![]() |
Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > mzpcl2 | Structured version Visualization version GIF version |
Description: Defining property 2 of a polynomially closed function set 𝑃: it contains all projections. (Contributed by Stefan O'Rear, 4-Oct-2014.) |
Ref | Expression |
---|---|
mzpcl2 | ⊢ ((𝑃 ∈ (mzPolyCld‘𝑉) ∧ 𝐹 ∈ 𝑉) → (𝑔 ∈ (ℤ ↑m 𝑉) ↦ (𝑔‘𝐹)) ∈ 𝑃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 486 | . 2 ⊢ ((𝑃 ∈ (mzPolyCld‘𝑉) ∧ 𝐹 ∈ 𝑉) → 𝐹 ∈ 𝑉) | |
2 | simpl 484 | . . . 4 ⊢ ((𝑃 ∈ (mzPolyCld‘𝑉) ∧ 𝐹 ∈ 𝑉) → 𝑃 ∈ (mzPolyCld‘𝑉)) | |
3 | elfvex 6926 | . . . . . 6 ⊢ (𝑃 ∈ (mzPolyCld‘𝑉) → 𝑉 ∈ V) | |
4 | 3 | adantr 482 | . . . . 5 ⊢ ((𝑃 ∈ (mzPolyCld‘𝑉) ∧ 𝐹 ∈ 𝑉) → 𝑉 ∈ V) |
5 | elmzpcl 41397 | . . . . 5 ⊢ (𝑉 ∈ V → (𝑃 ∈ (mzPolyCld‘𝑉) ↔ (𝑃 ⊆ (ℤ ↑m (ℤ ↑m 𝑉)) ∧ ((∀𝑓 ∈ ℤ ((ℤ ↑m 𝑉) × {𝑓}) ∈ 𝑃 ∧ ∀𝑓 ∈ 𝑉 (𝑔 ∈ (ℤ ↑m 𝑉) ↦ (𝑔‘𝑓)) ∈ 𝑃) ∧ ∀𝑓 ∈ 𝑃 ∀𝑔 ∈ 𝑃 ((𝑓 ∘f + 𝑔) ∈ 𝑃 ∧ (𝑓 ∘f · 𝑔) ∈ 𝑃))))) | |
6 | 4, 5 | syl 17 | . . . 4 ⊢ ((𝑃 ∈ (mzPolyCld‘𝑉) ∧ 𝐹 ∈ 𝑉) → (𝑃 ∈ (mzPolyCld‘𝑉) ↔ (𝑃 ⊆ (ℤ ↑m (ℤ ↑m 𝑉)) ∧ ((∀𝑓 ∈ ℤ ((ℤ ↑m 𝑉) × {𝑓}) ∈ 𝑃 ∧ ∀𝑓 ∈ 𝑉 (𝑔 ∈ (ℤ ↑m 𝑉) ↦ (𝑔‘𝑓)) ∈ 𝑃) ∧ ∀𝑓 ∈ 𝑃 ∀𝑔 ∈ 𝑃 ((𝑓 ∘f + 𝑔) ∈ 𝑃 ∧ (𝑓 ∘f · 𝑔) ∈ 𝑃))))) |
7 | 2, 6 | mpbid 231 | . . 3 ⊢ ((𝑃 ∈ (mzPolyCld‘𝑉) ∧ 𝐹 ∈ 𝑉) → (𝑃 ⊆ (ℤ ↑m (ℤ ↑m 𝑉)) ∧ ((∀𝑓 ∈ ℤ ((ℤ ↑m 𝑉) × {𝑓}) ∈ 𝑃 ∧ ∀𝑓 ∈ 𝑉 (𝑔 ∈ (ℤ ↑m 𝑉) ↦ (𝑔‘𝑓)) ∈ 𝑃) ∧ ∀𝑓 ∈ 𝑃 ∀𝑔 ∈ 𝑃 ((𝑓 ∘f + 𝑔) ∈ 𝑃 ∧ (𝑓 ∘f · 𝑔) ∈ 𝑃)))) |
8 | simprlr 779 | . . 3 ⊢ ((𝑃 ⊆ (ℤ ↑m (ℤ ↑m 𝑉)) ∧ ((∀𝑓 ∈ ℤ ((ℤ ↑m 𝑉) × {𝑓}) ∈ 𝑃 ∧ ∀𝑓 ∈ 𝑉 (𝑔 ∈ (ℤ ↑m 𝑉) ↦ (𝑔‘𝑓)) ∈ 𝑃) ∧ ∀𝑓 ∈ 𝑃 ∀𝑔 ∈ 𝑃 ((𝑓 ∘f + 𝑔) ∈ 𝑃 ∧ (𝑓 ∘f · 𝑔) ∈ 𝑃))) → ∀𝑓 ∈ 𝑉 (𝑔 ∈ (ℤ ↑m 𝑉) ↦ (𝑔‘𝑓)) ∈ 𝑃) | |
9 | 7, 8 | syl 17 | . 2 ⊢ ((𝑃 ∈ (mzPolyCld‘𝑉) ∧ 𝐹 ∈ 𝑉) → ∀𝑓 ∈ 𝑉 (𝑔 ∈ (ℤ ↑m 𝑉) ↦ (𝑔‘𝑓)) ∈ 𝑃) |
10 | fveq2 6888 | . . . . 5 ⊢ (𝑓 = 𝐹 → (𝑔‘𝑓) = (𝑔‘𝐹)) | |
11 | 10 | mpteq2dv 5249 | . . . 4 ⊢ (𝑓 = 𝐹 → (𝑔 ∈ (ℤ ↑m 𝑉) ↦ (𝑔‘𝑓)) = (𝑔 ∈ (ℤ ↑m 𝑉) ↦ (𝑔‘𝐹))) |
12 | 11 | eleq1d 2819 | . . 3 ⊢ (𝑓 = 𝐹 → ((𝑔 ∈ (ℤ ↑m 𝑉) ↦ (𝑔‘𝑓)) ∈ 𝑃 ↔ (𝑔 ∈ (ℤ ↑m 𝑉) ↦ (𝑔‘𝐹)) ∈ 𝑃)) |
13 | 12 | rspcva 3610 | . 2 ⊢ ((𝐹 ∈ 𝑉 ∧ ∀𝑓 ∈ 𝑉 (𝑔 ∈ (ℤ ↑m 𝑉) ↦ (𝑔‘𝑓)) ∈ 𝑃) → (𝑔 ∈ (ℤ ↑m 𝑉) ↦ (𝑔‘𝐹)) ∈ 𝑃) |
14 | 1, 9, 13 | syl2anc 585 | 1 ⊢ ((𝑃 ∈ (mzPolyCld‘𝑉) ∧ 𝐹 ∈ 𝑉) → (𝑔 ∈ (ℤ ↑m 𝑉) ↦ (𝑔‘𝐹)) ∈ 𝑃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 = wceq 1542 ∈ wcel 2107 ∀wral 3062 Vcvv 3475 ⊆ wss 3947 {csn 4627 ↦ cmpt 5230 × cxp 5673 ‘cfv 6540 (class class class)co 7404 ∘f cof 7663 ↑m cmap 8816 + caddc 11109 · cmul 11111 ℤcz 12554 mzPolyCldcmzpcl 41392 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-iota 6492 df-fun 6542 df-fv 6548 df-ov 7407 df-mzpcl 41394 |
This theorem is referenced by: mzpincl 41405 mzpproj 41408 |
Copyright terms: Public domain | W3C validator |