| Step | Hyp | Ref
| Expression |
| 1 | | mzpclval 42736 |
. . 3
⊢ (𝑉 ∈ V →
(mzPolyCld‘𝑉) =
{𝑝 ∈ 𝒫
(ℤ ↑m (ℤ ↑m 𝑉)) ∣ ((∀𝑖 ∈ ℤ ((ℤ ↑m
𝑉) × {𝑖}) ∈ 𝑝 ∧ ∀𝑗 ∈ 𝑉 (𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝑥‘𝑗)) ∈ 𝑝) ∧ ∀𝑓 ∈ 𝑝 ∀𝑔 ∈ 𝑝 ((𝑓 ∘f + 𝑔) ∈ 𝑝 ∧ (𝑓 ∘f · 𝑔) ∈ 𝑝))}) |
| 2 | 1 | eleq2d 2827 |
. 2
⊢ (𝑉 ∈ V → (𝑃 ∈ (mzPolyCld‘𝑉) ↔ 𝑃 ∈ {𝑝 ∈ 𝒫 (ℤ ↑m
(ℤ ↑m 𝑉)) ∣ ((∀𝑖 ∈ ℤ ((ℤ ↑m
𝑉) × {𝑖}) ∈ 𝑝 ∧ ∀𝑗 ∈ 𝑉 (𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝑥‘𝑗)) ∈ 𝑝) ∧ ∀𝑓 ∈ 𝑝 ∀𝑔 ∈ 𝑝 ((𝑓 ∘f + 𝑔) ∈ 𝑝 ∧ (𝑓 ∘f · 𝑔) ∈ 𝑝))})) |
| 3 | | eleq2 2830 |
. . . . . . 7
⊢ (𝑝 = 𝑃 → (((ℤ ↑m 𝑉) × {𝑖}) ∈ 𝑝 ↔ ((ℤ ↑m 𝑉) × {𝑖}) ∈ 𝑃)) |
| 4 | 3 | ralbidv 3178 |
. . . . . 6
⊢ (𝑝 = 𝑃 → (∀𝑖 ∈ ℤ ((ℤ ↑m
𝑉) × {𝑖}) ∈ 𝑝 ↔ ∀𝑖 ∈ ℤ ((ℤ ↑m
𝑉) × {𝑖}) ∈ 𝑃)) |
| 5 | | eleq2 2830 |
. . . . . . 7
⊢ (𝑝 = 𝑃 → ((𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝑥‘𝑗)) ∈ 𝑝 ↔ (𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝑥‘𝑗)) ∈ 𝑃)) |
| 6 | 5 | ralbidv 3178 |
. . . . . 6
⊢ (𝑝 = 𝑃 → (∀𝑗 ∈ 𝑉 (𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝑥‘𝑗)) ∈ 𝑝 ↔ ∀𝑗 ∈ 𝑉 (𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝑥‘𝑗)) ∈ 𝑃)) |
| 7 | 4, 6 | anbi12d 632 |
. . . . 5
⊢ (𝑝 = 𝑃 → ((∀𝑖 ∈ ℤ ((ℤ ↑m
𝑉) × {𝑖}) ∈ 𝑝 ∧ ∀𝑗 ∈ 𝑉 (𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝑥‘𝑗)) ∈ 𝑝) ↔ (∀𝑖 ∈ ℤ ((ℤ ↑m
𝑉) × {𝑖}) ∈ 𝑃 ∧ ∀𝑗 ∈ 𝑉 (𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝑥‘𝑗)) ∈ 𝑃))) |
| 8 | | eleq2 2830 |
. . . . . . . 8
⊢ (𝑝 = 𝑃 → ((𝑓 ∘f + 𝑔) ∈ 𝑝 ↔ (𝑓 ∘f + 𝑔) ∈ 𝑃)) |
| 9 | | eleq2 2830 |
. . . . . . . 8
⊢ (𝑝 = 𝑃 → ((𝑓 ∘f · 𝑔) ∈ 𝑝 ↔ (𝑓 ∘f · 𝑔) ∈ 𝑃)) |
| 10 | 8, 9 | anbi12d 632 |
. . . . . . 7
⊢ (𝑝 = 𝑃 → (((𝑓 ∘f + 𝑔) ∈ 𝑝 ∧ (𝑓 ∘f · 𝑔) ∈ 𝑝) ↔ ((𝑓 ∘f + 𝑔) ∈ 𝑃 ∧ (𝑓 ∘f · 𝑔) ∈ 𝑃))) |
| 11 | 10 | raleqbi1dv 3338 |
. . . . . 6
⊢ (𝑝 = 𝑃 → (∀𝑔 ∈ 𝑝 ((𝑓 ∘f + 𝑔) ∈ 𝑝 ∧ (𝑓 ∘f · 𝑔) ∈ 𝑝) ↔ ∀𝑔 ∈ 𝑃 ((𝑓 ∘f + 𝑔) ∈ 𝑃 ∧ (𝑓 ∘f · 𝑔) ∈ 𝑃))) |
| 12 | 11 | raleqbi1dv 3338 |
. . . . 5
⊢ (𝑝 = 𝑃 → (∀𝑓 ∈ 𝑝 ∀𝑔 ∈ 𝑝 ((𝑓 ∘f + 𝑔) ∈ 𝑝 ∧ (𝑓 ∘f · 𝑔) ∈ 𝑝) ↔ ∀𝑓 ∈ 𝑃 ∀𝑔 ∈ 𝑃 ((𝑓 ∘f + 𝑔) ∈ 𝑃 ∧ (𝑓 ∘f · 𝑔) ∈ 𝑃))) |
| 13 | 7, 12 | anbi12d 632 |
. . . 4
⊢ (𝑝 = 𝑃 → (((∀𝑖 ∈ ℤ ((ℤ ↑m
𝑉) × {𝑖}) ∈ 𝑝 ∧ ∀𝑗 ∈ 𝑉 (𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝑥‘𝑗)) ∈ 𝑝) ∧ ∀𝑓 ∈ 𝑝 ∀𝑔 ∈ 𝑝 ((𝑓 ∘f + 𝑔) ∈ 𝑝 ∧ (𝑓 ∘f · 𝑔) ∈ 𝑝)) ↔ ((∀𝑖 ∈ ℤ ((ℤ ↑m
𝑉) × {𝑖}) ∈ 𝑃 ∧ ∀𝑗 ∈ 𝑉 (𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝑥‘𝑗)) ∈ 𝑃) ∧ ∀𝑓 ∈ 𝑃 ∀𝑔 ∈ 𝑃 ((𝑓 ∘f + 𝑔) ∈ 𝑃 ∧ (𝑓 ∘f · 𝑔) ∈ 𝑃)))) |
| 14 | 13 | elrab 3692 |
. . 3
⊢ (𝑃 ∈ {𝑝 ∈ 𝒫 (ℤ ↑m
(ℤ ↑m 𝑉)) ∣ ((∀𝑖 ∈ ℤ ((ℤ ↑m
𝑉) × {𝑖}) ∈ 𝑝 ∧ ∀𝑗 ∈ 𝑉 (𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝑥‘𝑗)) ∈ 𝑝) ∧ ∀𝑓 ∈ 𝑝 ∀𝑔 ∈ 𝑝 ((𝑓 ∘f + 𝑔) ∈ 𝑝 ∧ (𝑓 ∘f · 𝑔) ∈ 𝑝))} ↔ (𝑃 ∈ 𝒫 (ℤ
↑m (ℤ ↑m 𝑉)) ∧ ((∀𝑖 ∈ ℤ ((ℤ ↑m
𝑉) × {𝑖}) ∈ 𝑃 ∧ ∀𝑗 ∈ 𝑉 (𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝑥‘𝑗)) ∈ 𝑃) ∧ ∀𝑓 ∈ 𝑃 ∀𝑔 ∈ 𝑃 ((𝑓 ∘f + 𝑔) ∈ 𝑃 ∧ (𝑓 ∘f · 𝑔) ∈ 𝑃)))) |
| 15 | | ovex 7464 |
. . . . 5
⊢ (ℤ
↑m (ℤ ↑m 𝑉)) ∈ V |
| 16 | 15 | elpw2 5334 |
. . . 4
⊢ (𝑃 ∈ 𝒫 (ℤ
↑m (ℤ ↑m 𝑉)) ↔ 𝑃 ⊆ (ℤ ↑m
(ℤ ↑m 𝑉))) |
| 17 | 16 | anbi1i 624 |
. . 3
⊢ ((𝑃 ∈ 𝒫 (ℤ
↑m (ℤ ↑m 𝑉)) ∧ ((∀𝑖 ∈ ℤ ((ℤ ↑m
𝑉) × {𝑖}) ∈ 𝑃 ∧ ∀𝑗 ∈ 𝑉 (𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝑥‘𝑗)) ∈ 𝑃) ∧ ∀𝑓 ∈ 𝑃 ∀𝑔 ∈ 𝑃 ((𝑓 ∘f + 𝑔) ∈ 𝑃 ∧ (𝑓 ∘f · 𝑔) ∈ 𝑃))) ↔ (𝑃 ⊆ (ℤ ↑m
(ℤ ↑m 𝑉)) ∧ ((∀𝑖 ∈ ℤ ((ℤ ↑m
𝑉) × {𝑖}) ∈ 𝑃 ∧ ∀𝑗 ∈ 𝑉 (𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝑥‘𝑗)) ∈ 𝑃) ∧ ∀𝑓 ∈ 𝑃 ∀𝑔 ∈ 𝑃 ((𝑓 ∘f + 𝑔) ∈ 𝑃 ∧ (𝑓 ∘f · 𝑔) ∈ 𝑃)))) |
| 18 | 14, 17 | bitri 275 |
. 2
⊢ (𝑃 ∈ {𝑝 ∈ 𝒫 (ℤ ↑m
(ℤ ↑m 𝑉)) ∣ ((∀𝑖 ∈ ℤ ((ℤ ↑m
𝑉) × {𝑖}) ∈ 𝑝 ∧ ∀𝑗 ∈ 𝑉 (𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝑥‘𝑗)) ∈ 𝑝) ∧ ∀𝑓 ∈ 𝑝 ∀𝑔 ∈ 𝑝 ((𝑓 ∘f + 𝑔) ∈ 𝑝 ∧ (𝑓 ∘f · 𝑔) ∈ 𝑝))} ↔ (𝑃 ⊆ (ℤ ↑m
(ℤ ↑m 𝑉)) ∧ ((∀𝑖 ∈ ℤ ((ℤ ↑m
𝑉) × {𝑖}) ∈ 𝑃 ∧ ∀𝑗 ∈ 𝑉 (𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝑥‘𝑗)) ∈ 𝑃) ∧ ∀𝑓 ∈ 𝑃 ∀𝑔 ∈ 𝑃 ((𝑓 ∘f + 𝑔) ∈ 𝑃 ∧ (𝑓 ∘f · 𝑔) ∈ 𝑃)))) |
| 19 | 2, 18 | bitrdi 287 |
1
⊢ (𝑉 ∈ V → (𝑃 ∈ (mzPolyCld‘𝑉) ↔ (𝑃 ⊆ (ℤ ↑m
(ℤ ↑m 𝑉)) ∧ ((∀𝑖 ∈ ℤ ((ℤ ↑m
𝑉) × {𝑖}) ∈ 𝑃 ∧ ∀𝑗 ∈ 𝑉 (𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝑥‘𝑗)) ∈ 𝑃) ∧ ∀𝑓 ∈ 𝑃 ∀𝑔 ∈ 𝑃 ((𝑓 ∘f + 𝑔) ∈ 𝑃 ∧ (𝑓 ∘f · 𝑔) ∈ 𝑃))))) |