MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unon Structured version   Visualization version   GIF version

Theorem unon 7867
Description: The class of all ordinal numbers is its own union. Exercise 11 of [TakeutiZaring] p. 40. (Contributed by NM, 12-Nov-2003.)
Assertion
Ref Expression
unon On = On

Proof of Theorem unon
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eluni2 4935 . . . 4 (𝑥 On ↔ ∃𝑦 ∈ On 𝑥𝑦)
2 onelon 6420 . . . . 5 ((𝑦 ∈ On ∧ 𝑥𝑦) → 𝑥 ∈ On)
32rexlimiva 3153 . . . 4 (∃𝑦 ∈ On 𝑥𝑦𝑥 ∈ On)
41, 3sylbi 217 . . 3 (𝑥 On → 𝑥 ∈ On)
5 vex 3492 . . . . 5 𝑥 ∈ V
65sucid 6477 . . . 4 𝑥 ∈ suc 𝑥
7 onsuc 7847 . . . 4 (𝑥 ∈ On → suc 𝑥 ∈ On)
8 elunii 4936 . . . 4 ((𝑥 ∈ suc 𝑥 ∧ suc 𝑥 ∈ On) → 𝑥 On)
96, 7, 8sylancr 586 . . 3 (𝑥 ∈ On → 𝑥 On)
104, 9impbii 209 . 2 (𝑥 On ↔ 𝑥 ∈ On)
1110eqriv 2737 1 On = On
Colors of variables: wff setvar class
Syntax hints:   = wceq 1537  wcel 2108  wrex 3076   cuni 4931  Oncon0 6395  suc csuc 6397
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-tr 5284  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-ord 6398  df-on 6399  df-suc 6401
This theorem is referenced by:  ordunisuc  7868  limon  7872  orduninsuc  7880  ordtoplem  36401  ordcmp  36413  onsupnmax  43189
  Copyright terms: Public domain W3C validator