Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ply1annnr Structured version   Visualization version   GIF version

Theorem ply1annnr 33746
Description: The set 𝑄 of polynomials annihilating an element 𝐴 is not the whole polynomial ring. (Contributed by Thierry Arnoux, 22-Mar-2025.)
Hypotheses
Ref Expression
ply1annidl.o 𝑂 = (𝑅 evalSub1 𝑆)
ply1annidl.p 𝑃 = (Poly1‘(𝑅s 𝑆))
ply1annidl.b 𝐵 = (Base‘𝑅)
ply1annidl.r (𝜑𝑅 ∈ CRing)
ply1annidl.s (𝜑𝑆 ∈ (SubRing‘𝑅))
ply1annidl.a (𝜑𝐴𝐵)
ply1annidl.0 0 = (0g𝑅)
ply1annidl.q 𝑄 = {𝑞 ∈ dom 𝑂 ∣ ((𝑂𝑞)‘𝐴) = 0 }
ply1annnr.u 𝑈 = (Base‘𝑃)
ply1annnr.1 (𝜑𝑅 ∈ NzRing)
Assertion
Ref Expression
ply1annnr (𝜑𝑄𝑈)
Distinct variable groups:   0 ,𝑞   𝐴,𝑞   𝑂,𝑞   𝑃,𝑞   𝜑,𝑞   𝑅,𝑞
Allowed substitution hints:   𝐵(𝑞)   𝑄(𝑞)   𝑆(𝑞)   𝑈(𝑞)

Proof of Theorem ply1annnr
StepHypRef Expression
1 ply1annidl.q . . 3 𝑄 = {𝑞 ∈ dom 𝑂 ∣ ((𝑂𝑞)‘𝐴) = 0 }
21a1i 11 . 2 (𝜑𝑄 = {𝑞 ∈ dom 𝑂 ∣ ((𝑂𝑞)‘𝐴) = 0 })
3 ply1annidl.r . . . . . . . . 9 (𝜑𝑅 ∈ CRing)
43crngringd 20243 . . . . . . . 8 (𝜑𝑅 ∈ Ring)
5 ply1annidl.s . . . . . . . . 9 (𝜑𝑆 ∈ (SubRing‘𝑅))
6 eqid 2737 . . . . . . . . . 10 (1r𝑅) = (1r𝑅)
76subrg1cl 20580 . . . . . . . . 9 (𝑆 ∈ (SubRing‘𝑅) → (1r𝑅) ∈ 𝑆)
85, 7syl 17 . . . . . . . 8 (𝜑 → (1r𝑅) ∈ 𝑆)
9 ply1annidl.b . . . . . . . . . 10 𝐵 = (Base‘𝑅)
109subrgss 20572 . . . . . . . . 9 (𝑆 ∈ (SubRing‘𝑅) → 𝑆𝐵)
115, 10syl 17 . . . . . . . 8 (𝜑𝑆𝐵)
12 eqid 2737 . . . . . . . . 9 (𝑅s 𝑆) = (𝑅s 𝑆)
1312, 9, 6ress1r 33238 . . . . . . . 8 ((𝑅 ∈ Ring ∧ (1r𝑅) ∈ 𝑆𝑆𝐵) → (1r𝑅) = (1r‘(𝑅s 𝑆)))
144, 8, 11, 13syl3anc 1373 . . . . . . 7 (𝜑 → (1r𝑅) = (1r‘(𝑅s 𝑆)))
1514fveq2d 6910 . . . . . 6 (𝜑 → ((algSc‘𝑃)‘(1r𝑅)) = ((algSc‘𝑃)‘(1r‘(𝑅s 𝑆))))
16 ply1annidl.p . . . . . . 7 𝑃 = (Poly1‘(𝑅s 𝑆))
17 eqid 2737 . . . . . . 7 (algSc‘𝑃) = (algSc‘𝑃)
18 eqid 2737 . . . . . . 7 (1r‘(𝑅s 𝑆)) = (1r‘(𝑅s 𝑆))
19 eqid 2737 . . . . . . 7 (1r𝑃) = (1r𝑃)
2012subrgring 20574 . . . . . . . 8 (𝑆 ∈ (SubRing‘𝑅) → (𝑅s 𝑆) ∈ Ring)
215, 20syl 17 . . . . . . 7 (𝜑 → (𝑅s 𝑆) ∈ Ring)
2216, 17, 18, 19, 21ply1ascl1 22257 . . . . . 6 (𝜑 → ((algSc‘𝑃)‘(1r‘(𝑅s 𝑆))) = (1r𝑃))
2315, 22eqtrd 2777 . . . . 5 (𝜑 → ((algSc‘𝑃)‘(1r𝑅)) = (1r𝑃))
2416ply1ring 22249 . . . . . 6 ((𝑅s 𝑆) ∈ Ring → 𝑃 ∈ Ring)
25 ply1annnr.u . . . . . . 7 𝑈 = (Base‘𝑃)
2625, 19ringidcl 20262 . . . . . 6 (𝑃 ∈ Ring → (1r𝑃) ∈ 𝑈)
2721, 24, 263syl 18 . . . . 5 (𝜑 → (1r𝑃) ∈ 𝑈)
2823, 27eqeltrd 2841 . . . 4 (𝜑 → ((algSc‘𝑃)‘(1r𝑅)) ∈ 𝑈)
29 ply1annidl.o . . . . . . . 8 𝑂 = (𝑅 evalSub1 𝑆)
30 ply1annidl.a . . . . . . . 8 (𝜑𝐴𝐵)
3129, 16, 12, 9, 17, 3, 5, 8, 30evls1scafv 22370 . . . . . . 7 (𝜑 → ((𝑂‘((algSc‘𝑃)‘(1r𝑅)))‘𝐴) = (1r𝑅))
32 ply1annnr.1 . . . . . . . 8 (𝜑𝑅 ∈ NzRing)
33 ply1annidl.0 . . . . . . . . 9 0 = (0g𝑅)
346, 33nzrnz 20515 . . . . . . . 8 (𝑅 ∈ NzRing → (1r𝑅) ≠ 0 )
3532, 34syl 17 . . . . . . 7 (𝜑 → (1r𝑅) ≠ 0 )
3631, 35eqnetrd 3008 . . . . . 6 (𝜑 → ((𝑂‘((algSc‘𝑃)‘(1r𝑅)))‘𝐴) ≠ 0 )
3736neneqd 2945 . . . . 5 (𝜑 → ¬ ((𝑂‘((algSc‘𝑃)‘(1r𝑅)))‘𝐴) = 0 )
38 fveq2 6906 . . . . . . . . 9 (𝑞 = ((algSc‘𝑃)‘(1r𝑅)) → (𝑂𝑞) = (𝑂‘((algSc‘𝑃)‘(1r𝑅))))
3938fveq1d 6908 . . . . . . . 8 (𝑞 = ((algSc‘𝑃)‘(1r𝑅)) → ((𝑂𝑞)‘𝐴) = ((𝑂‘((algSc‘𝑃)‘(1r𝑅)))‘𝐴))
4039eqeq1d 2739 . . . . . . 7 (𝑞 = ((algSc‘𝑃)‘(1r𝑅)) → (((𝑂𝑞)‘𝐴) = 0 ↔ ((𝑂‘((algSc‘𝑃)‘(1r𝑅)))‘𝐴) = 0 ))
4140elrab 3692 . . . . . 6 (((algSc‘𝑃)‘(1r𝑅)) ∈ {𝑞 ∈ dom 𝑂 ∣ ((𝑂𝑞)‘𝐴) = 0 } ↔ (((algSc‘𝑃)‘(1r𝑅)) ∈ dom 𝑂 ∧ ((𝑂‘((algSc‘𝑃)‘(1r𝑅)))‘𝐴) = 0 ))
4241simprbi 496 . . . . 5 (((algSc‘𝑃)‘(1r𝑅)) ∈ {𝑞 ∈ dom 𝑂 ∣ ((𝑂𝑞)‘𝐴) = 0 } → ((𝑂‘((algSc‘𝑃)‘(1r𝑅)))‘𝐴) = 0 )
4337, 42nsyl 140 . . . 4 (𝜑 → ¬ ((algSc‘𝑃)‘(1r𝑅)) ∈ {𝑞 ∈ dom 𝑂 ∣ ((𝑂𝑞)‘𝐴) = 0 })
44 nelne1 3039 . . . 4 ((((algSc‘𝑃)‘(1r𝑅)) ∈ 𝑈 ∧ ¬ ((algSc‘𝑃)‘(1r𝑅)) ∈ {𝑞 ∈ dom 𝑂 ∣ ((𝑂𝑞)‘𝐴) = 0 }) → 𝑈 ≠ {𝑞 ∈ dom 𝑂 ∣ ((𝑂𝑞)‘𝐴) = 0 })
4528, 43, 44syl2anc 584 . . 3 (𝜑𝑈 ≠ {𝑞 ∈ dom 𝑂 ∣ ((𝑂𝑞)‘𝐴) = 0 })
4645necomd 2996 . 2 (𝜑 → {𝑞 ∈ dom 𝑂 ∣ ((𝑂𝑞)‘𝐴) = 0 } ≠ 𝑈)
472, 46eqnetrd 3008 1 (𝜑𝑄𝑈)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1540  wcel 2108  wne 2940  {crab 3436  wss 3951  dom cdm 5685  cfv 6561  (class class class)co 7431  Basecbs 17247  s cress 17274  0gc0g 17484  1rcur 20178  Ringcrg 20230  CRingccrg 20231  NzRingcnzr 20512  SubRingcsubrg 20569  algSccascl 21872  Poly1cpl1 22178   evalSub1 ces1 22317
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-iin 4994  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-ofr 7698  df-om 7888  df-1st 8014  df-2nd 8015  df-supp 8186  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-er 8745  df-map 8868  df-pm 8869  df-ixp 8938  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-fsupp 9402  df-sup 9482  df-oi 9550  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-z 12614  df-dec 12734  df-uz 12879  df-fz 13548  df-fzo 13695  df-seq 14043  df-hash 14370  df-struct 17184  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-mulr 17311  df-sca 17313  df-vsca 17314  df-ip 17315  df-tset 17316  df-ple 17317  df-ds 17319  df-hom 17321  df-cco 17322  df-0g 17486  df-gsum 17487  df-prds 17492  df-pws 17494  df-mre 17629  df-mrc 17630  df-acs 17632  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-mhm 18796  df-submnd 18797  df-grp 18954  df-minusg 18955  df-sbg 18956  df-mulg 19086  df-subg 19141  df-ghm 19231  df-cntz 19335  df-cmn 19800  df-abl 19801  df-mgp 20138  df-rng 20150  df-ur 20179  df-srg 20184  df-ring 20232  df-cring 20233  df-rhm 20472  df-nzr 20513  df-subrng 20546  df-subrg 20570  df-lmod 20860  df-lss 20930  df-lsp 20970  df-assa 21873  df-asp 21874  df-ascl 21875  df-psr 21929  df-mvr 21930  df-mpl 21931  df-opsr 21933  df-evls 22098  df-psr1 22181  df-ply1 22183  df-evls1 22319
This theorem is referenced by:  minplyirred  33754
  Copyright terms: Public domain W3C validator