| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > unon | Structured version Visualization version GIF version | ||
| Description: The class of all ordinal numbers is its own union. Exercise 11 of [TakeutiZaring] p. 40. (Contributed by NM, 12-Nov-2003.) |
| Ref | Expression |
|---|---|
| unon | ⊢ ∪ On = On |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eluni2 4892 | . . . 4 ⊢ (𝑥 ∈ ∪ On ↔ ∃𝑦 ∈ On 𝑥 ∈ 𝑦) | |
| 2 | onelon 6382 | . . . . 5 ⊢ ((𝑦 ∈ On ∧ 𝑥 ∈ 𝑦) → 𝑥 ∈ On) | |
| 3 | 2 | rexlimiva 3134 | . . . 4 ⊢ (∃𝑦 ∈ On 𝑥 ∈ 𝑦 → 𝑥 ∈ On) |
| 4 | 1, 3 | sylbi 217 | . . 3 ⊢ (𝑥 ∈ ∪ On → 𝑥 ∈ On) |
| 5 | vex 3468 | . . . . 5 ⊢ 𝑥 ∈ V | |
| 6 | 5 | sucid 6441 | . . . 4 ⊢ 𝑥 ∈ suc 𝑥 |
| 7 | onsuc 7810 | . . . 4 ⊢ (𝑥 ∈ On → suc 𝑥 ∈ On) | |
| 8 | elunii 4893 | . . . 4 ⊢ ((𝑥 ∈ suc 𝑥 ∧ suc 𝑥 ∈ On) → 𝑥 ∈ ∪ On) | |
| 9 | 6, 7, 8 | sylancr 587 | . . 3 ⊢ (𝑥 ∈ On → 𝑥 ∈ ∪ On) |
| 10 | 4, 9 | impbii 209 | . 2 ⊢ (𝑥 ∈ ∪ On ↔ 𝑥 ∈ On) |
| 11 | 10 | eqriv 2733 | 1 ⊢ ∪ On = On |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 ∃wrex 3061 ∪ cuni 4888 Oncon0 6357 suc csuc 6359 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-tr 5235 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-ord 6360 df-on 6361 df-suc 6363 |
| This theorem is referenced by: ordunisuc 7831 limon 7835 orduninsuc 7843 ordtoplem 36458 ordcmp 36470 onsupnmax 43219 |
| Copyright terms: Public domain | W3C validator |