Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mzpcl2 Structured version   Visualization version   GIF version

Theorem mzpcl2 42742
Description: Defining property 2 of a polynomially closed function set 𝑃: it contains all projections. (Contributed by Stefan O'Rear, 4-Oct-2014.)
Assertion
Ref Expression
mzpcl2 ((𝑃 ∈ (mzPolyCld‘𝑉) ∧ 𝐹𝑉) → (𝑔 ∈ (ℤ ↑m 𝑉) ↦ (𝑔𝐹)) ∈ 𝑃)
Distinct variable groups:   𝑔,𝑉   𝑃,𝑔   𝑔,𝐹

Proof of Theorem mzpcl2
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 simpr 484 . 2 ((𝑃 ∈ (mzPolyCld‘𝑉) ∧ 𝐹𝑉) → 𝐹𝑉)
2 simpl 482 . . . 4 ((𝑃 ∈ (mzPolyCld‘𝑉) ∧ 𝐹𝑉) → 𝑃 ∈ (mzPolyCld‘𝑉))
3 elfvex 6852 . . . . . 6 (𝑃 ∈ (mzPolyCld‘𝑉) → 𝑉 ∈ V)
43adantr 480 . . . . 5 ((𝑃 ∈ (mzPolyCld‘𝑉) ∧ 𝐹𝑉) → 𝑉 ∈ V)
5 elmzpcl 42738 . . . . 5 (𝑉 ∈ V → (𝑃 ∈ (mzPolyCld‘𝑉) ↔ (𝑃 ⊆ (ℤ ↑m (ℤ ↑m 𝑉)) ∧ ((∀𝑓 ∈ ℤ ((ℤ ↑m 𝑉) × {𝑓}) ∈ 𝑃 ∧ ∀𝑓𝑉 (𝑔 ∈ (ℤ ↑m 𝑉) ↦ (𝑔𝑓)) ∈ 𝑃) ∧ ∀𝑓𝑃𝑔𝑃 ((𝑓f + 𝑔) ∈ 𝑃 ∧ (𝑓f · 𝑔) ∈ 𝑃)))))
64, 5syl 17 . . . 4 ((𝑃 ∈ (mzPolyCld‘𝑉) ∧ 𝐹𝑉) → (𝑃 ∈ (mzPolyCld‘𝑉) ↔ (𝑃 ⊆ (ℤ ↑m (ℤ ↑m 𝑉)) ∧ ((∀𝑓 ∈ ℤ ((ℤ ↑m 𝑉) × {𝑓}) ∈ 𝑃 ∧ ∀𝑓𝑉 (𝑔 ∈ (ℤ ↑m 𝑉) ↦ (𝑔𝑓)) ∈ 𝑃) ∧ ∀𝑓𝑃𝑔𝑃 ((𝑓f + 𝑔) ∈ 𝑃 ∧ (𝑓f · 𝑔) ∈ 𝑃)))))
72, 6mpbid 232 . . 3 ((𝑃 ∈ (mzPolyCld‘𝑉) ∧ 𝐹𝑉) → (𝑃 ⊆ (ℤ ↑m (ℤ ↑m 𝑉)) ∧ ((∀𝑓 ∈ ℤ ((ℤ ↑m 𝑉) × {𝑓}) ∈ 𝑃 ∧ ∀𝑓𝑉 (𝑔 ∈ (ℤ ↑m 𝑉) ↦ (𝑔𝑓)) ∈ 𝑃) ∧ ∀𝑓𝑃𝑔𝑃 ((𝑓f + 𝑔) ∈ 𝑃 ∧ (𝑓f · 𝑔) ∈ 𝑃))))
8 simprlr 779 . . 3 ((𝑃 ⊆ (ℤ ↑m (ℤ ↑m 𝑉)) ∧ ((∀𝑓 ∈ ℤ ((ℤ ↑m 𝑉) × {𝑓}) ∈ 𝑃 ∧ ∀𝑓𝑉 (𝑔 ∈ (ℤ ↑m 𝑉) ↦ (𝑔𝑓)) ∈ 𝑃) ∧ ∀𝑓𝑃𝑔𝑃 ((𝑓f + 𝑔) ∈ 𝑃 ∧ (𝑓f · 𝑔) ∈ 𝑃))) → ∀𝑓𝑉 (𝑔 ∈ (ℤ ↑m 𝑉) ↦ (𝑔𝑓)) ∈ 𝑃)
97, 8syl 17 . 2 ((𝑃 ∈ (mzPolyCld‘𝑉) ∧ 𝐹𝑉) → ∀𝑓𝑉 (𝑔 ∈ (ℤ ↑m 𝑉) ↦ (𝑔𝑓)) ∈ 𝑃)
10 fveq2 6817 . . . . 5 (𝑓 = 𝐹 → (𝑔𝑓) = (𝑔𝐹))
1110mpteq2dv 5183 . . . 4 (𝑓 = 𝐹 → (𝑔 ∈ (ℤ ↑m 𝑉) ↦ (𝑔𝑓)) = (𝑔 ∈ (ℤ ↑m 𝑉) ↦ (𝑔𝐹)))
1211eleq1d 2814 . . 3 (𝑓 = 𝐹 → ((𝑔 ∈ (ℤ ↑m 𝑉) ↦ (𝑔𝑓)) ∈ 𝑃 ↔ (𝑔 ∈ (ℤ ↑m 𝑉) ↦ (𝑔𝐹)) ∈ 𝑃))
1312rspcva 3573 . 2 ((𝐹𝑉 ∧ ∀𝑓𝑉 (𝑔 ∈ (ℤ ↑m 𝑉) ↦ (𝑔𝑓)) ∈ 𝑃) → (𝑔 ∈ (ℤ ↑m 𝑉) ↦ (𝑔𝐹)) ∈ 𝑃)
141, 9, 13syl2anc 584 1 ((𝑃 ∈ (mzPolyCld‘𝑉) ∧ 𝐹𝑉) → (𝑔 ∈ (ℤ ↑m 𝑉) ↦ (𝑔𝐹)) ∈ 𝑃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2110  wral 3045  Vcvv 3434  wss 3900  {csn 4574  cmpt 5170   × cxp 5612  cfv 6477  (class class class)co 7341  f cof 7603  m cmap 8745   + caddc 11001   · cmul 11003  cz 12460  mzPolyCldcmzpcl 42733
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3394  df-v 3436  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4858  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-iota 6433  df-fun 6479  df-fv 6485  df-ov 7344  df-mzpcl 42735
This theorem is referenced by:  mzpincl  42746  mzpproj  42749
  Copyright terms: Public domain W3C validator