| Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > mzpcl1 | Structured version Visualization version GIF version | ||
| Description: Defining property 1 of a polynomially closed function set 𝑃: it contains all constant functions. (Contributed by Stefan O'Rear, 4-Oct-2014.) |
| Ref | Expression |
|---|---|
| mzpcl1 | ⊢ ((𝑃 ∈ (mzPolyCld‘𝑉) ∧ 𝐹 ∈ ℤ) → ((ℤ ↑m 𝑉) × {𝐹}) ∈ 𝑃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 484 | . 2 ⊢ ((𝑃 ∈ (mzPolyCld‘𝑉) ∧ 𝐹 ∈ ℤ) → 𝐹 ∈ ℤ) | |
| 2 | simpl 482 | . . . 4 ⊢ ((𝑃 ∈ (mzPolyCld‘𝑉) ∧ 𝐹 ∈ ℤ) → 𝑃 ∈ (mzPolyCld‘𝑉)) | |
| 3 | elfvex 6866 | . . . . . 6 ⊢ (𝑃 ∈ (mzPolyCld‘𝑉) → 𝑉 ∈ V) | |
| 4 | 3 | adantr 480 | . . . . 5 ⊢ ((𝑃 ∈ (mzPolyCld‘𝑉) ∧ 𝐹 ∈ ℤ) → 𝑉 ∈ V) |
| 5 | elmzpcl 42883 | . . . . 5 ⊢ (𝑉 ∈ V → (𝑃 ∈ (mzPolyCld‘𝑉) ↔ (𝑃 ⊆ (ℤ ↑m (ℤ ↑m 𝑉)) ∧ ((∀𝑓 ∈ ℤ ((ℤ ↑m 𝑉) × {𝑓}) ∈ 𝑃 ∧ ∀𝑓 ∈ 𝑉 (𝑔 ∈ (ℤ ↑m 𝑉) ↦ (𝑔‘𝑓)) ∈ 𝑃) ∧ ∀𝑓 ∈ 𝑃 ∀𝑔 ∈ 𝑃 ((𝑓 ∘f + 𝑔) ∈ 𝑃 ∧ (𝑓 ∘f · 𝑔) ∈ 𝑃))))) | |
| 6 | 4, 5 | syl 17 | . . . 4 ⊢ ((𝑃 ∈ (mzPolyCld‘𝑉) ∧ 𝐹 ∈ ℤ) → (𝑃 ∈ (mzPolyCld‘𝑉) ↔ (𝑃 ⊆ (ℤ ↑m (ℤ ↑m 𝑉)) ∧ ((∀𝑓 ∈ ℤ ((ℤ ↑m 𝑉) × {𝑓}) ∈ 𝑃 ∧ ∀𝑓 ∈ 𝑉 (𝑔 ∈ (ℤ ↑m 𝑉) ↦ (𝑔‘𝑓)) ∈ 𝑃) ∧ ∀𝑓 ∈ 𝑃 ∀𝑔 ∈ 𝑃 ((𝑓 ∘f + 𝑔) ∈ 𝑃 ∧ (𝑓 ∘f · 𝑔) ∈ 𝑃))))) |
| 7 | 2, 6 | mpbid 232 | . . 3 ⊢ ((𝑃 ∈ (mzPolyCld‘𝑉) ∧ 𝐹 ∈ ℤ) → (𝑃 ⊆ (ℤ ↑m (ℤ ↑m 𝑉)) ∧ ((∀𝑓 ∈ ℤ ((ℤ ↑m 𝑉) × {𝑓}) ∈ 𝑃 ∧ ∀𝑓 ∈ 𝑉 (𝑔 ∈ (ℤ ↑m 𝑉) ↦ (𝑔‘𝑓)) ∈ 𝑃) ∧ ∀𝑓 ∈ 𝑃 ∀𝑔 ∈ 𝑃 ((𝑓 ∘f + 𝑔) ∈ 𝑃 ∧ (𝑓 ∘f · 𝑔) ∈ 𝑃)))) |
| 8 | simprll 778 | . . 3 ⊢ ((𝑃 ⊆ (ℤ ↑m (ℤ ↑m 𝑉)) ∧ ((∀𝑓 ∈ ℤ ((ℤ ↑m 𝑉) × {𝑓}) ∈ 𝑃 ∧ ∀𝑓 ∈ 𝑉 (𝑔 ∈ (ℤ ↑m 𝑉) ↦ (𝑔‘𝑓)) ∈ 𝑃) ∧ ∀𝑓 ∈ 𝑃 ∀𝑔 ∈ 𝑃 ((𝑓 ∘f + 𝑔) ∈ 𝑃 ∧ (𝑓 ∘f · 𝑔) ∈ 𝑃))) → ∀𝑓 ∈ ℤ ((ℤ ↑m 𝑉) × {𝑓}) ∈ 𝑃) | |
| 9 | 7, 8 | syl 17 | . 2 ⊢ ((𝑃 ∈ (mzPolyCld‘𝑉) ∧ 𝐹 ∈ ℤ) → ∀𝑓 ∈ ℤ ((ℤ ↑m 𝑉) × {𝑓}) ∈ 𝑃) |
| 10 | sneq 4587 | . . . . 5 ⊢ (𝑓 = 𝐹 → {𝑓} = {𝐹}) | |
| 11 | 10 | xpeq2d 5651 | . . . 4 ⊢ (𝑓 = 𝐹 → ((ℤ ↑m 𝑉) × {𝑓}) = ((ℤ ↑m 𝑉) × {𝐹})) |
| 12 | 11 | eleq1d 2818 | . . 3 ⊢ (𝑓 = 𝐹 → (((ℤ ↑m 𝑉) × {𝑓}) ∈ 𝑃 ↔ ((ℤ ↑m 𝑉) × {𝐹}) ∈ 𝑃)) |
| 13 | 12 | rspcva 3571 | . 2 ⊢ ((𝐹 ∈ ℤ ∧ ∀𝑓 ∈ ℤ ((ℤ ↑m 𝑉) × {𝑓}) ∈ 𝑃) → ((ℤ ↑m 𝑉) × {𝐹}) ∈ 𝑃) |
| 14 | 1, 9, 13 | syl2anc 584 | 1 ⊢ ((𝑃 ∈ (mzPolyCld‘𝑉) ∧ 𝐹 ∈ ℤ) → ((ℤ ↑m 𝑉) × {𝐹}) ∈ 𝑃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ∀wral 3048 Vcvv 3437 ⊆ wss 3898 {csn 4577 ↦ cmpt 5176 × cxp 5619 ‘cfv 6489 (class class class)co 7355 ∘f cof 7617 ↑m cmap 8759 + caddc 11020 · cmul 11022 ℤcz 12479 mzPolyCldcmzpcl 42878 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-iota 6445 df-fun 6491 df-fv 6497 df-ov 7358 df-mzpcl 42880 |
| This theorem is referenced by: mzpincl 42891 mzpconst 42892 |
| Copyright terms: Public domain | W3C validator |