MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unon Structured version   Visualization version   GIF version

Theorem unon 7761
Description: The class of all ordinal numbers is its own union. Exercise 11 of [TakeutiZaring] p. 40. (Contributed by NM, 12-Nov-2003.)
Assertion
Ref Expression
unon On = On

Proof of Theorem unon
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eluni2 4863 . . . 4 (𝑥 On ↔ ∃𝑦 ∈ On 𝑥𝑦)
2 onelon 6331 . . . . 5 ((𝑦 ∈ On ∧ 𝑥𝑦) → 𝑥 ∈ On)
32rexlimiva 3125 . . . 4 (∃𝑦 ∈ On 𝑥𝑦𝑥 ∈ On)
41, 3sylbi 217 . . 3 (𝑥 On → 𝑥 ∈ On)
5 vex 3440 . . . . 5 𝑥 ∈ V
65sucid 6390 . . . 4 𝑥 ∈ suc 𝑥
7 onsuc 7743 . . . 4 (𝑥 ∈ On → suc 𝑥 ∈ On)
8 elunii 4864 . . . 4 ((𝑥 ∈ suc 𝑥 ∧ suc 𝑥 ∈ On) → 𝑥 On)
96, 7, 8sylancr 587 . . 3 (𝑥 ∈ On → 𝑥 On)
104, 9impbii 209 . 2 (𝑥 On ↔ 𝑥 ∈ On)
1110eqriv 2728 1 On = On
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  wcel 2111  wrex 3056   cuni 4859  Oncon0 6306  suc csuc 6308
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-opab 5154  df-tr 5199  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-ord 6309  df-on 6310  df-suc 6312
This theorem is referenced by:  ordunisuc  7762  limon  7766  orduninsuc  7773  ordtoplem  36468  ordcmp  36480  onsupnmax  43260
  Copyright terms: Public domain W3C validator