Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mzpcl1 Structured version   Visualization version   GIF version

Theorem mzpcl1 42762
Description: Defining property 1 of a polynomially closed function set 𝑃: it contains all constant functions. (Contributed by Stefan O'Rear, 4-Oct-2014.)
Assertion
Ref Expression
mzpcl1 ((𝑃 ∈ (mzPolyCld‘𝑉) ∧ 𝐹 ∈ ℤ) → ((ℤ ↑m 𝑉) × {𝐹}) ∈ 𝑃)

Proof of Theorem mzpcl1
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 484 . 2 ((𝑃 ∈ (mzPolyCld‘𝑉) ∧ 𝐹 ∈ ℤ) → 𝐹 ∈ ℤ)
2 simpl 482 . . . 4 ((𝑃 ∈ (mzPolyCld‘𝑉) ∧ 𝐹 ∈ ℤ) → 𝑃 ∈ (mzPolyCld‘𝑉))
3 elfvex 6852 . . . . . 6 (𝑃 ∈ (mzPolyCld‘𝑉) → 𝑉 ∈ V)
43adantr 480 . . . . 5 ((𝑃 ∈ (mzPolyCld‘𝑉) ∧ 𝐹 ∈ ℤ) → 𝑉 ∈ V)
5 elmzpcl 42759 . . . . 5 (𝑉 ∈ V → (𝑃 ∈ (mzPolyCld‘𝑉) ↔ (𝑃 ⊆ (ℤ ↑m (ℤ ↑m 𝑉)) ∧ ((∀𝑓 ∈ ℤ ((ℤ ↑m 𝑉) × {𝑓}) ∈ 𝑃 ∧ ∀𝑓𝑉 (𝑔 ∈ (ℤ ↑m 𝑉) ↦ (𝑔𝑓)) ∈ 𝑃) ∧ ∀𝑓𝑃𝑔𝑃 ((𝑓f + 𝑔) ∈ 𝑃 ∧ (𝑓f · 𝑔) ∈ 𝑃)))))
64, 5syl 17 . . . 4 ((𝑃 ∈ (mzPolyCld‘𝑉) ∧ 𝐹 ∈ ℤ) → (𝑃 ∈ (mzPolyCld‘𝑉) ↔ (𝑃 ⊆ (ℤ ↑m (ℤ ↑m 𝑉)) ∧ ((∀𝑓 ∈ ℤ ((ℤ ↑m 𝑉) × {𝑓}) ∈ 𝑃 ∧ ∀𝑓𝑉 (𝑔 ∈ (ℤ ↑m 𝑉) ↦ (𝑔𝑓)) ∈ 𝑃) ∧ ∀𝑓𝑃𝑔𝑃 ((𝑓f + 𝑔) ∈ 𝑃 ∧ (𝑓f · 𝑔) ∈ 𝑃)))))
72, 6mpbid 232 . . 3 ((𝑃 ∈ (mzPolyCld‘𝑉) ∧ 𝐹 ∈ ℤ) → (𝑃 ⊆ (ℤ ↑m (ℤ ↑m 𝑉)) ∧ ((∀𝑓 ∈ ℤ ((ℤ ↑m 𝑉) × {𝑓}) ∈ 𝑃 ∧ ∀𝑓𝑉 (𝑔 ∈ (ℤ ↑m 𝑉) ↦ (𝑔𝑓)) ∈ 𝑃) ∧ ∀𝑓𝑃𝑔𝑃 ((𝑓f + 𝑔) ∈ 𝑃 ∧ (𝑓f · 𝑔) ∈ 𝑃))))
8 simprll 778 . . 3 ((𝑃 ⊆ (ℤ ↑m (ℤ ↑m 𝑉)) ∧ ((∀𝑓 ∈ ℤ ((ℤ ↑m 𝑉) × {𝑓}) ∈ 𝑃 ∧ ∀𝑓𝑉 (𝑔 ∈ (ℤ ↑m 𝑉) ↦ (𝑔𝑓)) ∈ 𝑃) ∧ ∀𝑓𝑃𝑔𝑃 ((𝑓f + 𝑔) ∈ 𝑃 ∧ (𝑓f · 𝑔) ∈ 𝑃))) → ∀𝑓 ∈ ℤ ((ℤ ↑m 𝑉) × {𝑓}) ∈ 𝑃)
97, 8syl 17 . 2 ((𝑃 ∈ (mzPolyCld‘𝑉) ∧ 𝐹 ∈ ℤ) → ∀𝑓 ∈ ℤ ((ℤ ↑m 𝑉) × {𝑓}) ∈ 𝑃)
10 sneq 4581 . . . . 5 (𝑓 = 𝐹 → {𝑓} = {𝐹})
1110xpeq2d 5641 . . . 4 (𝑓 = 𝐹 → ((ℤ ↑m 𝑉) × {𝑓}) = ((ℤ ↑m 𝑉) × {𝐹}))
1211eleq1d 2816 . . 3 (𝑓 = 𝐹 → (((ℤ ↑m 𝑉) × {𝑓}) ∈ 𝑃 ↔ ((ℤ ↑m 𝑉) × {𝐹}) ∈ 𝑃))
1312rspcva 3570 . 2 ((𝐹 ∈ ℤ ∧ ∀𝑓 ∈ ℤ ((ℤ ↑m 𝑉) × {𝑓}) ∈ 𝑃) → ((ℤ ↑m 𝑉) × {𝐹}) ∈ 𝑃)
141, 9, 13syl2anc 584 1 ((𝑃 ∈ (mzPolyCld‘𝑉) ∧ 𝐹 ∈ ℤ) → ((ℤ ↑m 𝑉) × {𝐹}) ∈ 𝑃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wral 3047  Vcvv 3436  wss 3897  {csn 4571  cmpt 5167   × cxp 5609  cfv 6476  (class class class)co 7341  f cof 7603  m cmap 8745   + caddc 11004   · cmul 11006  cz 12463  mzPolyCldcmzpcl 42754
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-br 5087  df-opab 5149  df-mpt 5168  df-id 5506  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-iota 6432  df-fun 6478  df-fv 6484  df-ov 7344  df-mzpcl 42756
This theorem is referenced by:  mzpincl  42767  mzpconst  42768
  Copyright terms: Public domain W3C validator