| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > unon | Structured version Visualization version GIF version | ||
| Description: The class of all ordinal numbers is its own union. Exercise 11 of [TakeutiZaring] p. 40. (Contributed by NM, 12-Nov-2003.) |
| Ref | Expression |
|---|---|
| unon | ⊢ ∪ On = On |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eluni2 4863 | . . . 4 ⊢ (𝑥 ∈ ∪ On ↔ ∃𝑦 ∈ On 𝑥 ∈ 𝑦) | |
| 2 | onelon 6331 | . . . . 5 ⊢ ((𝑦 ∈ On ∧ 𝑥 ∈ 𝑦) → 𝑥 ∈ On) | |
| 3 | 2 | rexlimiva 3125 | . . . 4 ⊢ (∃𝑦 ∈ On 𝑥 ∈ 𝑦 → 𝑥 ∈ On) |
| 4 | 1, 3 | sylbi 217 | . . 3 ⊢ (𝑥 ∈ ∪ On → 𝑥 ∈ On) |
| 5 | vex 3440 | . . . . 5 ⊢ 𝑥 ∈ V | |
| 6 | 5 | sucid 6390 | . . . 4 ⊢ 𝑥 ∈ suc 𝑥 |
| 7 | onsuc 7743 | . . . 4 ⊢ (𝑥 ∈ On → suc 𝑥 ∈ On) | |
| 8 | elunii 4864 | . . . 4 ⊢ ((𝑥 ∈ suc 𝑥 ∧ suc 𝑥 ∈ On) → 𝑥 ∈ ∪ On) | |
| 9 | 6, 7, 8 | sylancr 587 | . . 3 ⊢ (𝑥 ∈ On → 𝑥 ∈ ∪ On) |
| 10 | 4, 9 | impbii 209 | . 2 ⊢ (𝑥 ∈ ∪ On ↔ 𝑥 ∈ On) |
| 11 | 10 | eqriv 2728 | 1 ⊢ ∪ On = On |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∈ wcel 2111 ∃wrex 3056 ∪ cuni 4859 Oncon0 6306 suc csuc 6308 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-tr 5199 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-ord 6309 df-on 6310 df-suc 6312 |
| This theorem is referenced by: ordunisuc 7762 limon 7766 orduninsuc 7773 ordtoplem 36468 ordcmp 36480 onsupnmax 43260 |
| Copyright terms: Public domain | W3C validator |