MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unon Structured version   Visualization version   GIF version

Theorem unon 7770
Description: The class of all ordinal numbers is its own union. Exercise 11 of [TakeutiZaring] p. 40. (Contributed by NM, 12-Nov-2003.)
Assertion
Ref Expression
unon On = On

Proof of Theorem unon
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eluni2 4865 . . . 4 (𝑥 On ↔ ∃𝑦 ∈ On 𝑥𝑦)
2 onelon 6336 . . . . 5 ((𝑦 ∈ On ∧ 𝑥𝑦) → 𝑥 ∈ On)
32rexlimiva 3122 . . . 4 (∃𝑦 ∈ On 𝑥𝑦𝑥 ∈ On)
41, 3sylbi 217 . . 3 (𝑥 On → 𝑥 ∈ On)
5 vex 3442 . . . . 5 𝑥 ∈ V
65sucid 6395 . . . 4 𝑥 ∈ suc 𝑥
7 onsuc 7751 . . . 4 (𝑥 ∈ On → suc 𝑥 ∈ On)
8 elunii 4866 . . . 4 ((𝑥 ∈ suc 𝑥 ∧ suc 𝑥 ∈ On) → 𝑥 On)
96, 7, 8sylancr 587 . . 3 (𝑥 ∈ On → 𝑥 On)
104, 9impbii 209 . 2 (𝑥 On ↔ 𝑥 ∈ On)
1110eqriv 2726 1 On = On
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2109  wrex 3053   cuni 4861  Oncon0 6311  suc csuc 6313
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-tr 5203  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-ord 6314  df-on 6315  df-suc 6317
This theorem is referenced by:  ordunisuc  7771  limon  7775  orduninsuc  7783  ordtoplem  36408  ordcmp  36420  onsupnmax  43201
  Copyright terms: Public domain W3C validator