| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > kqffn | Structured version Visualization version GIF version | ||
| Description: The topological indistinguishability map is a function on the base. (Contributed by Mario Carneiro, 25-Aug-2015.) |
| Ref | Expression |
|---|---|
| kqval.2 | ⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ {𝑦 ∈ 𝐽 ∣ 𝑥 ∈ 𝑦}) |
| Ref | Expression |
|---|---|
| kqffn | ⊢ (𝐽 ∈ 𝑉 → 𝐹 Fn 𝑋) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssrab2 4031 | . . . . 5 ⊢ {𝑦 ∈ 𝐽 ∣ 𝑥 ∈ 𝑦} ⊆ 𝐽 | |
| 2 | elpw2g 5272 | . . . . 5 ⊢ (𝐽 ∈ 𝑉 → ({𝑦 ∈ 𝐽 ∣ 𝑥 ∈ 𝑦} ∈ 𝒫 𝐽 ↔ {𝑦 ∈ 𝐽 ∣ 𝑥 ∈ 𝑦} ⊆ 𝐽)) | |
| 3 | 1, 2 | mpbiri 258 | . . . 4 ⊢ (𝐽 ∈ 𝑉 → {𝑦 ∈ 𝐽 ∣ 𝑥 ∈ 𝑦} ∈ 𝒫 𝐽) |
| 4 | 3 | adantr 480 | . . 3 ⊢ ((𝐽 ∈ 𝑉 ∧ 𝑥 ∈ 𝑋) → {𝑦 ∈ 𝐽 ∣ 𝑥 ∈ 𝑦} ∈ 𝒫 𝐽) |
| 5 | kqval.2 | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ {𝑦 ∈ 𝐽 ∣ 𝑥 ∈ 𝑦}) | |
| 6 | 4, 5 | fmptd 7048 | . 2 ⊢ (𝐽 ∈ 𝑉 → 𝐹:𝑋⟶𝒫 𝐽) |
| 7 | 6 | ffnd 6653 | 1 ⊢ (𝐽 ∈ 𝑉 → 𝐹 Fn 𝑋) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 {crab 3394 ⊆ wss 3903 𝒫 cpw 4551 ↦ cmpt 5173 Fn wfn 6477 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pr 5371 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-fun 6484 df-fn 6485 df-f 6486 |
| This theorem is referenced by: kqtopon 23612 kqid 23613 ist0-4 23614 kqfvima 23615 kqsat 23616 kqdisj 23617 kqcldsat 23618 kqopn 23619 kqcld 23620 kqt0lem 23621 isr0 23622 r0cld 23623 regr1lem2 23625 kqreglem1 23626 kqreglem2 23627 kqnrmlem1 23628 kqnrmlem2 23629 |
| Copyright terms: Public domain | W3C validator |