| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ply1annnr | Structured version Visualization version GIF version | ||
| Description: The set 𝑄 of polynomials annihilating an element 𝐴 is not the whole polynomial ring. (Contributed by Thierry Arnoux, 22-Mar-2025.) |
| Ref | Expression |
|---|---|
| ply1annidl.o | ⊢ 𝑂 = (𝑅 evalSub1 𝑆) |
| ply1annidl.p | ⊢ 𝑃 = (Poly1‘(𝑅 ↾s 𝑆)) |
| ply1annidl.b | ⊢ 𝐵 = (Base‘𝑅) |
| ply1annidl.r | ⊢ (𝜑 → 𝑅 ∈ CRing) |
| ply1annidl.s | ⊢ (𝜑 → 𝑆 ∈ (SubRing‘𝑅)) |
| ply1annidl.a | ⊢ (𝜑 → 𝐴 ∈ 𝐵) |
| ply1annidl.0 | ⊢ 0 = (0g‘𝑅) |
| ply1annidl.q | ⊢ 𝑄 = {𝑞 ∈ dom 𝑂 ∣ ((𝑂‘𝑞)‘𝐴) = 0 } |
| ply1annnr.u | ⊢ 𝑈 = (Base‘𝑃) |
| ply1annnr.1 | ⊢ (𝜑 → 𝑅 ∈ NzRing) |
| Ref | Expression |
|---|---|
| ply1annnr | ⊢ (𝜑 → 𝑄 ≠ 𝑈) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ply1annidl.q | . . 3 ⊢ 𝑄 = {𝑞 ∈ dom 𝑂 ∣ ((𝑂‘𝑞)‘𝐴) = 0 } | |
| 2 | 1 | a1i 11 | . 2 ⊢ (𝜑 → 𝑄 = {𝑞 ∈ dom 𝑂 ∣ ((𝑂‘𝑞)‘𝐴) = 0 }) |
| 3 | ply1annidl.r | . . . . . . . . 9 ⊢ (𝜑 → 𝑅 ∈ CRing) | |
| 4 | 3 | crngringd 20155 | . . . . . . . 8 ⊢ (𝜑 → 𝑅 ∈ Ring) |
| 5 | ply1annidl.s | . . . . . . . . 9 ⊢ (𝜑 → 𝑆 ∈ (SubRing‘𝑅)) | |
| 6 | eqid 2729 | . . . . . . . . . 10 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
| 7 | 6 | subrg1cl 20489 | . . . . . . . . 9 ⊢ (𝑆 ∈ (SubRing‘𝑅) → (1r‘𝑅) ∈ 𝑆) |
| 8 | 5, 7 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → (1r‘𝑅) ∈ 𝑆) |
| 9 | ply1annidl.b | . . . . . . . . . 10 ⊢ 𝐵 = (Base‘𝑅) | |
| 10 | 9 | subrgss 20481 | . . . . . . . . 9 ⊢ (𝑆 ∈ (SubRing‘𝑅) → 𝑆 ⊆ 𝐵) |
| 11 | 5, 10 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → 𝑆 ⊆ 𝐵) |
| 12 | eqid 2729 | . . . . . . . . 9 ⊢ (𝑅 ↾s 𝑆) = (𝑅 ↾s 𝑆) | |
| 13 | 12, 9, 6 | ress1r 33185 | . . . . . . . 8 ⊢ ((𝑅 ∈ Ring ∧ (1r‘𝑅) ∈ 𝑆 ∧ 𝑆 ⊆ 𝐵) → (1r‘𝑅) = (1r‘(𝑅 ↾s 𝑆))) |
| 14 | 4, 8, 11, 13 | syl3anc 1373 | . . . . . . 7 ⊢ (𝜑 → (1r‘𝑅) = (1r‘(𝑅 ↾s 𝑆))) |
| 15 | 14 | fveq2d 6862 | . . . . . 6 ⊢ (𝜑 → ((algSc‘𝑃)‘(1r‘𝑅)) = ((algSc‘𝑃)‘(1r‘(𝑅 ↾s 𝑆)))) |
| 16 | ply1annidl.p | . . . . . . 7 ⊢ 𝑃 = (Poly1‘(𝑅 ↾s 𝑆)) | |
| 17 | eqid 2729 | . . . . . . 7 ⊢ (algSc‘𝑃) = (algSc‘𝑃) | |
| 18 | eqid 2729 | . . . . . . 7 ⊢ (1r‘(𝑅 ↾s 𝑆)) = (1r‘(𝑅 ↾s 𝑆)) | |
| 19 | eqid 2729 | . . . . . . 7 ⊢ (1r‘𝑃) = (1r‘𝑃) | |
| 20 | 12 | subrgring 20483 | . . . . . . . 8 ⊢ (𝑆 ∈ (SubRing‘𝑅) → (𝑅 ↾s 𝑆) ∈ Ring) |
| 21 | 5, 20 | syl 17 | . . . . . . 7 ⊢ (𝜑 → (𝑅 ↾s 𝑆) ∈ Ring) |
| 22 | 16, 17, 18, 19, 21 | ply1ascl1 22140 | . . . . . 6 ⊢ (𝜑 → ((algSc‘𝑃)‘(1r‘(𝑅 ↾s 𝑆))) = (1r‘𝑃)) |
| 23 | 15, 22 | eqtrd 2764 | . . . . 5 ⊢ (𝜑 → ((algSc‘𝑃)‘(1r‘𝑅)) = (1r‘𝑃)) |
| 24 | 16 | ply1ring 22132 | . . . . . 6 ⊢ ((𝑅 ↾s 𝑆) ∈ Ring → 𝑃 ∈ Ring) |
| 25 | ply1annnr.u | . . . . . . 7 ⊢ 𝑈 = (Base‘𝑃) | |
| 26 | 25, 19 | ringidcl 20174 | . . . . . 6 ⊢ (𝑃 ∈ Ring → (1r‘𝑃) ∈ 𝑈) |
| 27 | 21, 24, 26 | 3syl 18 | . . . . 5 ⊢ (𝜑 → (1r‘𝑃) ∈ 𝑈) |
| 28 | 23, 27 | eqeltrd 2828 | . . . 4 ⊢ (𝜑 → ((algSc‘𝑃)‘(1r‘𝑅)) ∈ 𝑈) |
| 29 | ply1annidl.o | . . . . . . . 8 ⊢ 𝑂 = (𝑅 evalSub1 𝑆) | |
| 30 | ply1annidl.a | . . . . . . . 8 ⊢ (𝜑 → 𝐴 ∈ 𝐵) | |
| 31 | 29, 16, 12, 9, 17, 3, 5, 8, 30 | evls1scafv 22253 | . . . . . . 7 ⊢ (𝜑 → ((𝑂‘((algSc‘𝑃)‘(1r‘𝑅)))‘𝐴) = (1r‘𝑅)) |
| 32 | ply1annnr.1 | . . . . . . . 8 ⊢ (𝜑 → 𝑅 ∈ NzRing) | |
| 33 | ply1annidl.0 | . . . . . . . . 9 ⊢ 0 = (0g‘𝑅) | |
| 34 | 6, 33 | nzrnz 20424 | . . . . . . . 8 ⊢ (𝑅 ∈ NzRing → (1r‘𝑅) ≠ 0 ) |
| 35 | 32, 34 | syl 17 | . . . . . . 7 ⊢ (𝜑 → (1r‘𝑅) ≠ 0 ) |
| 36 | 31, 35 | eqnetrd 2992 | . . . . . 6 ⊢ (𝜑 → ((𝑂‘((algSc‘𝑃)‘(1r‘𝑅)))‘𝐴) ≠ 0 ) |
| 37 | 36 | neneqd 2930 | . . . . 5 ⊢ (𝜑 → ¬ ((𝑂‘((algSc‘𝑃)‘(1r‘𝑅)))‘𝐴) = 0 ) |
| 38 | fveq2 6858 | . . . . . . . . 9 ⊢ (𝑞 = ((algSc‘𝑃)‘(1r‘𝑅)) → (𝑂‘𝑞) = (𝑂‘((algSc‘𝑃)‘(1r‘𝑅)))) | |
| 39 | 38 | fveq1d 6860 | . . . . . . . 8 ⊢ (𝑞 = ((algSc‘𝑃)‘(1r‘𝑅)) → ((𝑂‘𝑞)‘𝐴) = ((𝑂‘((algSc‘𝑃)‘(1r‘𝑅)))‘𝐴)) |
| 40 | 39 | eqeq1d 2731 | . . . . . . 7 ⊢ (𝑞 = ((algSc‘𝑃)‘(1r‘𝑅)) → (((𝑂‘𝑞)‘𝐴) = 0 ↔ ((𝑂‘((algSc‘𝑃)‘(1r‘𝑅)))‘𝐴) = 0 )) |
| 41 | 40 | elrab 3659 | . . . . . 6 ⊢ (((algSc‘𝑃)‘(1r‘𝑅)) ∈ {𝑞 ∈ dom 𝑂 ∣ ((𝑂‘𝑞)‘𝐴) = 0 } ↔ (((algSc‘𝑃)‘(1r‘𝑅)) ∈ dom 𝑂 ∧ ((𝑂‘((algSc‘𝑃)‘(1r‘𝑅)))‘𝐴) = 0 )) |
| 42 | 41 | simprbi 496 | . . . . 5 ⊢ (((algSc‘𝑃)‘(1r‘𝑅)) ∈ {𝑞 ∈ dom 𝑂 ∣ ((𝑂‘𝑞)‘𝐴) = 0 } → ((𝑂‘((algSc‘𝑃)‘(1r‘𝑅)))‘𝐴) = 0 ) |
| 43 | 37, 42 | nsyl 140 | . . . 4 ⊢ (𝜑 → ¬ ((algSc‘𝑃)‘(1r‘𝑅)) ∈ {𝑞 ∈ dom 𝑂 ∣ ((𝑂‘𝑞)‘𝐴) = 0 }) |
| 44 | nelne1 3022 | . . . 4 ⊢ ((((algSc‘𝑃)‘(1r‘𝑅)) ∈ 𝑈 ∧ ¬ ((algSc‘𝑃)‘(1r‘𝑅)) ∈ {𝑞 ∈ dom 𝑂 ∣ ((𝑂‘𝑞)‘𝐴) = 0 }) → 𝑈 ≠ {𝑞 ∈ dom 𝑂 ∣ ((𝑂‘𝑞)‘𝐴) = 0 }) | |
| 45 | 28, 43, 44 | syl2anc 584 | . . 3 ⊢ (𝜑 → 𝑈 ≠ {𝑞 ∈ dom 𝑂 ∣ ((𝑂‘𝑞)‘𝐴) = 0 }) |
| 46 | 45 | necomd 2980 | . 2 ⊢ (𝜑 → {𝑞 ∈ dom 𝑂 ∣ ((𝑂‘𝑞)‘𝐴) = 0 } ≠ 𝑈) |
| 47 | 2, 46 | eqnetrd 2992 | 1 ⊢ (𝜑 → 𝑄 ≠ 𝑈) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 {crab 3405 ⊆ wss 3914 dom cdm 5638 ‘cfv 6511 (class class class)co 7387 Basecbs 17179 ↾s cress 17200 0gc0g 17402 1rcur 20090 Ringcrg 20142 CRingccrg 20143 NzRingcnzr 20421 SubRingcsubrg 20478 algSccascl 21761 Poly1cpl1 22061 evalSub1 ces1 22200 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-tp 4594 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-iin 4958 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-se 5592 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-isom 6520 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-of 7653 df-ofr 7654 df-om 7843 df-1st 7968 df-2nd 7969 df-supp 8140 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-2o 8435 df-er 8671 df-map 8801 df-pm 8802 df-ixp 8871 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-fsupp 9313 df-sup 9393 df-oi 9463 df-card 9892 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-2 12249 df-3 12250 df-4 12251 df-5 12252 df-6 12253 df-7 12254 df-8 12255 df-9 12256 df-n0 12443 df-z 12530 df-dec 12650 df-uz 12794 df-fz 13469 df-fzo 13616 df-seq 13967 df-hash 14296 df-struct 17117 df-sets 17134 df-slot 17152 df-ndx 17164 df-base 17180 df-ress 17201 df-plusg 17233 df-mulr 17234 df-sca 17236 df-vsca 17237 df-ip 17238 df-tset 17239 df-ple 17240 df-ds 17242 df-hom 17244 df-cco 17245 df-0g 17404 df-gsum 17405 df-prds 17410 df-pws 17412 df-mre 17547 df-mrc 17548 df-acs 17550 df-mgm 18567 df-sgrp 18646 df-mnd 18662 df-mhm 18710 df-submnd 18711 df-grp 18868 df-minusg 18869 df-sbg 18870 df-mulg 19000 df-subg 19055 df-ghm 19145 df-cntz 19249 df-cmn 19712 df-abl 19713 df-mgp 20050 df-rng 20062 df-ur 20091 df-srg 20096 df-ring 20144 df-cring 20145 df-rhm 20381 df-nzr 20422 df-subrng 20455 df-subrg 20479 df-lmod 20768 df-lss 20838 df-lsp 20878 df-assa 21762 df-asp 21763 df-ascl 21764 df-psr 21818 df-mvr 21819 df-mpl 21820 df-opsr 21822 df-evls 21981 df-psr1 22064 df-ply1 22066 df-evls1 22202 |
| This theorem is referenced by: minplyirred 33701 |
| Copyright terms: Public domain | W3C validator |