| Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > mzpcl2 | Structured version Visualization version GIF version | ||
| Description: Defining property 2 of a polynomially closed function set 𝑃: it contains all projections. (Contributed by Stefan O'Rear, 4-Oct-2014.) |
| Ref | Expression |
|---|---|
| mzpcl2 | ⊢ ((𝑃 ∈ (mzPolyCld‘𝑉) ∧ 𝐹 ∈ 𝑉) → (𝑔 ∈ (ℤ ↑m 𝑉) ↦ (𝑔‘𝐹)) ∈ 𝑃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 484 | . 2 ⊢ ((𝑃 ∈ (mzPolyCld‘𝑉) ∧ 𝐹 ∈ 𝑉) → 𝐹 ∈ 𝑉) | |
| 2 | simpl 482 | . . . 4 ⊢ ((𝑃 ∈ (mzPolyCld‘𝑉) ∧ 𝐹 ∈ 𝑉) → 𝑃 ∈ (mzPolyCld‘𝑉)) | |
| 3 | elfvex 6913 | . . . . . 6 ⊢ (𝑃 ∈ (mzPolyCld‘𝑉) → 𝑉 ∈ V) | |
| 4 | 3 | adantr 480 | . . . . 5 ⊢ ((𝑃 ∈ (mzPolyCld‘𝑉) ∧ 𝐹 ∈ 𝑉) → 𝑉 ∈ V) |
| 5 | elmzpcl 42696 | . . . . 5 ⊢ (𝑉 ∈ V → (𝑃 ∈ (mzPolyCld‘𝑉) ↔ (𝑃 ⊆ (ℤ ↑m (ℤ ↑m 𝑉)) ∧ ((∀𝑓 ∈ ℤ ((ℤ ↑m 𝑉) × {𝑓}) ∈ 𝑃 ∧ ∀𝑓 ∈ 𝑉 (𝑔 ∈ (ℤ ↑m 𝑉) ↦ (𝑔‘𝑓)) ∈ 𝑃) ∧ ∀𝑓 ∈ 𝑃 ∀𝑔 ∈ 𝑃 ((𝑓 ∘f + 𝑔) ∈ 𝑃 ∧ (𝑓 ∘f · 𝑔) ∈ 𝑃))))) | |
| 6 | 4, 5 | syl 17 | . . . 4 ⊢ ((𝑃 ∈ (mzPolyCld‘𝑉) ∧ 𝐹 ∈ 𝑉) → (𝑃 ∈ (mzPolyCld‘𝑉) ↔ (𝑃 ⊆ (ℤ ↑m (ℤ ↑m 𝑉)) ∧ ((∀𝑓 ∈ ℤ ((ℤ ↑m 𝑉) × {𝑓}) ∈ 𝑃 ∧ ∀𝑓 ∈ 𝑉 (𝑔 ∈ (ℤ ↑m 𝑉) ↦ (𝑔‘𝑓)) ∈ 𝑃) ∧ ∀𝑓 ∈ 𝑃 ∀𝑔 ∈ 𝑃 ((𝑓 ∘f + 𝑔) ∈ 𝑃 ∧ (𝑓 ∘f · 𝑔) ∈ 𝑃))))) |
| 7 | 2, 6 | mpbid 232 | . . 3 ⊢ ((𝑃 ∈ (mzPolyCld‘𝑉) ∧ 𝐹 ∈ 𝑉) → (𝑃 ⊆ (ℤ ↑m (ℤ ↑m 𝑉)) ∧ ((∀𝑓 ∈ ℤ ((ℤ ↑m 𝑉) × {𝑓}) ∈ 𝑃 ∧ ∀𝑓 ∈ 𝑉 (𝑔 ∈ (ℤ ↑m 𝑉) ↦ (𝑔‘𝑓)) ∈ 𝑃) ∧ ∀𝑓 ∈ 𝑃 ∀𝑔 ∈ 𝑃 ((𝑓 ∘f + 𝑔) ∈ 𝑃 ∧ (𝑓 ∘f · 𝑔) ∈ 𝑃)))) |
| 8 | simprlr 779 | . . 3 ⊢ ((𝑃 ⊆ (ℤ ↑m (ℤ ↑m 𝑉)) ∧ ((∀𝑓 ∈ ℤ ((ℤ ↑m 𝑉) × {𝑓}) ∈ 𝑃 ∧ ∀𝑓 ∈ 𝑉 (𝑔 ∈ (ℤ ↑m 𝑉) ↦ (𝑔‘𝑓)) ∈ 𝑃) ∧ ∀𝑓 ∈ 𝑃 ∀𝑔 ∈ 𝑃 ((𝑓 ∘f + 𝑔) ∈ 𝑃 ∧ (𝑓 ∘f · 𝑔) ∈ 𝑃))) → ∀𝑓 ∈ 𝑉 (𝑔 ∈ (ℤ ↑m 𝑉) ↦ (𝑔‘𝑓)) ∈ 𝑃) | |
| 9 | 7, 8 | syl 17 | . 2 ⊢ ((𝑃 ∈ (mzPolyCld‘𝑉) ∧ 𝐹 ∈ 𝑉) → ∀𝑓 ∈ 𝑉 (𝑔 ∈ (ℤ ↑m 𝑉) ↦ (𝑔‘𝑓)) ∈ 𝑃) |
| 10 | fveq2 6875 | . . . . 5 ⊢ (𝑓 = 𝐹 → (𝑔‘𝑓) = (𝑔‘𝐹)) | |
| 11 | 10 | mpteq2dv 5215 | . . . 4 ⊢ (𝑓 = 𝐹 → (𝑔 ∈ (ℤ ↑m 𝑉) ↦ (𝑔‘𝑓)) = (𝑔 ∈ (ℤ ↑m 𝑉) ↦ (𝑔‘𝐹))) |
| 12 | 11 | eleq1d 2819 | . . 3 ⊢ (𝑓 = 𝐹 → ((𝑔 ∈ (ℤ ↑m 𝑉) ↦ (𝑔‘𝑓)) ∈ 𝑃 ↔ (𝑔 ∈ (ℤ ↑m 𝑉) ↦ (𝑔‘𝐹)) ∈ 𝑃)) |
| 13 | 12 | rspcva 3599 | . 2 ⊢ ((𝐹 ∈ 𝑉 ∧ ∀𝑓 ∈ 𝑉 (𝑔 ∈ (ℤ ↑m 𝑉) ↦ (𝑔‘𝑓)) ∈ 𝑃) → (𝑔 ∈ (ℤ ↑m 𝑉) ↦ (𝑔‘𝐹)) ∈ 𝑃) |
| 14 | 1, 9, 13 | syl2anc 584 | 1 ⊢ ((𝑃 ∈ (mzPolyCld‘𝑉) ∧ 𝐹 ∈ 𝑉) → (𝑔 ∈ (ℤ ↑m 𝑉) ↦ (𝑔‘𝐹)) ∈ 𝑃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∀wral 3051 Vcvv 3459 ⊆ wss 3926 {csn 4601 ↦ cmpt 5201 × cxp 5652 ‘cfv 6530 (class class class)co 7403 ∘f cof 7667 ↑m cmap 8838 + caddc 11130 · cmul 11132 ℤcz 12586 mzPolyCldcmzpcl 42691 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-iota 6483 df-fun 6532 df-fv 6538 df-ov 7406 df-mzpcl 42693 |
| This theorem is referenced by: mzpincl 42704 mzpproj 42707 |
| Copyright terms: Public domain | W3C validator |