Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > kqffn | Structured version Visualization version GIF version |
Description: The topological indistinguishability map is a function on the base. (Contributed by Mario Carneiro, 25-Aug-2015.) |
Ref | Expression |
---|---|
kqval.2 | ⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ {𝑦 ∈ 𝐽 ∣ 𝑥 ∈ 𝑦}) |
Ref | Expression |
---|---|
kqffn | ⊢ (𝐽 ∈ 𝑉 → 𝐹 Fn 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssrab2 4013 | . . . . 5 ⊢ {𝑦 ∈ 𝐽 ∣ 𝑥 ∈ 𝑦} ⊆ 𝐽 | |
2 | elpw2g 5268 | . . . . 5 ⊢ (𝐽 ∈ 𝑉 → ({𝑦 ∈ 𝐽 ∣ 𝑥 ∈ 𝑦} ∈ 𝒫 𝐽 ↔ {𝑦 ∈ 𝐽 ∣ 𝑥 ∈ 𝑦} ⊆ 𝐽)) | |
3 | 1, 2 | mpbiri 257 | . . . 4 ⊢ (𝐽 ∈ 𝑉 → {𝑦 ∈ 𝐽 ∣ 𝑥 ∈ 𝑦} ∈ 𝒫 𝐽) |
4 | 3 | adantr 481 | . . 3 ⊢ ((𝐽 ∈ 𝑉 ∧ 𝑥 ∈ 𝑋) → {𝑦 ∈ 𝐽 ∣ 𝑥 ∈ 𝑦} ∈ 𝒫 𝐽) |
5 | kqval.2 | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ {𝑦 ∈ 𝐽 ∣ 𝑥 ∈ 𝑦}) | |
6 | 4, 5 | fmptd 6988 | . 2 ⊢ (𝐽 ∈ 𝑉 → 𝐹:𝑋⟶𝒫 𝐽) |
7 | 6 | ffnd 6601 | 1 ⊢ (𝐽 ∈ 𝑉 → 𝐹 Fn 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2106 {crab 3068 ⊆ wss 3887 𝒫 cpw 4533 ↦ cmpt 5157 Fn wfn 6428 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-fun 6435 df-fn 6436 df-f 6437 |
This theorem is referenced by: kqtopon 22878 kqid 22879 ist0-4 22880 kqfvima 22881 kqsat 22882 kqdisj 22883 kqcldsat 22884 kqopn 22885 kqcld 22886 kqt0lem 22887 isr0 22888 r0cld 22889 regr1lem2 22891 kqreglem1 22892 kqreglem2 22893 kqnrmlem1 22894 kqnrmlem2 22895 |
Copyright terms: Public domain | W3C validator |