![]() |
Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > mzpcl1 | Structured version Visualization version GIF version |
Description: Defining property 1 of a polynomially closed function set 𝑃: it contains all constant functions. (Contributed by Stefan O'Rear, 4-Oct-2014.) |
Ref | Expression |
---|---|
mzpcl1 | ⊢ ((𝑃 ∈ (mzPolyCld‘𝑉) ∧ 𝐹 ∈ ℤ) → ((ℤ ↑m 𝑉) × {𝐹}) ∈ 𝑃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 484 | . 2 ⊢ ((𝑃 ∈ (mzPolyCld‘𝑉) ∧ 𝐹 ∈ ℤ) → 𝐹 ∈ ℤ) | |
2 | simpl 482 | . . . 4 ⊢ ((𝑃 ∈ (mzPolyCld‘𝑉) ∧ 𝐹 ∈ ℤ) → 𝑃 ∈ (mzPolyCld‘𝑉)) | |
3 | elfvex 6958 | . . . . . 6 ⊢ (𝑃 ∈ (mzPolyCld‘𝑉) → 𝑉 ∈ V) | |
4 | 3 | adantr 480 | . . . . 5 ⊢ ((𝑃 ∈ (mzPolyCld‘𝑉) ∧ 𝐹 ∈ ℤ) → 𝑉 ∈ V) |
5 | elmzpcl 42682 | . . . . 5 ⊢ (𝑉 ∈ V → (𝑃 ∈ (mzPolyCld‘𝑉) ↔ (𝑃 ⊆ (ℤ ↑m (ℤ ↑m 𝑉)) ∧ ((∀𝑓 ∈ ℤ ((ℤ ↑m 𝑉) × {𝑓}) ∈ 𝑃 ∧ ∀𝑓 ∈ 𝑉 (𝑔 ∈ (ℤ ↑m 𝑉) ↦ (𝑔‘𝑓)) ∈ 𝑃) ∧ ∀𝑓 ∈ 𝑃 ∀𝑔 ∈ 𝑃 ((𝑓 ∘f + 𝑔) ∈ 𝑃 ∧ (𝑓 ∘f · 𝑔) ∈ 𝑃))))) | |
6 | 4, 5 | syl 17 | . . . 4 ⊢ ((𝑃 ∈ (mzPolyCld‘𝑉) ∧ 𝐹 ∈ ℤ) → (𝑃 ∈ (mzPolyCld‘𝑉) ↔ (𝑃 ⊆ (ℤ ↑m (ℤ ↑m 𝑉)) ∧ ((∀𝑓 ∈ ℤ ((ℤ ↑m 𝑉) × {𝑓}) ∈ 𝑃 ∧ ∀𝑓 ∈ 𝑉 (𝑔 ∈ (ℤ ↑m 𝑉) ↦ (𝑔‘𝑓)) ∈ 𝑃) ∧ ∀𝑓 ∈ 𝑃 ∀𝑔 ∈ 𝑃 ((𝑓 ∘f + 𝑔) ∈ 𝑃 ∧ (𝑓 ∘f · 𝑔) ∈ 𝑃))))) |
7 | 2, 6 | mpbid 232 | . . 3 ⊢ ((𝑃 ∈ (mzPolyCld‘𝑉) ∧ 𝐹 ∈ ℤ) → (𝑃 ⊆ (ℤ ↑m (ℤ ↑m 𝑉)) ∧ ((∀𝑓 ∈ ℤ ((ℤ ↑m 𝑉) × {𝑓}) ∈ 𝑃 ∧ ∀𝑓 ∈ 𝑉 (𝑔 ∈ (ℤ ↑m 𝑉) ↦ (𝑔‘𝑓)) ∈ 𝑃) ∧ ∀𝑓 ∈ 𝑃 ∀𝑔 ∈ 𝑃 ((𝑓 ∘f + 𝑔) ∈ 𝑃 ∧ (𝑓 ∘f · 𝑔) ∈ 𝑃)))) |
8 | simprll 778 | . . 3 ⊢ ((𝑃 ⊆ (ℤ ↑m (ℤ ↑m 𝑉)) ∧ ((∀𝑓 ∈ ℤ ((ℤ ↑m 𝑉) × {𝑓}) ∈ 𝑃 ∧ ∀𝑓 ∈ 𝑉 (𝑔 ∈ (ℤ ↑m 𝑉) ↦ (𝑔‘𝑓)) ∈ 𝑃) ∧ ∀𝑓 ∈ 𝑃 ∀𝑔 ∈ 𝑃 ((𝑓 ∘f + 𝑔) ∈ 𝑃 ∧ (𝑓 ∘f · 𝑔) ∈ 𝑃))) → ∀𝑓 ∈ ℤ ((ℤ ↑m 𝑉) × {𝑓}) ∈ 𝑃) | |
9 | 7, 8 | syl 17 | . 2 ⊢ ((𝑃 ∈ (mzPolyCld‘𝑉) ∧ 𝐹 ∈ ℤ) → ∀𝑓 ∈ ℤ ((ℤ ↑m 𝑉) × {𝑓}) ∈ 𝑃) |
10 | sneq 4658 | . . . . 5 ⊢ (𝑓 = 𝐹 → {𝑓} = {𝐹}) | |
11 | 10 | xpeq2d 5730 | . . . 4 ⊢ (𝑓 = 𝐹 → ((ℤ ↑m 𝑉) × {𝑓}) = ((ℤ ↑m 𝑉) × {𝐹})) |
12 | 11 | eleq1d 2829 | . . 3 ⊢ (𝑓 = 𝐹 → (((ℤ ↑m 𝑉) × {𝑓}) ∈ 𝑃 ↔ ((ℤ ↑m 𝑉) × {𝐹}) ∈ 𝑃)) |
13 | 12 | rspcva 3633 | . 2 ⊢ ((𝐹 ∈ ℤ ∧ ∀𝑓 ∈ ℤ ((ℤ ↑m 𝑉) × {𝑓}) ∈ 𝑃) → ((ℤ ↑m 𝑉) × {𝐹}) ∈ 𝑃) |
14 | 1, 9, 13 | syl2anc 583 | 1 ⊢ ((𝑃 ∈ (mzPolyCld‘𝑉) ∧ 𝐹 ∈ ℤ) → ((ℤ ↑m 𝑉) × {𝐹}) ∈ 𝑃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∀wral 3067 Vcvv 3488 ⊆ wss 3976 {csn 4648 ↦ cmpt 5249 × cxp 5698 ‘cfv 6573 (class class class)co 7448 ∘f cof 7712 ↑m cmap 8884 + caddc 11187 · cmul 11189 ℤcz 12639 mzPolyCldcmzpcl 42677 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-iota 6525 df-fun 6575 df-fv 6581 df-ov 7451 df-mzpcl 42679 |
This theorem is referenced by: mzpincl 42690 mzpconst 42691 |
Copyright terms: Public domain | W3C validator |