| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > kqffn | Structured version Visualization version GIF version | ||
| Description: The topological indistinguishability map is a function on the base. (Contributed by Mario Carneiro, 25-Aug-2015.) |
| Ref | Expression |
|---|---|
| kqval.2 | ⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ {𝑦 ∈ 𝐽 ∣ 𝑥 ∈ 𝑦}) |
| Ref | Expression |
|---|---|
| kqffn | ⊢ (𝐽 ∈ 𝑉 → 𝐹 Fn 𝑋) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssrab2 4025 | . . . . 5 ⊢ {𝑦 ∈ 𝐽 ∣ 𝑥 ∈ 𝑦} ⊆ 𝐽 | |
| 2 | elpw2g 5266 | . . . . 5 ⊢ (𝐽 ∈ 𝑉 → ({𝑦 ∈ 𝐽 ∣ 𝑥 ∈ 𝑦} ∈ 𝒫 𝐽 ↔ {𝑦 ∈ 𝐽 ∣ 𝑥 ∈ 𝑦} ⊆ 𝐽)) | |
| 3 | 1, 2 | mpbiri 258 | . . . 4 ⊢ (𝐽 ∈ 𝑉 → {𝑦 ∈ 𝐽 ∣ 𝑥 ∈ 𝑦} ∈ 𝒫 𝐽) |
| 4 | 3 | adantr 480 | . . 3 ⊢ ((𝐽 ∈ 𝑉 ∧ 𝑥 ∈ 𝑋) → {𝑦 ∈ 𝐽 ∣ 𝑥 ∈ 𝑦} ∈ 𝒫 𝐽) |
| 5 | kqval.2 | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ {𝑦 ∈ 𝐽 ∣ 𝑥 ∈ 𝑦}) | |
| 6 | 4, 5 | fmptd 7042 | . 2 ⊢ (𝐽 ∈ 𝑉 → 𝐹:𝑋⟶𝒫 𝐽) |
| 7 | 6 | ffnd 6647 | 1 ⊢ (𝐽 ∈ 𝑉 → 𝐹 Fn 𝑋) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 {crab 3395 ⊆ wss 3897 𝒫 cpw 4545 ↦ cmpt 5167 Fn wfn 6471 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pr 5365 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-br 5087 df-opab 5149 df-mpt 5168 df-id 5506 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-fun 6478 df-fn 6479 df-f 6480 |
| This theorem is referenced by: kqtopon 23637 kqid 23638 ist0-4 23639 kqfvima 23640 kqsat 23641 kqdisj 23642 kqcldsat 23643 kqopn 23644 kqcld 23645 kqt0lem 23646 isr0 23647 r0cld 23648 regr1lem2 23650 kqreglem1 23651 kqreglem2 23652 kqnrmlem1 23653 kqnrmlem2 23654 |
| Copyright terms: Public domain | W3C validator |