∈ (KQ‘𝐽)((𝐹‘𝑎) ∈ 𝑧 ↔ 𝑣 ∈ 𝑧))) |
| 32 | | eqeq1 2741 |
. . . . . . . 8
⊢ (𝑢 = (𝐹‘𝑎) → (𝑢 = 𝑣 ↔ (𝐹‘𝑎) = 𝑣)) |
| 33 | 31, 32 | imbi12d 344 |
. . . . . . 7
⊢ (𝑢 = (𝐹‘𝑎) → ((∀𝑧 ∈ (KQ‘𝐽)(𝑢 ∈ 𝑧 ↔ 𝑣 ∈ 𝑧) → 𝑢 = 𝑣) ↔ (∀𝑧 ∈ (KQ‘𝐽)((𝐹‘𝑎) ∈ 𝑧 ↔ 𝑣 ∈ 𝑧) → (𝐹‘𝑎) = 𝑣))) |
| 34 | 33 | ralbidv 3178 |
. . . . . 6
⊢ (𝑢 = (𝐹‘𝑎) → (∀𝑣 ∈ ran 𝐹(∀𝑧 ∈ (KQ‘𝐽)(𝑢 ∈ 𝑧 ↔ 𝑣 ∈ 𝑧) → 𝑢 = 𝑣) ↔ ∀𝑣 ∈ ran 𝐹(∀𝑧 ∈ (KQ‘𝐽)((𝐹‘𝑎) ∈ 𝑧 ↔ 𝑣 ∈ 𝑧) → (𝐹‘𝑎) = 𝑣))) |
| 35 | 34 | ralrn 7108 |
. . . . 5
⊢ (𝐹 Fn 𝑋 → (∀𝑢 ∈ ran 𝐹∀𝑣 ∈ ran 𝐹(∀𝑧 ∈ (KQ‘𝐽)(𝑢 ∈ 𝑧 ↔ 𝑣 ∈ 𝑧) → 𝑢 = 𝑣) ↔ ∀𝑎 ∈ 𝑋 ∀𝑣 ∈ ran 𝐹(∀𝑧 ∈ (KQ‘𝐽)((𝐹‘𝑎) ∈ 𝑧 ↔ 𝑣 ∈ 𝑧) → (𝐹‘𝑎) = 𝑣))) |
| 36 | | eleq1 2829 |
. . . . . . . . . 10
⊢ (𝑣 = (𝐹‘𝑏) → (𝑣 ∈ 𝑧 ↔ (𝐹‘𝑏) ∈ 𝑧)) |
| 37 | 36 | bibi2d 342 |
. . . . . . . . 9
⊢ (𝑣 = (𝐹‘𝑏) → (((𝐹‘𝑎) ∈ 𝑧 ↔ 𝑣 ∈ 𝑧) ↔ ((𝐹‘𝑎) ∈ 𝑧 ↔ (𝐹‘𝑏) ∈ 𝑧))) |
| 38 | 37 | ralbidv 3178 |
. . . . . . . 8
⊢ (𝑣 = (𝐹‘𝑏) → (∀𝑧 ∈ (KQ‘𝐽)((𝐹‘𝑎) ∈ 𝑧 ↔ 𝑣 ∈ 𝑧) ↔ ∀𝑧 ∈ (KQ‘𝐽)((𝐹‘𝑎) ∈ 𝑧 ↔ (𝐹‘𝑏) ∈ 𝑧))) |
| 39 | | eqeq2 2749 |
. . . . . . . 8
⊢ (𝑣 = (𝐹‘𝑏) → ((𝐹‘𝑎) = 𝑣 ↔ (𝐹‘𝑎) = (𝐹‘𝑏))) |
| 40 | 38, 39 | imbi12d 344 |
. . . . . . 7
⊢ (𝑣 = (𝐹‘𝑏) → ((∀𝑧 ∈ (KQ‘𝐽)((𝐹‘𝑎) ∈ 𝑧 ↔ 𝑣 ∈ 𝑧) → (𝐹‘𝑎) = 𝑣) ↔ (∀𝑧 ∈ (KQ‘𝐽)((𝐹‘𝑎) ∈ 𝑧 ↔ (𝐹‘𝑏) ∈ 𝑧) → (𝐹‘𝑎) = (𝐹‘𝑏)))) |
| 41 | 40 | ralrn 7108 |
. . . . . 6
⊢ (𝐹 Fn 𝑋 → (∀𝑣 ∈ ran 𝐹(∀𝑧 ∈ (KQ‘𝐽)((𝐹‘𝑎) ∈ 𝑧 ↔ 𝑣 ∈ 𝑧) → (𝐹‘𝑎) = 𝑣) ↔ ∀𝑏 ∈ 𝑋 (∀𝑧 ∈ (KQ‘𝐽)((𝐹‘𝑎) ∈ 𝑧 ↔ (𝐹‘𝑏) ∈ 𝑧) → (𝐹‘𝑎) = (𝐹‘𝑏)))) |
| 42 | 41 | ralbidv 3178 |
. . . . 5
⊢ (𝐹 Fn 𝑋 → (∀𝑎 ∈ 𝑋 ∀𝑣 ∈ ran 𝐹(∀𝑧 ∈ (KQ‘𝐽)((𝐹‘𝑎) ∈ 𝑧 ↔ 𝑣 ∈ 𝑧) → (𝐹‘𝑎) = 𝑣) ↔ ∀𝑎 ∈ 𝑋 ∀𝑏 ∈ 𝑋 (∀𝑧 ∈ (KQ‘𝐽)((𝐹‘𝑎) ∈ 𝑧 ↔ (𝐹‘𝑏) ∈ 𝑧) → (𝐹‘𝑎) = (𝐹‘𝑏)))) |
| 43 | 35, 42 | bitrd 279 |
. . . 4
⊢ (𝐹 Fn 𝑋 → (∀𝑢 ∈ ran 𝐹∀𝑣 ∈ ran 𝐹(∀𝑧 ∈ (KQ‘𝐽)(𝑢 ∈ 𝑧 ↔ 𝑣 ∈ 𝑧) → 𝑢 = 𝑣) ↔ ∀𝑎 ∈ 𝑋 ∀𝑏 ∈ 𝑋 (∀𝑧 ∈ (KQ‘𝐽)((𝐹‘𝑎) ∈ 𝑧 ↔ (𝐹‘𝑏) ∈ 𝑧) → (𝐹‘𝑎) = (𝐹‘𝑏)))) |
| 44 | 28, 43 | syl 17 |
. . 3
⊢ (𝐽 ∈ (TopOn‘𝑋) → (∀𝑢 ∈ ran 𝐹∀𝑣 ∈ ran 𝐹(∀𝑧 ∈ (KQ‘𝐽)(𝑢 ∈ 𝑧 ↔ 𝑣 ∈ 𝑧) → 𝑢 = 𝑣) ↔ ∀𝑎 ∈ 𝑋 ∀𝑏 ∈ 𝑋 (∀𝑧 ∈ (KQ‘𝐽)((𝐹‘𝑎) ∈ 𝑧 ↔ (𝐹‘𝑏) ∈ 𝑧) → (𝐹‘𝑎) = (𝐹‘𝑏)))) |
| 45 | 27, 44 | mpbird 257 |
. 2
⊢ (𝐽 ∈ (TopOn‘𝑋) → ∀𝑢 ∈ ran 𝐹∀𝑣 ∈ ran 𝐹(∀𝑧 ∈ (KQ‘𝐽)(𝑢 ∈ 𝑧 ↔ 𝑣 ∈ 𝑧) → 𝑢 = 𝑣)) |
| 46 | 1 | kqtopon 23735 |
. . 3
⊢ (𝐽 ∈ (TopOn‘𝑋) → (KQ‘𝐽) ∈ (TopOn‘ran 𝐹)) |
| 47 | | ist0-2 23352 |
. . 3
⊢
((KQ‘𝐽) ∈
(TopOn‘ran 𝐹) →
((KQ‘𝐽) ∈ Kol2
↔ ∀𝑢 ∈ ran
𝐹∀𝑣 ∈ ran 𝐹(∀𝑧 ∈ (KQ‘𝐽)(𝑢 ∈ 𝑧 ↔ 𝑣 ∈ 𝑧) → 𝑢 = 𝑣))) |
| 48 | 46, 47 | syl 17 |
. 2
⊢ (𝐽 ∈ (TopOn‘𝑋) → ((KQ‘𝐽) ∈ Kol2 ↔
∀𝑢 ∈ ran 𝐹∀𝑣 ∈ ran 𝐹(∀𝑧 ∈ (KQ‘𝐽)(𝑢 ∈ 𝑧 ↔ 𝑣 ∈ 𝑧) → 𝑢 = 𝑣))) |
| 49 | 45, 48 | mpbird 257 |
1
⊢ (𝐽 ∈ (TopOn‘𝑋) → (KQ‘𝐽) ∈ Kol2) |