Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mzpcl1 Structured version   Visualization version   GIF version

Theorem mzpcl1 40467
Description: Defining property 1 of a polynomially closed function set 𝑃: it contains all constant functions. (Contributed by Stefan O'Rear, 4-Oct-2014.)
Assertion
Ref Expression
mzpcl1 ((𝑃 ∈ (mzPolyCld‘𝑉) ∧ 𝐹 ∈ ℤ) → ((ℤ ↑m 𝑉) × {𝐹}) ∈ 𝑃)

Proof of Theorem mzpcl1
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 484 . 2 ((𝑃 ∈ (mzPolyCld‘𝑉) ∧ 𝐹 ∈ ℤ) → 𝐹 ∈ ℤ)
2 simpl 482 . . . 4 ((𝑃 ∈ (mzPolyCld‘𝑉) ∧ 𝐹 ∈ ℤ) → 𝑃 ∈ (mzPolyCld‘𝑉))
3 elfvex 6789 . . . . . 6 (𝑃 ∈ (mzPolyCld‘𝑉) → 𝑉 ∈ V)
43adantr 480 . . . . 5 ((𝑃 ∈ (mzPolyCld‘𝑉) ∧ 𝐹 ∈ ℤ) → 𝑉 ∈ V)
5 elmzpcl 40464 . . . . 5 (𝑉 ∈ V → (𝑃 ∈ (mzPolyCld‘𝑉) ↔ (𝑃 ⊆ (ℤ ↑m (ℤ ↑m 𝑉)) ∧ ((∀𝑓 ∈ ℤ ((ℤ ↑m 𝑉) × {𝑓}) ∈ 𝑃 ∧ ∀𝑓𝑉 (𝑔 ∈ (ℤ ↑m 𝑉) ↦ (𝑔𝑓)) ∈ 𝑃) ∧ ∀𝑓𝑃𝑔𝑃 ((𝑓f + 𝑔) ∈ 𝑃 ∧ (𝑓f · 𝑔) ∈ 𝑃)))))
64, 5syl 17 . . . 4 ((𝑃 ∈ (mzPolyCld‘𝑉) ∧ 𝐹 ∈ ℤ) → (𝑃 ∈ (mzPolyCld‘𝑉) ↔ (𝑃 ⊆ (ℤ ↑m (ℤ ↑m 𝑉)) ∧ ((∀𝑓 ∈ ℤ ((ℤ ↑m 𝑉) × {𝑓}) ∈ 𝑃 ∧ ∀𝑓𝑉 (𝑔 ∈ (ℤ ↑m 𝑉) ↦ (𝑔𝑓)) ∈ 𝑃) ∧ ∀𝑓𝑃𝑔𝑃 ((𝑓f + 𝑔) ∈ 𝑃 ∧ (𝑓f · 𝑔) ∈ 𝑃)))))
72, 6mpbid 231 . . 3 ((𝑃 ∈ (mzPolyCld‘𝑉) ∧ 𝐹 ∈ ℤ) → (𝑃 ⊆ (ℤ ↑m (ℤ ↑m 𝑉)) ∧ ((∀𝑓 ∈ ℤ ((ℤ ↑m 𝑉) × {𝑓}) ∈ 𝑃 ∧ ∀𝑓𝑉 (𝑔 ∈ (ℤ ↑m 𝑉) ↦ (𝑔𝑓)) ∈ 𝑃) ∧ ∀𝑓𝑃𝑔𝑃 ((𝑓f + 𝑔) ∈ 𝑃 ∧ (𝑓f · 𝑔) ∈ 𝑃))))
8 simprll 775 . . 3 ((𝑃 ⊆ (ℤ ↑m (ℤ ↑m 𝑉)) ∧ ((∀𝑓 ∈ ℤ ((ℤ ↑m 𝑉) × {𝑓}) ∈ 𝑃 ∧ ∀𝑓𝑉 (𝑔 ∈ (ℤ ↑m 𝑉) ↦ (𝑔𝑓)) ∈ 𝑃) ∧ ∀𝑓𝑃𝑔𝑃 ((𝑓f + 𝑔) ∈ 𝑃 ∧ (𝑓f · 𝑔) ∈ 𝑃))) → ∀𝑓 ∈ ℤ ((ℤ ↑m 𝑉) × {𝑓}) ∈ 𝑃)
97, 8syl 17 . 2 ((𝑃 ∈ (mzPolyCld‘𝑉) ∧ 𝐹 ∈ ℤ) → ∀𝑓 ∈ ℤ ((ℤ ↑m 𝑉) × {𝑓}) ∈ 𝑃)
10 sneq 4568 . . . . 5 (𝑓 = 𝐹 → {𝑓} = {𝐹})
1110xpeq2d 5610 . . . 4 (𝑓 = 𝐹 → ((ℤ ↑m 𝑉) × {𝑓}) = ((ℤ ↑m 𝑉) × {𝐹}))
1211eleq1d 2823 . . 3 (𝑓 = 𝐹 → (((ℤ ↑m 𝑉) × {𝑓}) ∈ 𝑃 ↔ ((ℤ ↑m 𝑉) × {𝐹}) ∈ 𝑃))
1312rspcva 3550 . 2 ((𝐹 ∈ ℤ ∧ ∀𝑓 ∈ ℤ ((ℤ ↑m 𝑉) × {𝑓}) ∈ 𝑃) → ((ℤ ↑m 𝑉) × {𝐹}) ∈ 𝑃)
141, 9, 13syl2anc 583 1 ((𝑃 ∈ (mzPolyCld‘𝑉) ∧ 𝐹 ∈ ℤ) → ((ℤ ↑m 𝑉) × {𝐹}) ∈ 𝑃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wral 3063  Vcvv 3422  wss 3883  {csn 4558  cmpt 5153   × cxp 5578  cfv 6418  (class class class)co 7255  f cof 7509  m cmap 8573   + caddc 10805   · cmul 10807  cz 12249  mzPolyCldcmzpcl 40459
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-iota 6376  df-fun 6420  df-fv 6426  df-ov 7258  df-mzpcl 40461
This theorem is referenced by:  mzpincl  40472  mzpconst  40473
  Copyright terms: Public domain W3C validator