MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  kqffn Structured version   Visualization version   GIF version

Theorem kqffn 23754
Description: The topological indistinguishability map is a function on the base. (Contributed by Mario Carneiro, 25-Aug-2015.)
Hypothesis
Ref Expression
kqval.2 𝐹 = (𝑥𝑋 ↦ {𝑦𝐽𝑥𝑦})
Assertion
Ref Expression
kqffn (𝐽𝑉𝐹 Fn 𝑋)
Distinct variable groups:   𝑥,𝑦,𝐽   𝑥,𝑋,𝑦   𝑥,𝑉
Allowed substitution hints:   𝐹(𝑥,𝑦)   𝑉(𝑦)

Proof of Theorem kqffn
StepHypRef Expression
1 ssrab2 4103 . . . . 5 {𝑦𝐽𝑥𝑦} ⊆ 𝐽
2 elpw2g 5351 . . . . 5 (𝐽𝑉 → ({𝑦𝐽𝑥𝑦} ∈ 𝒫 𝐽 ↔ {𝑦𝐽𝑥𝑦} ⊆ 𝐽))
31, 2mpbiri 258 . . . 4 (𝐽𝑉 → {𝑦𝐽𝑥𝑦} ∈ 𝒫 𝐽)
43adantr 480 . . 3 ((𝐽𝑉𝑥𝑋) → {𝑦𝐽𝑥𝑦} ∈ 𝒫 𝐽)
5 kqval.2 . . 3 𝐹 = (𝑥𝑋 ↦ {𝑦𝐽𝑥𝑦})
64, 5fmptd 7148 . 2 (𝐽𝑉𝐹:𝑋⟶𝒫 𝐽)
76ffnd 6748 1 (𝐽𝑉𝐹 Fn 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2108  {crab 3443  wss 3976  𝒫 cpw 4622  cmpt 5249   Fn wfn 6568
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-fun 6575  df-fn 6576  df-f 6577
This theorem is referenced by:  kqtopon  23756  kqid  23757  ist0-4  23758  kqfvima  23759  kqsat  23760  kqdisj  23761  kqcldsat  23762  kqopn  23763  kqcld  23764  kqt0lem  23765  isr0  23766  r0cld  23767  regr1lem2  23769  kqreglem1  23770  kqreglem2  23771  kqnrmlem1  23772  kqnrmlem2  23773
  Copyright terms: Public domain W3C validator