![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > unon | Structured version Visualization version GIF version |
Description: The class of all ordinal numbers is its own union. Exercise 11 of [TakeutiZaring] p. 40. (Contributed by NM, 12-Nov-2003.) |
Ref | Expression |
---|---|
unon | ⊢ ∪ On = On |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eluni2 4632 | . . . 4 ⊢ (𝑥 ∈ ∪ On ↔ ∃𝑦 ∈ On 𝑥 ∈ 𝑦) | |
2 | onelon 5966 | . . . . 5 ⊢ ((𝑦 ∈ On ∧ 𝑥 ∈ 𝑦) → 𝑥 ∈ On) | |
3 | 2 | rexlimiva 3209 | . . . 4 ⊢ (∃𝑦 ∈ On 𝑥 ∈ 𝑦 → 𝑥 ∈ On) |
4 | 1, 3 | sylbi 209 | . . 3 ⊢ (𝑥 ∈ ∪ On → 𝑥 ∈ On) |
5 | vex 3388 | . . . . 5 ⊢ 𝑥 ∈ V | |
6 | 5 | sucid 6020 | . . . 4 ⊢ 𝑥 ∈ suc 𝑥 |
7 | suceloni 7247 | . . . 4 ⊢ (𝑥 ∈ On → suc 𝑥 ∈ On) | |
8 | elunii 4633 | . . . 4 ⊢ ((𝑥 ∈ suc 𝑥 ∧ suc 𝑥 ∈ On) → 𝑥 ∈ ∪ On) | |
9 | 6, 7, 8 | sylancr 582 | . . 3 ⊢ (𝑥 ∈ On → 𝑥 ∈ ∪ On) |
10 | 4, 9 | impbii 201 | . 2 ⊢ (𝑥 ∈ ∪ On ↔ 𝑥 ∈ On) |
11 | 10 | eqriv 2796 | 1 ⊢ ∪ On = On |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1653 ∈ wcel 2157 ∃wrex 3090 ∪ cuni 4628 Oncon0 5941 suc csuc 5943 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-sep 4975 ax-nul 4983 ax-pr 5097 ax-un 7183 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3or 1109 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ne 2972 df-ral 3094 df-rex 3095 df-rab 3098 df-v 3387 df-sbc 3634 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-pss 3785 df-nul 4116 df-if 4278 df-sn 4369 df-pr 4371 df-tp 4373 df-op 4375 df-uni 4629 df-br 4844 df-opab 4906 df-tr 4946 df-eprel 5225 df-po 5233 df-so 5234 df-fr 5271 df-we 5273 df-ord 5944 df-on 5945 df-suc 5947 |
This theorem is referenced by: ordunisuc 7266 limon 7270 orduninsuc 7277 ordtoplem 32942 ordcmp 32954 |
Copyright terms: Public domain | W3C validator |