Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  kqffn Structured version   Visualization version   GIF version

Theorem kqffn 22328
 Description: The topological indistinguishability map is a function on the base. (Contributed by Mario Carneiro, 25-Aug-2015.)
Hypothesis
Ref Expression
kqval.2 𝐹 = (𝑥𝑋 ↦ {𝑦𝐽𝑥𝑦})
Assertion
Ref Expression
kqffn (𝐽𝑉𝐹 Fn 𝑋)
Distinct variable groups:   𝑥,𝑦,𝐽   𝑥,𝑋,𝑦   𝑥,𝑉
Allowed substitution hints:   𝐹(𝑥,𝑦)   𝑉(𝑦)

Proof of Theorem kqffn
StepHypRef Expression
1 ssrab2 4042 . . . . 5 {𝑦𝐽𝑥𝑦} ⊆ 𝐽
2 elpw2g 5234 . . . . 5 (𝐽𝑉 → ({𝑦𝐽𝑥𝑦} ∈ 𝒫 𝐽 ↔ {𝑦𝐽𝑥𝑦} ⊆ 𝐽))
31, 2mpbiri 261 . . . 4 (𝐽𝑉 → {𝑦𝐽𝑥𝑦} ∈ 𝒫 𝐽)
43adantr 484 . . 3 ((𝐽𝑉𝑥𝑋) → {𝑦𝐽𝑥𝑦} ∈ 𝒫 𝐽)
5 kqval.2 . . 3 𝐹 = (𝑥𝑋 ↦ {𝑦𝐽𝑥𝑦})
64, 5fmptd 6867 . 2 (𝐽𝑉𝐹:𝑋⟶𝒫 𝐽)
76ffnd 6504 1 (𝐽𝑉𝐹 Fn 𝑋)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   = wceq 1538   ∈ wcel 2115  {crab 3137   ⊆ wss 3919  𝒫 cpw 4522   ↦ cmpt 5133   Fn wfn 6339 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-sep 5190  ax-nul 5197  ax-pr 5318 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-ral 3138  df-rex 3139  df-rab 3142  df-v 3482  df-sbc 3759  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-nul 4277  df-if 4451  df-pw 4524  df-sn 4551  df-pr 4553  df-op 4557  df-uni 4826  df-br 5054  df-opab 5116  df-mpt 5134  df-id 5448  df-xp 5549  df-rel 5550  df-cnv 5551  df-co 5552  df-dm 5553  df-rn 5554  df-res 5555  df-ima 5556  df-iota 6303  df-fun 6346  df-fn 6347  df-f 6348  df-fv 6352 This theorem is referenced by:  kqtopon  22330  kqid  22331  ist0-4  22332  kqfvima  22333  kqsat  22334  kqdisj  22335  kqcldsat  22336  kqopn  22337  kqcld  22338  kqt0lem  22339  isr0  22340  r0cld  22341  regr1lem2  22343  kqreglem1  22344  kqreglem2  22345  kqnrmlem1  22346  kqnrmlem2  22347
 Copyright terms: Public domain W3C validator