|   | Mathbox for Thierry Arnoux | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ply1annnr | Structured version Visualization version GIF version | ||
| Description: The set 𝑄 of polynomials annihilating an element 𝐴 is not the whole polynomial ring. (Contributed by Thierry Arnoux, 22-Mar-2025.) | 
| Ref | Expression | 
|---|---|
| ply1annidl.o | ⊢ 𝑂 = (𝑅 evalSub1 𝑆) | 
| ply1annidl.p | ⊢ 𝑃 = (Poly1‘(𝑅 ↾s 𝑆)) | 
| ply1annidl.b | ⊢ 𝐵 = (Base‘𝑅) | 
| ply1annidl.r | ⊢ (𝜑 → 𝑅 ∈ CRing) | 
| ply1annidl.s | ⊢ (𝜑 → 𝑆 ∈ (SubRing‘𝑅)) | 
| ply1annidl.a | ⊢ (𝜑 → 𝐴 ∈ 𝐵) | 
| ply1annidl.0 | ⊢ 0 = (0g‘𝑅) | 
| ply1annidl.q | ⊢ 𝑄 = {𝑞 ∈ dom 𝑂 ∣ ((𝑂‘𝑞)‘𝐴) = 0 } | 
| ply1annnr.u | ⊢ 𝑈 = (Base‘𝑃) | 
| ply1annnr.1 | ⊢ (𝜑 → 𝑅 ∈ NzRing) | 
| Ref | Expression | 
|---|---|
| ply1annnr | ⊢ (𝜑 → 𝑄 ≠ 𝑈) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ply1annidl.q | . . 3 ⊢ 𝑄 = {𝑞 ∈ dom 𝑂 ∣ ((𝑂‘𝑞)‘𝐴) = 0 } | |
| 2 | 1 | a1i 11 | . 2 ⊢ (𝜑 → 𝑄 = {𝑞 ∈ dom 𝑂 ∣ ((𝑂‘𝑞)‘𝐴) = 0 }) | 
| 3 | ply1annidl.r | . . . . . . . . 9 ⊢ (𝜑 → 𝑅 ∈ CRing) | |
| 4 | 3 | crngringd 20243 | . . . . . . . 8 ⊢ (𝜑 → 𝑅 ∈ Ring) | 
| 5 | ply1annidl.s | . . . . . . . . 9 ⊢ (𝜑 → 𝑆 ∈ (SubRing‘𝑅)) | |
| 6 | eqid 2737 | . . . . . . . . . 10 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
| 7 | 6 | subrg1cl 20580 | . . . . . . . . 9 ⊢ (𝑆 ∈ (SubRing‘𝑅) → (1r‘𝑅) ∈ 𝑆) | 
| 8 | 5, 7 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → (1r‘𝑅) ∈ 𝑆) | 
| 9 | ply1annidl.b | . . . . . . . . . 10 ⊢ 𝐵 = (Base‘𝑅) | |
| 10 | 9 | subrgss 20572 | . . . . . . . . 9 ⊢ (𝑆 ∈ (SubRing‘𝑅) → 𝑆 ⊆ 𝐵) | 
| 11 | 5, 10 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → 𝑆 ⊆ 𝐵) | 
| 12 | eqid 2737 | . . . . . . . . 9 ⊢ (𝑅 ↾s 𝑆) = (𝑅 ↾s 𝑆) | |
| 13 | 12, 9, 6 | ress1r 33238 | . . . . . . . 8 ⊢ ((𝑅 ∈ Ring ∧ (1r‘𝑅) ∈ 𝑆 ∧ 𝑆 ⊆ 𝐵) → (1r‘𝑅) = (1r‘(𝑅 ↾s 𝑆))) | 
| 14 | 4, 8, 11, 13 | syl3anc 1373 | . . . . . . 7 ⊢ (𝜑 → (1r‘𝑅) = (1r‘(𝑅 ↾s 𝑆))) | 
| 15 | 14 | fveq2d 6910 | . . . . . 6 ⊢ (𝜑 → ((algSc‘𝑃)‘(1r‘𝑅)) = ((algSc‘𝑃)‘(1r‘(𝑅 ↾s 𝑆)))) | 
| 16 | ply1annidl.p | . . . . . . 7 ⊢ 𝑃 = (Poly1‘(𝑅 ↾s 𝑆)) | |
| 17 | eqid 2737 | . . . . . . 7 ⊢ (algSc‘𝑃) = (algSc‘𝑃) | |
| 18 | eqid 2737 | . . . . . . 7 ⊢ (1r‘(𝑅 ↾s 𝑆)) = (1r‘(𝑅 ↾s 𝑆)) | |
| 19 | eqid 2737 | . . . . . . 7 ⊢ (1r‘𝑃) = (1r‘𝑃) | |
| 20 | 12 | subrgring 20574 | . . . . . . . 8 ⊢ (𝑆 ∈ (SubRing‘𝑅) → (𝑅 ↾s 𝑆) ∈ Ring) | 
| 21 | 5, 20 | syl 17 | . . . . . . 7 ⊢ (𝜑 → (𝑅 ↾s 𝑆) ∈ Ring) | 
| 22 | 16, 17, 18, 19, 21 | ply1ascl1 22257 | . . . . . 6 ⊢ (𝜑 → ((algSc‘𝑃)‘(1r‘(𝑅 ↾s 𝑆))) = (1r‘𝑃)) | 
| 23 | 15, 22 | eqtrd 2777 | . . . . 5 ⊢ (𝜑 → ((algSc‘𝑃)‘(1r‘𝑅)) = (1r‘𝑃)) | 
| 24 | 16 | ply1ring 22249 | . . . . . 6 ⊢ ((𝑅 ↾s 𝑆) ∈ Ring → 𝑃 ∈ Ring) | 
| 25 | ply1annnr.u | . . . . . . 7 ⊢ 𝑈 = (Base‘𝑃) | |
| 26 | 25, 19 | ringidcl 20262 | . . . . . 6 ⊢ (𝑃 ∈ Ring → (1r‘𝑃) ∈ 𝑈) | 
| 27 | 21, 24, 26 | 3syl 18 | . . . . 5 ⊢ (𝜑 → (1r‘𝑃) ∈ 𝑈) | 
| 28 | 23, 27 | eqeltrd 2841 | . . . 4 ⊢ (𝜑 → ((algSc‘𝑃)‘(1r‘𝑅)) ∈ 𝑈) | 
| 29 | ply1annidl.o | . . . . . . . 8 ⊢ 𝑂 = (𝑅 evalSub1 𝑆) | |
| 30 | ply1annidl.a | . . . . . . . 8 ⊢ (𝜑 → 𝐴 ∈ 𝐵) | |
| 31 | 29, 16, 12, 9, 17, 3, 5, 8, 30 | evls1scafv 22370 | . . . . . . 7 ⊢ (𝜑 → ((𝑂‘((algSc‘𝑃)‘(1r‘𝑅)))‘𝐴) = (1r‘𝑅)) | 
| 32 | ply1annnr.1 | . . . . . . . 8 ⊢ (𝜑 → 𝑅 ∈ NzRing) | |
| 33 | ply1annidl.0 | . . . . . . . . 9 ⊢ 0 = (0g‘𝑅) | |
| 34 | 6, 33 | nzrnz 20515 | . . . . . . . 8 ⊢ (𝑅 ∈ NzRing → (1r‘𝑅) ≠ 0 ) | 
| 35 | 32, 34 | syl 17 | . . . . . . 7 ⊢ (𝜑 → (1r‘𝑅) ≠ 0 ) | 
| 36 | 31, 35 | eqnetrd 3008 | . . . . . 6 ⊢ (𝜑 → ((𝑂‘((algSc‘𝑃)‘(1r‘𝑅)))‘𝐴) ≠ 0 ) | 
| 37 | 36 | neneqd 2945 | . . . . 5 ⊢ (𝜑 → ¬ ((𝑂‘((algSc‘𝑃)‘(1r‘𝑅)))‘𝐴) = 0 ) | 
| 38 | fveq2 6906 | . . . . . . . . 9 ⊢ (𝑞 = ((algSc‘𝑃)‘(1r‘𝑅)) → (𝑂‘𝑞) = (𝑂‘((algSc‘𝑃)‘(1r‘𝑅)))) | |
| 39 | 38 | fveq1d 6908 | . . . . . . . 8 ⊢ (𝑞 = ((algSc‘𝑃)‘(1r‘𝑅)) → ((𝑂‘𝑞)‘𝐴) = ((𝑂‘((algSc‘𝑃)‘(1r‘𝑅)))‘𝐴)) | 
| 40 | 39 | eqeq1d 2739 | . . . . . . 7 ⊢ (𝑞 = ((algSc‘𝑃)‘(1r‘𝑅)) → (((𝑂‘𝑞)‘𝐴) = 0 ↔ ((𝑂‘((algSc‘𝑃)‘(1r‘𝑅)))‘𝐴) = 0 )) | 
| 41 | 40 | elrab 3692 | . . . . . 6 ⊢ (((algSc‘𝑃)‘(1r‘𝑅)) ∈ {𝑞 ∈ dom 𝑂 ∣ ((𝑂‘𝑞)‘𝐴) = 0 } ↔ (((algSc‘𝑃)‘(1r‘𝑅)) ∈ dom 𝑂 ∧ ((𝑂‘((algSc‘𝑃)‘(1r‘𝑅)))‘𝐴) = 0 )) | 
| 42 | 41 | simprbi 496 | . . . . 5 ⊢ (((algSc‘𝑃)‘(1r‘𝑅)) ∈ {𝑞 ∈ dom 𝑂 ∣ ((𝑂‘𝑞)‘𝐴) = 0 } → ((𝑂‘((algSc‘𝑃)‘(1r‘𝑅)))‘𝐴) = 0 ) | 
| 43 | 37, 42 | nsyl 140 | . . . 4 ⊢ (𝜑 → ¬ ((algSc‘𝑃)‘(1r‘𝑅)) ∈ {𝑞 ∈ dom 𝑂 ∣ ((𝑂‘𝑞)‘𝐴) = 0 }) | 
| 44 | nelne1 3039 | . . . 4 ⊢ ((((algSc‘𝑃)‘(1r‘𝑅)) ∈ 𝑈 ∧ ¬ ((algSc‘𝑃)‘(1r‘𝑅)) ∈ {𝑞 ∈ dom 𝑂 ∣ ((𝑂‘𝑞)‘𝐴) = 0 }) → 𝑈 ≠ {𝑞 ∈ dom 𝑂 ∣ ((𝑂‘𝑞)‘𝐴) = 0 }) | |
| 45 | 28, 43, 44 | syl2anc 584 | . . 3 ⊢ (𝜑 → 𝑈 ≠ {𝑞 ∈ dom 𝑂 ∣ ((𝑂‘𝑞)‘𝐴) = 0 }) | 
| 46 | 45 | necomd 2996 | . 2 ⊢ (𝜑 → {𝑞 ∈ dom 𝑂 ∣ ((𝑂‘𝑞)‘𝐴) = 0 } ≠ 𝑈) | 
| 47 | 2, 46 | eqnetrd 3008 | 1 ⊢ (𝜑 → 𝑄 ≠ 𝑈) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1540 ∈ wcel 2108 ≠ wne 2940 {crab 3436 ⊆ wss 3951 dom cdm 5685 ‘cfv 6561 (class class class)co 7431 Basecbs 17247 ↾s cress 17274 0gc0g 17484 1rcur 20178 Ringcrg 20230 CRingccrg 20231 NzRingcnzr 20512 SubRingcsubrg 20569 algSccascl 21872 Poly1cpl1 22178 evalSub1 ces1 22317 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-tp 4631 df-op 4633 df-uni 4908 df-int 4947 df-iun 4993 df-iin 4994 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-se 5638 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-isom 6570 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-of 7697 df-ofr 7698 df-om 7888 df-1st 8014 df-2nd 8015 df-supp 8186 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-1o 8506 df-2o 8507 df-er 8745 df-map 8868 df-pm 8869 df-ixp 8938 df-en 8986 df-dom 8987 df-sdom 8988 df-fin 8989 df-fsupp 9402 df-sup 9482 df-oi 9550 df-card 9979 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-nn 12267 df-2 12329 df-3 12330 df-4 12331 df-5 12332 df-6 12333 df-7 12334 df-8 12335 df-9 12336 df-n0 12527 df-z 12614 df-dec 12734 df-uz 12879 df-fz 13548 df-fzo 13695 df-seq 14043 df-hash 14370 df-struct 17184 df-sets 17201 df-slot 17219 df-ndx 17231 df-base 17248 df-ress 17275 df-plusg 17310 df-mulr 17311 df-sca 17313 df-vsca 17314 df-ip 17315 df-tset 17316 df-ple 17317 df-ds 17319 df-hom 17321 df-cco 17322 df-0g 17486 df-gsum 17487 df-prds 17492 df-pws 17494 df-mre 17629 df-mrc 17630 df-acs 17632 df-mgm 18653 df-sgrp 18732 df-mnd 18748 df-mhm 18796 df-submnd 18797 df-grp 18954 df-minusg 18955 df-sbg 18956 df-mulg 19086 df-subg 19141 df-ghm 19231 df-cntz 19335 df-cmn 19800 df-abl 19801 df-mgp 20138 df-rng 20150 df-ur 20179 df-srg 20184 df-ring 20232 df-cring 20233 df-rhm 20472 df-nzr 20513 df-subrng 20546 df-subrg 20570 df-lmod 20860 df-lss 20930 df-lsp 20970 df-assa 21873 df-asp 21874 df-ascl 21875 df-psr 21929 df-mvr 21930 df-mpl 21931 df-opsr 21933 df-evls 22098 df-psr1 22181 df-ply1 22183 df-evls1 22319 | 
| This theorem is referenced by: minplyirred 33754 | 
| Copyright terms: Public domain | W3C validator |