MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  kqffn Structured version   Visualization version   GIF version

Theorem kqffn 23635
Description: The topological indistinguishability map is a function on the base. (Contributed by Mario Carneiro, 25-Aug-2015.)
Hypothesis
Ref Expression
kqval.2 𝐹 = (𝑥𝑋 ↦ {𝑦𝐽𝑥𝑦})
Assertion
Ref Expression
kqffn (𝐽𝑉𝐹 Fn 𝑋)
Distinct variable groups:   𝑥,𝑦,𝐽   𝑥,𝑋,𝑦   𝑥,𝑉
Allowed substitution hints:   𝐹(𝑥,𝑦)   𝑉(𝑦)

Proof of Theorem kqffn
StepHypRef Expression
1 ssrab2 4025 . . . . 5 {𝑦𝐽𝑥𝑦} ⊆ 𝐽
2 elpw2g 5266 . . . . 5 (𝐽𝑉 → ({𝑦𝐽𝑥𝑦} ∈ 𝒫 𝐽 ↔ {𝑦𝐽𝑥𝑦} ⊆ 𝐽))
31, 2mpbiri 258 . . . 4 (𝐽𝑉 → {𝑦𝐽𝑥𝑦} ∈ 𝒫 𝐽)
43adantr 480 . . 3 ((𝐽𝑉𝑥𝑋) → {𝑦𝐽𝑥𝑦} ∈ 𝒫 𝐽)
5 kqval.2 . . 3 𝐹 = (𝑥𝑋 ↦ {𝑦𝐽𝑥𝑦})
64, 5fmptd 7042 . 2 (𝐽𝑉𝐹:𝑋⟶𝒫 𝐽)
76ffnd 6647 1 (𝐽𝑉𝐹 Fn 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2111  {crab 3395  wss 3897  𝒫 cpw 4545  cmpt 5167   Fn wfn 6471
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pr 5365
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-br 5087  df-opab 5149  df-mpt 5168  df-id 5506  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-fun 6478  df-fn 6479  df-f 6480
This theorem is referenced by:  kqtopon  23637  kqid  23638  ist0-4  23639  kqfvima  23640  kqsat  23641  kqdisj  23642  kqcldsat  23643  kqopn  23644  kqcld  23645  kqt0lem  23646  isr0  23647  r0cld  23648  regr1lem2  23650  kqreglem1  23651  kqreglem2  23652  kqnrmlem1  23653  kqnrmlem2  23654
  Copyright terms: Public domain W3C validator