Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elmzpcl Structured version   Visualization version   GIF version

Theorem elmzpcl 41035
Description: Double substitution lemma for mzPolyCld. (Contributed by Stefan O'Rear, 4-Oct-2014.)
Assertion
Ref Expression
elmzpcl (𝑉 ∈ V → (𝑃 ∈ (mzPolyCld‘𝑉) ↔ (𝑃 ⊆ (ℤ ↑m (ℤ ↑m 𝑉)) ∧ ((∀𝑖 ∈ ℤ ((ℤ ↑m 𝑉) × {𝑖}) ∈ 𝑃 ∧ ∀𝑗𝑉 (𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝑥𝑗)) ∈ 𝑃) ∧ ∀𝑓𝑃𝑔𝑃 ((𝑓f + 𝑔) ∈ 𝑃 ∧ (𝑓f · 𝑔) ∈ 𝑃)))))
Distinct variable groups:   𝑓,𝑉,𝑔   𝑖,𝑉   𝑗,𝑉,𝑥   𝑃,𝑓,𝑔   𝑃,𝑖   𝑃,𝑗,𝑥

Proof of Theorem elmzpcl
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 mzpclval 41034 . . 3 (𝑉 ∈ V → (mzPolyCld‘𝑉) = {𝑝 ∈ 𝒫 (ℤ ↑m (ℤ ↑m 𝑉)) ∣ ((∀𝑖 ∈ ℤ ((ℤ ↑m 𝑉) × {𝑖}) ∈ 𝑝 ∧ ∀𝑗𝑉 (𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝑥𝑗)) ∈ 𝑝) ∧ ∀𝑓𝑝𝑔𝑝 ((𝑓f + 𝑔) ∈ 𝑝 ∧ (𝑓f · 𝑔) ∈ 𝑝))})
21eleq2d 2823 . 2 (𝑉 ∈ V → (𝑃 ∈ (mzPolyCld‘𝑉) ↔ 𝑃 ∈ {𝑝 ∈ 𝒫 (ℤ ↑m (ℤ ↑m 𝑉)) ∣ ((∀𝑖 ∈ ℤ ((ℤ ↑m 𝑉) × {𝑖}) ∈ 𝑝 ∧ ∀𝑗𝑉 (𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝑥𝑗)) ∈ 𝑝) ∧ ∀𝑓𝑝𝑔𝑝 ((𝑓f + 𝑔) ∈ 𝑝 ∧ (𝑓f · 𝑔) ∈ 𝑝))}))
3 eleq2 2826 . . . . . . 7 (𝑝 = 𝑃 → (((ℤ ↑m 𝑉) × {𝑖}) ∈ 𝑝 ↔ ((ℤ ↑m 𝑉) × {𝑖}) ∈ 𝑃))
43ralbidv 3174 . . . . . 6 (𝑝 = 𝑃 → (∀𝑖 ∈ ℤ ((ℤ ↑m 𝑉) × {𝑖}) ∈ 𝑝 ↔ ∀𝑖 ∈ ℤ ((ℤ ↑m 𝑉) × {𝑖}) ∈ 𝑃))
5 eleq2 2826 . . . . . . 7 (𝑝 = 𝑃 → ((𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝑥𝑗)) ∈ 𝑝 ↔ (𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝑥𝑗)) ∈ 𝑃))
65ralbidv 3174 . . . . . 6 (𝑝 = 𝑃 → (∀𝑗𝑉 (𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝑥𝑗)) ∈ 𝑝 ↔ ∀𝑗𝑉 (𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝑥𝑗)) ∈ 𝑃))
74, 6anbi12d 631 . . . . 5 (𝑝 = 𝑃 → ((∀𝑖 ∈ ℤ ((ℤ ↑m 𝑉) × {𝑖}) ∈ 𝑝 ∧ ∀𝑗𝑉 (𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝑥𝑗)) ∈ 𝑝) ↔ (∀𝑖 ∈ ℤ ((ℤ ↑m 𝑉) × {𝑖}) ∈ 𝑃 ∧ ∀𝑗𝑉 (𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝑥𝑗)) ∈ 𝑃)))
8 eleq2 2826 . . . . . . . 8 (𝑝 = 𝑃 → ((𝑓f + 𝑔) ∈ 𝑝 ↔ (𝑓f + 𝑔) ∈ 𝑃))
9 eleq2 2826 . . . . . . . 8 (𝑝 = 𝑃 → ((𝑓f · 𝑔) ∈ 𝑝 ↔ (𝑓f · 𝑔) ∈ 𝑃))
108, 9anbi12d 631 . . . . . . 7 (𝑝 = 𝑃 → (((𝑓f + 𝑔) ∈ 𝑝 ∧ (𝑓f · 𝑔) ∈ 𝑝) ↔ ((𝑓f + 𝑔) ∈ 𝑃 ∧ (𝑓f · 𝑔) ∈ 𝑃)))
1110raleqbi1dv 3307 . . . . . 6 (𝑝 = 𝑃 → (∀𝑔𝑝 ((𝑓f + 𝑔) ∈ 𝑝 ∧ (𝑓f · 𝑔) ∈ 𝑝) ↔ ∀𝑔𝑃 ((𝑓f + 𝑔) ∈ 𝑃 ∧ (𝑓f · 𝑔) ∈ 𝑃)))
1211raleqbi1dv 3307 . . . . 5 (𝑝 = 𝑃 → (∀𝑓𝑝𝑔𝑝 ((𝑓f + 𝑔) ∈ 𝑝 ∧ (𝑓f · 𝑔) ∈ 𝑝) ↔ ∀𝑓𝑃𝑔𝑃 ((𝑓f + 𝑔) ∈ 𝑃 ∧ (𝑓f · 𝑔) ∈ 𝑃)))
137, 12anbi12d 631 . . . 4 (𝑝 = 𝑃 → (((∀𝑖 ∈ ℤ ((ℤ ↑m 𝑉) × {𝑖}) ∈ 𝑝 ∧ ∀𝑗𝑉 (𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝑥𝑗)) ∈ 𝑝) ∧ ∀𝑓𝑝𝑔𝑝 ((𝑓f + 𝑔) ∈ 𝑝 ∧ (𝑓f · 𝑔) ∈ 𝑝)) ↔ ((∀𝑖 ∈ ℤ ((ℤ ↑m 𝑉) × {𝑖}) ∈ 𝑃 ∧ ∀𝑗𝑉 (𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝑥𝑗)) ∈ 𝑃) ∧ ∀𝑓𝑃𝑔𝑃 ((𝑓f + 𝑔) ∈ 𝑃 ∧ (𝑓f · 𝑔) ∈ 𝑃))))
1413elrab 3645 . . 3 (𝑃 ∈ {𝑝 ∈ 𝒫 (ℤ ↑m (ℤ ↑m 𝑉)) ∣ ((∀𝑖 ∈ ℤ ((ℤ ↑m 𝑉) × {𝑖}) ∈ 𝑝 ∧ ∀𝑗𝑉 (𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝑥𝑗)) ∈ 𝑝) ∧ ∀𝑓𝑝𝑔𝑝 ((𝑓f + 𝑔) ∈ 𝑝 ∧ (𝑓f · 𝑔) ∈ 𝑝))} ↔ (𝑃 ∈ 𝒫 (ℤ ↑m (ℤ ↑m 𝑉)) ∧ ((∀𝑖 ∈ ℤ ((ℤ ↑m 𝑉) × {𝑖}) ∈ 𝑃 ∧ ∀𝑗𝑉 (𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝑥𝑗)) ∈ 𝑃) ∧ ∀𝑓𝑃𝑔𝑃 ((𝑓f + 𝑔) ∈ 𝑃 ∧ (𝑓f · 𝑔) ∈ 𝑃))))
15 ovex 7390 . . . . 5 (ℤ ↑m (ℤ ↑m 𝑉)) ∈ V
1615elpw2 5302 . . . 4 (𝑃 ∈ 𝒫 (ℤ ↑m (ℤ ↑m 𝑉)) ↔ 𝑃 ⊆ (ℤ ↑m (ℤ ↑m 𝑉)))
1716anbi1i 624 . . 3 ((𝑃 ∈ 𝒫 (ℤ ↑m (ℤ ↑m 𝑉)) ∧ ((∀𝑖 ∈ ℤ ((ℤ ↑m 𝑉) × {𝑖}) ∈ 𝑃 ∧ ∀𝑗𝑉 (𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝑥𝑗)) ∈ 𝑃) ∧ ∀𝑓𝑃𝑔𝑃 ((𝑓f + 𝑔) ∈ 𝑃 ∧ (𝑓f · 𝑔) ∈ 𝑃))) ↔ (𝑃 ⊆ (ℤ ↑m (ℤ ↑m 𝑉)) ∧ ((∀𝑖 ∈ ℤ ((ℤ ↑m 𝑉) × {𝑖}) ∈ 𝑃 ∧ ∀𝑗𝑉 (𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝑥𝑗)) ∈ 𝑃) ∧ ∀𝑓𝑃𝑔𝑃 ((𝑓f + 𝑔) ∈ 𝑃 ∧ (𝑓f · 𝑔) ∈ 𝑃))))
1814, 17bitri 274 . 2 (𝑃 ∈ {𝑝 ∈ 𝒫 (ℤ ↑m (ℤ ↑m 𝑉)) ∣ ((∀𝑖 ∈ ℤ ((ℤ ↑m 𝑉) × {𝑖}) ∈ 𝑝 ∧ ∀𝑗𝑉 (𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝑥𝑗)) ∈ 𝑝) ∧ ∀𝑓𝑝𝑔𝑝 ((𝑓f + 𝑔) ∈ 𝑝 ∧ (𝑓f · 𝑔) ∈ 𝑝))} ↔ (𝑃 ⊆ (ℤ ↑m (ℤ ↑m 𝑉)) ∧ ((∀𝑖 ∈ ℤ ((ℤ ↑m 𝑉) × {𝑖}) ∈ 𝑃 ∧ ∀𝑗𝑉 (𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝑥𝑗)) ∈ 𝑃) ∧ ∀𝑓𝑃𝑔𝑃 ((𝑓f + 𝑔) ∈ 𝑃 ∧ (𝑓f · 𝑔) ∈ 𝑃))))
192, 18bitrdi 286 1 (𝑉 ∈ V → (𝑃 ∈ (mzPolyCld‘𝑉) ↔ (𝑃 ⊆ (ℤ ↑m (ℤ ↑m 𝑉)) ∧ ((∀𝑖 ∈ ℤ ((ℤ ↑m 𝑉) × {𝑖}) ∈ 𝑃 ∧ ∀𝑗𝑉 (𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝑥𝑗)) ∈ 𝑃) ∧ ∀𝑓𝑃𝑔𝑃 ((𝑓f + 𝑔) ∈ 𝑃 ∧ (𝑓f · 𝑔) ∈ 𝑃)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  wral 3064  {crab 3407  Vcvv 3445  wss 3910  𝒫 cpw 4560  {csn 4586  cmpt 5188   × cxp 5631  cfv 6496  (class class class)co 7357  f cof 7615  m cmap 8765   + caddc 11054   · cmul 11056  cz 12499  mzPolyCldcmzpcl 41030
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-ral 3065  df-rex 3074  df-rab 3408  df-v 3447  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-br 5106  df-opab 5168  df-mpt 5189  df-id 5531  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-iota 6448  df-fun 6498  df-fv 6504  df-ov 7360  df-mzpcl 41032
This theorem is referenced by:  mzpclall  41036  mzpcl1  41038  mzpcl2  41039  mzpcl34  41040  mzpincl  41043  mzpindd  41055
  Copyright terms: Public domain W3C validator