MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unon Structured version   Visualization version   GIF version

Theorem unon 7815
Description: The class of all ordinal numbers is its own union. Exercise 11 of [TakeutiZaring] p. 40. (Contributed by NM, 12-Nov-2003.)
Assertion
Ref Expression
unon On = On

Proof of Theorem unon
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eluni2 4911 . . . 4 (𝑥 On ↔ ∃𝑦 ∈ On 𝑥𝑦)
2 onelon 6386 . . . . 5 ((𝑦 ∈ On ∧ 𝑥𝑦) → 𝑥 ∈ On)
32rexlimiva 3147 . . . 4 (∃𝑦 ∈ On 𝑥𝑦𝑥 ∈ On)
41, 3sylbi 216 . . 3 (𝑥 On → 𝑥 ∈ On)
5 vex 3478 . . . . 5 𝑥 ∈ V
65sucid 6443 . . . 4 𝑥 ∈ suc 𝑥
7 onsuc 7795 . . . 4 (𝑥 ∈ On → suc 𝑥 ∈ On)
8 elunii 4912 . . . 4 ((𝑥 ∈ suc 𝑥 ∧ suc 𝑥 ∈ On) → 𝑥 On)
96, 7, 8sylancr 587 . . 3 (𝑥 ∈ On → 𝑥 On)
104, 9impbii 208 . 2 (𝑥 On ↔ 𝑥 ∈ On)
1110eqriv 2729 1 On = On
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  wcel 2106  wrex 3070   cuni 4907  Oncon0 6361  suc csuc 6363
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pr 5426  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-tr 5265  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-ord 6364  df-on 6365  df-suc 6367
This theorem is referenced by:  ordunisuc  7816  limon  7820  orduninsuc  7828  ordtoplem  35308  ordcmp  35320  onsupnmax  41962
  Copyright terms: Public domain W3C validator