Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elmzpcl Structured version   Visualization version   GIF version

Theorem elmzpcl 42014
Description: Double substitution lemma for mzPolyCld. (Contributed by Stefan O'Rear, 4-Oct-2014.)
Assertion
Ref Expression
elmzpcl (๐‘‰ โˆˆ V โ†’ (๐‘ƒ โˆˆ (mzPolyCldโ€˜๐‘‰) โ†” (๐‘ƒ โІ (โ„ค โ†‘m (โ„ค โ†‘m ๐‘‰)) โˆง ((โˆ€๐‘– โˆˆ โ„ค ((โ„ค โ†‘m ๐‘‰) ร— {๐‘–}) โˆˆ ๐‘ƒ โˆง โˆ€๐‘— โˆˆ ๐‘‰ (๐‘ฅ โˆˆ (โ„ค โ†‘m ๐‘‰) โ†ฆ (๐‘ฅโ€˜๐‘—)) โˆˆ ๐‘ƒ) โˆง โˆ€๐‘“ โˆˆ ๐‘ƒ โˆ€๐‘” โˆˆ ๐‘ƒ ((๐‘“ โˆ˜f + ๐‘”) โˆˆ ๐‘ƒ โˆง (๐‘“ โˆ˜f ยท ๐‘”) โˆˆ ๐‘ƒ)))))
Distinct variable groups:   ๐‘“,๐‘‰,๐‘”   ๐‘–,๐‘‰   ๐‘—,๐‘‰,๐‘ฅ   ๐‘ƒ,๐‘“,๐‘”   ๐‘ƒ,๐‘–   ๐‘ƒ,๐‘—,๐‘ฅ

Proof of Theorem elmzpcl
Dummy variable ๐‘ is distinct from all other variables.
StepHypRef Expression
1 mzpclval 42013 . . 3 (๐‘‰ โˆˆ V โ†’ (mzPolyCldโ€˜๐‘‰) = {๐‘ โˆˆ ๐’ซ (โ„ค โ†‘m (โ„ค โ†‘m ๐‘‰)) โˆฃ ((โˆ€๐‘– โˆˆ โ„ค ((โ„ค โ†‘m ๐‘‰) ร— {๐‘–}) โˆˆ ๐‘ โˆง โˆ€๐‘— โˆˆ ๐‘‰ (๐‘ฅ โˆˆ (โ„ค โ†‘m ๐‘‰) โ†ฆ (๐‘ฅโ€˜๐‘—)) โˆˆ ๐‘) โˆง โˆ€๐‘“ โˆˆ ๐‘ โˆ€๐‘” โˆˆ ๐‘ ((๐‘“ โˆ˜f + ๐‘”) โˆˆ ๐‘ โˆง (๐‘“ โˆ˜f ยท ๐‘”) โˆˆ ๐‘))})
21eleq2d 2811 . 2 (๐‘‰ โˆˆ V โ†’ (๐‘ƒ โˆˆ (mzPolyCldโ€˜๐‘‰) โ†” ๐‘ƒ โˆˆ {๐‘ โˆˆ ๐’ซ (โ„ค โ†‘m (โ„ค โ†‘m ๐‘‰)) โˆฃ ((โˆ€๐‘– โˆˆ โ„ค ((โ„ค โ†‘m ๐‘‰) ร— {๐‘–}) โˆˆ ๐‘ โˆง โˆ€๐‘— โˆˆ ๐‘‰ (๐‘ฅ โˆˆ (โ„ค โ†‘m ๐‘‰) โ†ฆ (๐‘ฅโ€˜๐‘—)) โˆˆ ๐‘) โˆง โˆ€๐‘“ โˆˆ ๐‘ โˆ€๐‘” โˆˆ ๐‘ ((๐‘“ โˆ˜f + ๐‘”) โˆˆ ๐‘ โˆง (๐‘“ โˆ˜f ยท ๐‘”) โˆˆ ๐‘))}))
3 eleq2 2814 . . . . . . 7 (๐‘ = ๐‘ƒ โ†’ (((โ„ค โ†‘m ๐‘‰) ร— {๐‘–}) โˆˆ ๐‘ โ†” ((โ„ค โ†‘m ๐‘‰) ร— {๐‘–}) โˆˆ ๐‘ƒ))
43ralbidv 3169 . . . . . 6 (๐‘ = ๐‘ƒ โ†’ (โˆ€๐‘– โˆˆ โ„ค ((โ„ค โ†‘m ๐‘‰) ร— {๐‘–}) โˆˆ ๐‘ โ†” โˆ€๐‘– โˆˆ โ„ค ((โ„ค โ†‘m ๐‘‰) ร— {๐‘–}) โˆˆ ๐‘ƒ))
5 eleq2 2814 . . . . . . 7 (๐‘ = ๐‘ƒ โ†’ ((๐‘ฅ โˆˆ (โ„ค โ†‘m ๐‘‰) โ†ฆ (๐‘ฅโ€˜๐‘—)) โˆˆ ๐‘ โ†” (๐‘ฅ โˆˆ (โ„ค โ†‘m ๐‘‰) โ†ฆ (๐‘ฅโ€˜๐‘—)) โˆˆ ๐‘ƒ))
65ralbidv 3169 . . . . . 6 (๐‘ = ๐‘ƒ โ†’ (โˆ€๐‘— โˆˆ ๐‘‰ (๐‘ฅ โˆˆ (โ„ค โ†‘m ๐‘‰) โ†ฆ (๐‘ฅโ€˜๐‘—)) โˆˆ ๐‘ โ†” โˆ€๐‘— โˆˆ ๐‘‰ (๐‘ฅ โˆˆ (โ„ค โ†‘m ๐‘‰) โ†ฆ (๐‘ฅโ€˜๐‘—)) โˆˆ ๐‘ƒ))
74, 6anbi12d 630 . . . . 5 (๐‘ = ๐‘ƒ โ†’ ((โˆ€๐‘– โˆˆ โ„ค ((โ„ค โ†‘m ๐‘‰) ร— {๐‘–}) โˆˆ ๐‘ โˆง โˆ€๐‘— โˆˆ ๐‘‰ (๐‘ฅ โˆˆ (โ„ค โ†‘m ๐‘‰) โ†ฆ (๐‘ฅโ€˜๐‘—)) โˆˆ ๐‘) โ†” (โˆ€๐‘– โˆˆ โ„ค ((โ„ค โ†‘m ๐‘‰) ร— {๐‘–}) โˆˆ ๐‘ƒ โˆง โˆ€๐‘— โˆˆ ๐‘‰ (๐‘ฅ โˆˆ (โ„ค โ†‘m ๐‘‰) โ†ฆ (๐‘ฅโ€˜๐‘—)) โˆˆ ๐‘ƒ)))
8 eleq2 2814 . . . . . . . 8 (๐‘ = ๐‘ƒ โ†’ ((๐‘“ โˆ˜f + ๐‘”) โˆˆ ๐‘ โ†” (๐‘“ โˆ˜f + ๐‘”) โˆˆ ๐‘ƒ))
9 eleq2 2814 . . . . . . . 8 (๐‘ = ๐‘ƒ โ†’ ((๐‘“ โˆ˜f ยท ๐‘”) โˆˆ ๐‘ โ†” (๐‘“ โˆ˜f ยท ๐‘”) โˆˆ ๐‘ƒ))
108, 9anbi12d 630 . . . . . . 7 (๐‘ = ๐‘ƒ โ†’ (((๐‘“ โˆ˜f + ๐‘”) โˆˆ ๐‘ โˆง (๐‘“ โˆ˜f ยท ๐‘”) โˆˆ ๐‘) โ†” ((๐‘“ โˆ˜f + ๐‘”) โˆˆ ๐‘ƒ โˆง (๐‘“ โˆ˜f ยท ๐‘”) โˆˆ ๐‘ƒ)))
1110raleqbi1dv 3325 . . . . . 6 (๐‘ = ๐‘ƒ โ†’ (โˆ€๐‘” โˆˆ ๐‘ ((๐‘“ โˆ˜f + ๐‘”) โˆˆ ๐‘ โˆง (๐‘“ โˆ˜f ยท ๐‘”) โˆˆ ๐‘) โ†” โˆ€๐‘” โˆˆ ๐‘ƒ ((๐‘“ โˆ˜f + ๐‘”) โˆˆ ๐‘ƒ โˆง (๐‘“ โˆ˜f ยท ๐‘”) โˆˆ ๐‘ƒ)))
1211raleqbi1dv 3325 . . . . 5 (๐‘ = ๐‘ƒ โ†’ (โˆ€๐‘“ โˆˆ ๐‘ โˆ€๐‘” โˆˆ ๐‘ ((๐‘“ โˆ˜f + ๐‘”) โˆˆ ๐‘ โˆง (๐‘“ โˆ˜f ยท ๐‘”) โˆˆ ๐‘) โ†” โˆ€๐‘“ โˆˆ ๐‘ƒ โˆ€๐‘” โˆˆ ๐‘ƒ ((๐‘“ โˆ˜f + ๐‘”) โˆˆ ๐‘ƒ โˆง (๐‘“ โˆ˜f ยท ๐‘”) โˆˆ ๐‘ƒ)))
137, 12anbi12d 630 . . . 4 (๐‘ = ๐‘ƒ โ†’ (((โˆ€๐‘– โˆˆ โ„ค ((โ„ค โ†‘m ๐‘‰) ร— {๐‘–}) โˆˆ ๐‘ โˆง โˆ€๐‘— โˆˆ ๐‘‰ (๐‘ฅ โˆˆ (โ„ค โ†‘m ๐‘‰) โ†ฆ (๐‘ฅโ€˜๐‘—)) โˆˆ ๐‘) โˆง โˆ€๐‘“ โˆˆ ๐‘ โˆ€๐‘” โˆˆ ๐‘ ((๐‘“ โˆ˜f + ๐‘”) โˆˆ ๐‘ โˆง (๐‘“ โˆ˜f ยท ๐‘”) โˆˆ ๐‘)) โ†” ((โˆ€๐‘– โˆˆ โ„ค ((โ„ค โ†‘m ๐‘‰) ร— {๐‘–}) โˆˆ ๐‘ƒ โˆง โˆ€๐‘— โˆˆ ๐‘‰ (๐‘ฅ โˆˆ (โ„ค โ†‘m ๐‘‰) โ†ฆ (๐‘ฅโ€˜๐‘—)) โˆˆ ๐‘ƒ) โˆง โˆ€๐‘“ โˆˆ ๐‘ƒ โˆ€๐‘” โˆˆ ๐‘ƒ ((๐‘“ โˆ˜f + ๐‘”) โˆˆ ๐‘ƒ โˆง (๐‘“ โˆ˜f ยท ๐‘”) โˆˆ ๐‘ƒ))))
1413elrab 3676 . . 3 (๐‘ƒ โˆˆ {๐‘ โˆˆ ๐’ซ (โ„ค โ†‘m (โ„ค โ†‘m ๐‘‰)) โˆฃ ((โˆ€๐‘– โˆˆ โ„ค ((โ„ค โ†‘m ๐‘‰) ร— {๐‘–}) โˆˆ ๐‘ โˆง โˆ€๐‘— โˆˆ ๐‘‰ (๐‘ฅ โˆˆ (โ„ค โ†‘m ๐‘‰) โ†ฆ (๐‘ฅโ€˜๐‘—)) โˆˆ ๐‘) โˆง โˆ€๐‘“ โˆˆ ๐‘ โˆ€๐‘” โˆˆ ๐‘ ((๐‘“ โˆ˜f + ๐‘”) โˆˆ ๐‘ โˆง (๐‘“ โˆ˜f ยท ๐‘”) โˆˆ ๐‘))} โ†” (๐‘ƒ โˆˆ ๐’ซ (โ„ค โ†‘m (โ„ค โ†‘m ๐‘‰)) โˆง ((โˆ€๐‘– โˆˆ โ„ค ((โ„ค โ†‘m ๐‘‰) ร— {๐‘–}) โˆˆ ๐‘ƒ โˆง โˆ€๐‘— โˆˆ ๐‘‰ (๐‘ฅ โˆˆ (โ„ค โ†‘m ๐‘‰) โ†ฆ (๐‘ฅโ€˜๐‘—)) โˆˆ ๐‘ƒ) โˆง โˆ€๐‘“ โˆˆ ๐‘ƒ โˆ€๐‘” โˆˆ ๐‘ƒ ((๐‘“ โˆ˜f + ๐‘”) โˆˆ ๐‘ƒ โˆง (๐‘“ โˆ˜f ยท ๐‘”) โˆˆ ๐‘ƒ))))
15 ovex 7435 . . . . 5 (โ„ค โ†‘m (โ„ค โ†‘m ๐‘‰)) โˆˆ V
1615elpw2 5336 . . . 4 (๐‘ƒ โˆˆ ๐’ซ (โ„ค โ†‘m (โ„ค โ†‘m ๐‘‰)) โ†” ๐‘ƒ โІ (โ„ค โ†‘m (โ„ค โ†‘m ๐‘‰)))
1716anbi1i 623 . . 3 ((๐‘ƒ โˆˆ ๐’ซ (โ„ค โ†‘m (โ„ค โ†‘m ๐‘‰)) โˆง ((โˆ€๐‘– โˆˆ โ„ค ((โ„ค โ†‘m ๐‘‰) ร— {๐‘–}) โˆˆ ๐‘ƒ โˆง โˆ€๐‘— โˆˆ ๐‘‰ (๐‘ฅ โˆˆ (โ„ค โ†‘m ๐‘‰) โ†ฆ (๐‘ฅโ€˜๐‘—)) โˆˆ ๐‘ƒ) โˆง โˆ€๐‘“ โˆˆ ๐‘ƒ โˆ€๐‘” โˆˆ ๐‘ƒ ((๐‘“ โˆ˜f + ๐‘”) โˆˆ ๐‘ƒ โˆง (๐‘“ โˆ˜f ยท ๐‘”) โˆˆ ๐‘ƒ))) โ†” (๐‘ƒ โІ (โ„ค โ†‘m (โ„ค โ†‘m ๐‘‰)) โˆง ((โˆ€๐‘– โˆˆ โ„ค ((โ„ค โ†‘m ๐‘‰) ร— {๐‘–}) โˆˆ ๐‘ƒ โˆง โˆ€๐‘— โˆˆ ๐‘‰ (๐‘ฅ โˆˆ (โ„ค โ†‘m ๐‘‰) โ†ฆ (๐‘ฅโ€˜๐‘—)) โˆˆ ๐‘ƒ) โˆง โˆ€๐‘“ โˆˆ ๐‘ƒ โˆ€๐‘” โˆˆ ๐‘ƒ ((๐‘“ โˆ˜f + ๐‘”) โˆˆ ๐‘ƒ โˆง (๐‘“ โˆ˜f ยท ๐‘”) โˆˆ ๐‘ƒ))))
1814, 17bitri 275 . 2 (๐‘ƒ โˆˆ {๐‘ โˆˆ ๐’ซ (โ„ค โ†‘m (โ„ค โ†‘m ๐‘‰)) โˆฃ ((โˆ€๐‘– โˆˆ โ„ค ((โ„ค โ†‘m ๐‘‰) ร— {๐‘–}) โˆˆ ๐‘ โˆง โˆ€๐‘— โˆˆ ๐‘‰ (๐‘ฅ โˆˆ (โ„ค โ†‘m ๐‘‰) โ†ฆ (๐‘ฅโ€˜๐‘—)) โˆˆ ๐‘) โˆง โˆ€๐‘“ โˆˆ ๐‘ โˆ€๐‘” โˆˆ ๐‘ ((๐‘“ โˆ˜f + ๐‘”) โˆˆ ๐‘ โˆง (๐‘“ โˆ˜f ยท ๐‘”) โˆˆ ๐‘))} โ†” (๐‘ƒ โІ (โ„ค โ†‘m (โ„ค โ†‘m ๐‘‰)) โˆง ((โˆ€๐‘– โˆˆ โ„ค ((โ„ค โ†‘m ๐‘‰) ร— {๐‘–}) โˆˆ ๐‘ƒ โˆง โˆ€๐‘— โˆˆ ๐‘‰ (๐‘ฅ โˆˆ (โ„ค โ†‘m ๐‘‰) โ†ฆ (๐‘ฅโ€˜๐‘—)) โˆˆ ๐‘ƒ) โˆง โˆ€๐‘“ โˆˆ ๐‘ƒ โˆ€๐‘” โˆˆ ๐‘ƒ ((๐‘“ โˆ˜f + ๐‘”) โˆˆ ๐‘ƒ โˆง (๐‘“ โˆ˜f ยท ๐‘”) โˆˆ ๐‘ƒ))))
192, 18bitrdi 287 1 (๐‘‰ โˆˆ V โ†’ (๐‘ƒ โˆˆ (mzPolyCldโ€˜๐‘‰) โ†” (๐‘ƒ โІ (โ„ค โ†‘m (โ„ค โ†‘m ๐‘‰)) โˆง ((โˆ€๐‘– โˆˆ โ„ค ((โ„ค โ†‘m ๐‘‰) ร— {๐‘–}) โˆˆ ๐‘ƒ โˆง โˆ€๐‘— โˆˆ ๐‘‰ (๐‘ฅ โˆˆ (โ„ค โ†‘m ๐‘‰) โ†ฆ (๐‘ฅโ€˜๐‘—)) โˆˆ ๐‘ƒ) โˆง โˆ€๐‘“ โˆˆ ๐‘ƒ โˆ€๐‘” โˆˆ ๐‘ƒ ((๐‘“ โˆ˜f + ๐‘”) โˆˆ ๐‘ƒ โˆง (๐‘“ โˆ˜f ยท ๐‘”) โˆˆ ๐‘ƒ)))))
Colors of variables: wff setvar class
Syntax hints:   โ†’ wi 4   โ†” wb 205   โˆง wa 395   = wceq 1533   โˆˆ wcel 2098  โˆ€wral 3053  {crab 3424  Vcvv 3466   โІ wss 3941  ๐’ซ cpw 4595  {csn 4621   โ†ฆ cmpt 5222   ร— cxp 5665  โ€˜cfv 6534  (class class class)co 7402   โˆ˜f cof 7662   โ†‘m cmap 8817   + caddc 11110   ยท cmul 11112  โ„คcz 12557  mzPolyCldcmzpcl 42009
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-sep 5290  ax-nul 5297  ax-pow 5354  ax-pr 5418
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-ral 3054  df-rex 3063  df-rab 3425  df-v 3468  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-nul 4316  df-if 4522  df-pw 4597  df-sn 4622  df-pr 4624  df-op 4628  df-uni 4901  df-br 5140  df-opab 5202  df-mpt 5223  df-id 5565  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-iota 6486  df-fun 6536  df-fv 6542  df-ov 7405  df-mzpcl 42011
This theorem is referenced by:  mzpclall  42015  mzpcl1  42017  mzpcl2  42018  mzpcl34  42019  mzpincl  42022  mzpindd  42034
  Copyright terms: Public domain W3C validator