Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mzpcl2 Structured version   Visualization version   GIF version

Theorem mzpcl2 42837
Description: Defining property 2 of a polynomially closed function set 𝑃: it contains all projections. (Contributed by Stefan O'Rear, 4-Oct-2014.)
Assertion
Ref Expression
mzpcl2 ((𝑃 ∈ (mzPolyCld‘𝑉) ∧ 𝐹𝑉) → (𝑔 ∈ (ℤ ↑m 𝑉) ↦ (𝑔𝐹)) ∈ 𝑃)
Distinct variable groups:   𝑔,𝑉   𝑃,𝑔   𝑔,𝐹

Proof of Theorem mzpcl2
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 simpr 484 . 2 ((𝑃 ∈ (mzPolyCld‘𝑉) ∧ 𝐹𝑉) → 𝐹𝑉)
2 simpl 482 . . . 4 ((𝑃 ∈ (mzPolyCld‘𝑉) ∧ 𝐹𝑉) → 𝑃 ∈ (mzPolyCld‘𝑉))
3 elfvex 6866 . . . . . 6 (𝑃 ∈ (mzPolyCld‘𝑉) → 𝑉 ∈ V)
43adantr 480 . . . . 5 ((𝑃 ∈ (mzPolyCld‘𝑉) ∧ 𝐹𝑉) → 𝑉 ∈ V)
5 elmzpcl 42833 . . . . 5 (𝑉 ∈ V → (𝑃 ∈ (mzPolyCld‘𝑉) ↔ (𝑃 ⊆ (ℤ ↑m (ℤ ↑m 𝑉)) ∧ ((∀𝑓 ∈ ℤ ((ℤ ↑m 𝑉) × {𝑓}) ∈ 𝑃 ∧ ∀𝑓𝑉 (𝑔 ∈ (ℤ ↑m 𝑉) ↦ (𝑔𝑓)) ∈ 𝑃) ∧ ∀𝑓𝑃𝑔𝑃 ((𝑓f + 𝑔) ∈ 𝑃 ∧ (𝑓f · 𝑔) ∈ 𝑃)))))
64, 5syl 17 . . . 4 ((𝑃 ∈ (mzPolyCld‘𝑉) ∧ 𝐹𝑉) → (𝑃 ∈ (mzPolyCld‘𝑉) ↔ (𝑃 ⊆ (ℤ ↑m (ℤ ↑m 𝑉)) ∧ ((∀𝑓 ∈ ℤ ((ℤ ↑m 𝑉) × {𝑓}) ∈ 𝑃 ∧ ∀𝑓𝑉 (𝑔 ∈ (ℤ ↑m 𝑉) ↦ (𝑔𝑓)) ∈ 𝑃) ∧ ∀𝑓𝑃𝑔𝑃 ((𝑓f + 𝑔) ∈ 𝑃 ∧ (𝑓f · 𝑔) ∈ 𝑃)))))
72, 6mpbid 232 . . 3 ((𝑃 ∈ (mzPolyCld‘𝑉) ∧ 𝐹𝑉) → (𝑃 ⊆ (ℤ ↑m (ℤ ↑m 𝑉)) ∧ ((∀𝑓 ∈ ℤ ((ℤ ↑m 𝑉) × {𝑓}) ∈ 𝑃 ∧ ∀𝑓𝑉 (𝑔 ∈ (ℤ ↑m 𝑉) ↦ (𝑔𝑓)) ∈ 𝑃) ∧ ∀𝑓𝑃𝑔𝑃 ((𝑓f + 𝑔) ∈ 𝑃 ∧ (𝑓f · 𝑔) ∈ 𝑃))))
8 simprlr 779 . . 3 ((𝑃 ⊆ (ℤ ↑m (ℤ ↑m 𝑉)) ∧ ((∀𝑓 ∈ ℤ ((ℤ ↑m 𝑉) × {𝑓}) ∈ 𝑃 ∧ ∀𝑓𝑉 (𝑔 ∈ (ℤ ↑m 𝑉) ↦ (𝑔𝑓)) ∈ 𝑃) ∧ ∀𝑓𝑃𝑔𝑃 ((𝑓f + 𝑔) ∈ 𝑃 ∧ (𝑓f · 𝑔) ∈ 𝑃))) → ∀𝑓𝑉 (𝑔 ∈ (ℤ ↑m 𝑉) ↦ (𝑔𝑓)) ∈ 𝑃)
97, 8syl 17 . 2 ((𝑃 ∈ (mzPolyCld‘𝑉) ∧ 𝐹𝑉) → ∀𝑓𝑉 (𝑔 ∈ (ℤ ↑m 𝑉) ↦ (𝑔𝑓)) ∈ 𝑃)
10 fveq2 6831 . . . . 5 (𝑓 = 𝐹 → (𝑔𝑓) = (𝑔𝐹))
1110mpteq2dv 5189 . . . 4 (𝑓 = 𝐹 → (𝑔 ∈ (ℤ ↑m 𝑉) ↦ (𝑔𝑓)) = (𝑔 ∈ (ℤ ↑m 𝑉) ↦ (𝑔𝐹)))
1211eleq1d 2818 . . 3 (𝑓 = 𝐹 → ((𝑔 ∈ (ℤ ↑m 𝑉) ↦ (𝑔𝑓)) ∈ 𝑃 ↔ (𝑔 ∈ (ℤ ↑m 𝑉) ↦ (𝑔𝐹)) ∈ 𝑃))
1312rspcva 3572 . 2 ((𝐹𝑉 ∧ ∀𝑓𝑉 (𝑔 ∈ (ℤ ↑m 𝑉) ↦ (𝑔𝑓)) ∈ 𝑃) → (𝑔 ∈ (ℤ ↑m 𝑉) ↦ (𝑔𝐹)) ∈ 𝑃)
141, 9, 13syl2anc 584 1 ((𝑃 ∈ (mzPolyCld‘𝑉) ∧ 𝐹𝑉) → (𝑔 ∈ (ℤ ↑m 𝑉) ↦ (𝑔𝐹)) ∈ 𝑃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2113  wral 3049  Vcvv 3438  wss 3899  {csn 4577  cmpt 5176   × cxp 5619  cfv 6489  (class class class)co 7355  f cof 7617  m cmap 8759   + caddc 11019   · cmul 11021  cz 12478  mzPolyCldcmzpcl 42828
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2883  df-ne 2931  df-ral 3050  df-rex 3059  df-rab 3398  df-v 3440  df-dif 3902  df-un 3904  df-in 3906  df-ss 3916  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-iota 6445  df-fun 6491  df-fv 6497  df-ov 7358  df-mzpcl 42830
This theorem is referenced by:  mzpincl  42841  mzpproj  42844
  Copyright terms: Public domain W3C validator