| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > kqffn | Structured version Visualization version GIF version | ||
| Description: The topological indistinguishability map is a function on the base. (Contributed by Mario Carneiro, 25-Aug-2015.) |
| Ref | Expression |
|---|---|
| kqval.2 | ⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ {𝑦 ∈ 𝐽 ∣ 𝑥 ∈ 𝑦}) |
| Ref | Expression |
|---|---|
| kqffn | ⊢ (𝐽 ∈ 𝑉 → 𝐹 Fn 𝑋) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssrab2 4060 | . . . . 5 ⊢ {𝑦 ∈ 𝐽 ∣ 𝑥 ∈ 𝑦} ⊆ 𝐽 | |
| 2 | elpw2g 5308 | . . . . 5 ⊢ (𝐽 ∈ 𝑉 → ({𝑦 ∈ 𝐽 ∣ 𝑥 ∈ 𝑦} ∈ 𝒫 𝐽 ↔ {𝑦 ∈ 𝐽 ∣ 𝑥 ∈ 𝑦} ⊆ 𝐽)) | |
| 3 | 1, 2 | mpbiri 258 | . . . 4 ⊢ (𝐽 ∈ 𝑉 → {𝑦 ∈ 𝐽 ∣ 𝑥 ∈ 𝑦} ∈ 𝒫 𝐽) |
| 4 | 3 | adantr 480 | . . 3 ⊢ ((𝐽 ∈ 𝑉 ∧ 𝑥 ∈ 𝑋) → {𝑦 ∈ 𝐽 ∣ 𝑥 ∈ 𝑦} ∈ 𝒫 𝐽) |
| 5 | kqval.2 | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ {𝑦 ∈ 𝐽 ∣ 𝑥 ∈ 𝑦}) | |
| 6 | 4, 5 | fmptd 7109 | . 2 ⊢ (𝐽 ∈ 𝑉 → 𝐹:𝑋⟶𝒫 𝐽) |
| 7 | 6 | ffnd 6712 | 1 ⊢ (𝐽 ∈ 𝑉 → 𝐹 Fn 𝑋) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 {crab 3420 ⊆ wss 3931 𝒫 cpw 4580 ↦ cmpt 5206 Fn wfn 6531 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-fun 6538 df-fn 6539 df-f 6540 |
| This theorem is referenced by: kqtopon 23670 kqid 23671 ist0-4 23672 kqfvima 23673 kqsat 23674 kqdisj 23675 kqcldsat 23676 kqopn 23677 kqcld 23678 kqt0lem 23679 isr0 23680 r0cld 23681 regr1lem2 23683 kqreglem1 23684 kqreglem2 23685 kqnrmlem1 23686 kqnrmlem2 23687 |
| Copyright terms: Public domain | W3C validator |