Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mzpcl1 Structured version   Visualization version   GIF version

Theorem mzpcl1 42121
Description: Defining property 1 of a polynomially closed function set ๐‘ƒ: it contains all constant functions. (Contributed by Stefan O'Rear, 4-Oct-2014.)
Assertion
Ref Expression
mzpcl1 ((๐‘ƒ โˆˆ (mzPolyCldโ€˜๐‘‰) โˆง ๐น โˆˆ โ„ค) โ†’ ((โ„ค โ†‘m ๐‘‰) ร— {๐น}) โˆˆ ๐‘ƒ)

Proof of Theorem mzpcl1
Dummy variables ๐‘“ ๐‘” are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 484 . 2 ((๐‘ƒ โˆˆ (mzPolyCldโ€˜๐‘‰) โˆง ๐น โˆˆ โ„ค) โ†’ ๐น โˆˆ โ„ค)
2 simpl 482 . . . 4 ((๐‘ƒ โˆˆ (mzPolyCldโ€˜๐‘‰) โˆง ๐น โˆˆ โ„ค) โ†’ ๐‘ƒ โˆˆ (mzPolyCldโ€˜๐‘‰))
3 elfvex 6929 . . . . . 6 (๐‘ƒ โˆˆ (mzPolyCldโ€˜๐‘‰) โ†’ ๐‘‰ โˆˆ V)
43adantr 480 . . . . 5 ((๐‘ƒ โˆˆ (mzPolyCldโ€˜๐‘‰) โˆง ๐น โˆˆ โ„ค) โ†’ ๐‘‰ โˆˆ V)
5 elmzpcl 42118 . . . . 5 (๐‘‰ โˆˆ V โ†’ (๐‘ƒ โˆˆ (mzPolyCldโ€˜๐‘‰) โ†” (๐‘ƒ โІ (โ„ค โ†‘m (โ„ค โ†‘m ๐‘‰)) โˆง ((โˆ€๐‘“ โˆˆ โ„ค ((โ„ค โ†‘m ๐‘‰) ร— {๐‘“}) โˆˆ ๐‘ƒ โˆง โˆ€๐‘“ โˆˆ ๐‘‰ (๐‘” โˆˆ (โ„ค โ†‘m ๐‘‰) โ†ฆ (๐‘”โ€˜๐‘“)) โˆˆ ๐‘ƒ) โˆง โˆ€๐‘“ โˆˆ ๐‘ƒ โˆ€๐‘” โˆˆ ๐‘ƒ ((๐‘“ โˆ˜f + ๐‘”) โˆˆ ๐‘ƒ โˆง (๐‘“ โˆ˜f ยท ๐‘”) โˆˆ ๐‘ƒ)))))
64, 5syl 17 . . . 4 ((๐‘ƒ โˆˆ (mzPolyCldโ€˜๐‘‰) โˆง ๐น โˆˆ โ„ค) โ†’ (๐‘ƒ โˆˆ (mzPolyCldโ€˜๐‘‰) โ†” (๐‘ƒ โІ (โ„ค โ†‘m (โ„ค โ†‘m ๐‘‰)) โˆง ((โˆ€๐‘“ โˆˆ โ„ค ((โ„ค โ†‘m ๐‘‰) ร— {๐‘“}) โˆˆ ๐‘ƒ โˆง โˆ€๐‘“ โˆˆ ๐‘‰ (๐‘” โˆˆ (โ„ค โ†‘m ๐‘‰) โ†ฆ (๐‘”โ€˜๐‘“)) โˆˆ ๐‘ƒ) โˆง โˆ€๐‘“ โˆˆ ๐‘ƒ โˆ€๐‘” โˆˆ ๐‘ƒ ((๐‘“ โˆ˜f + ๐‘”) โˆˆ ๐‘ƒ โˆง (๐‘“ โˆ˜f ยท ๐‘”) โˆˆ ๐‘ƒ)))))
72, 6mpbid 231 . . 3 ((๐‘ƒ โˆˆ (mzPolyCldโ€˜๐‘‰) โˆง ๐น โˆˆ โ„ค) โ†’ (๐‘ƒ โІ (โ„ค โ†‘m (โ„ค โ†‘m ๐‘‰)) โˆง ((โˆ€๐‘“ โˆˆ โ„ค ((โ„ค โ†‘m ๐‘‰) ร— {๐‘“}) โˆˆ ๐‘ƒ โˆง โˆ€๐‘“ โˆˆ ๐‘‰ (๐‘” โˆˆ (โ„ค โ†‘m ๐‘‰) โ†ฆ (๐‘”โ€˜๐‘“)) โˆˆ ๐‘ƒ) โˆง โˆ€๐‘“ โˆˆ ๐‘ƒ โˆ€๐‘” โˆˆ ๐‘ƒ ((๐‘“ โˆ˜f + ๐‘”) โˆˆ ๐‘ƒ โˆง (๐‘“ โˆ˜f ยท ๐‘”) โˆˆ ๐‘ƒ))))
8 simprll 778 . . 3 ((๐‘ƒ โІ (โ„ค โ†‘m (โ„ค โ†‘m ๐‘‰)) โˆง ((โˆ€๐‘“ โˆˆ โ„ค ((โ„ค โ†‘m ๐‘‰) ร— {๐‘“}) โˆˆ ๐‘ƒ โˆง โˆ€๐‘“ โˆˆ ๐‘‰ (๐‘” โˆˆ (โ„ค โ†‘m ๐‘‰) โ†ฆ (๐‘”โ€˜๐‘“)) โˆˆ ๐‘ƒ) โˆง โˆ€๐‘“ โˆˆ ๐‘ƒ โˆ€๐‘” โˆˆ ๐‘ƒ ((๐‘“ โˆ˜f + ๐‘”) โˆˆ ๐‘ƒ โˆง (๐‘“ โˆ˜f ยท ๐‘”) โˆˆ ๐‘ƒ))) โ†’ โˆ€๐‘“ โˆˆ โ„ค ((โ„ค โ†‘m ๐‘‰) ร— {๐‘“}) โˆˆ ๐‘ƒ)
97, 8syl 17 . 2 ((๐‘ƒ โˆˆ (mzPolyCldโ€˜๐‘‰) โˆง ๐น โˆˆ โ„ค) โ†’ โˆ€๐‘“ โˆˆ โ„ค ((โ„ค โ†‘m ๐‘‰) ร— {๐‘“}) โˆˆ ๐‘ƒ)
10 sneq 4634 . . . . 5 (๐‘“ = ๐น โ†’ {๐‘“} = {๐น})
1110xpeq2d 5702 . . . 4 (๐‘“ = ๐น โ†’ ((โ„ค โ†‘m ๐‘‰) ร— {๐‘“}) = ((โ„ค โ†‘m ๐‘‰) ร— {๐น}))
1211eleq1d 2813 . . 3 (๐‘“ = ๐น โ†’ (((โ„ค โ†‘m ๐‘‰) ร— {๐‘“}) โˆˆ ๐‘ƒ โ†” ((โ„ค โ†‘m ๐‘‰) ร— {๐น}) โˆˆ ๐‘ƒ))
1312rspcva 3605 . 2 ((๐น โˆˆ โ„ค โˆง โˆ€๐‘“ โˆˆ โ„ค ((โ„ค โ†‘m ๐‘‰) ร— {๐‘“}) โˆˆ ๐‘ƒ) โ†’ ((โ„ค โ†‘m ๐‘‰) ร— {๐น}) โˆˆ ๐‘ƒ)
141, 9, 13syl2anc 583 1 ((๐‘ƒ โˆˆ (mzPolyCldโ€˜๐‘‰) โˆง ๐น โˆˆ โ„ค) โ†’ ((โ„ค โ†‘m ๐‘‰) ร— {๐น}) โˆˆ ๐‘ƒ)
Colors of variables: wff setvar class
Syntax hints:   โ†’ wi 4   โ†” wb 205   โˆง wa 395   = wceq 1534   โˆˆ wcel 2099  โˆ€wral 3056  Vcvv 3469   โІ wss 3944  {csn 4624   โ†ฆ cmpt 5225   ร— cxp 5670  โ€˜cfv 6542  (class class class)co 7414   โˆ˜f cof 7677   โ†‘m cmap 8838   + caddc 11135   ยท cmul 11137  โ„คcz 12582  mzPolyCldcmzpcl 42113
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-ral 3057  df-rex 3066  df-rab 3428  df-v 3471  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-br 5143  df-opab 5205  df-mpt 5226  df-id 5570  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-iota 6494  df-fun 6544  df-fv 6550  df-ov 7417  df-mzpcl 42115
This theorem is referenced by:  mzpincl  42126  mzpconst  42127
  Copyright terms: Public domain W3C validator