| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ply1annnr | Structured version Visualization version GIF version | ||
| Description: The set 𝑄 of polynomials annihilating an element 𝐴 is not the whole polynomial ring. (Contributed by Thierry Arnoux, 22-Mar-2025.) |
| Ref | Expression |
|---|---|
| ply1annidl.o | ⊢ 𝑂 = (𝑅 evalSub1 𝑆) |
| ply1annidl.p | ⊢ 𝑃 = (Poly1‘(𝑅 ↾s 𝑆)) |
| ply1annidl.b | ⊢ 𝐵 = (Base‘𝑅) |
| ply1annidl.r | ⊢ (𝜑 → 𝑅 ∈ CRing) |
| ply1annidl.s | ⊢ (𝜑 → 𝑆 ∈ (SubRing‘𝑅)) |
| ply1annidl.a | ⊢ (𝜑 → 𝐴 ∈ 𝐵) |
| ply1annidl.0 | ⊢ 0 = (0g‘𝑅) |
| ply1annidl.q | ⊢ 𝑄 = {𝑞 ∈ dom 𝑂 ∣ ((𝑂‘𝑞)‘𝐴) = 0 } |
| ply1annnr.u | ⊢ 𝑈 = (Base‘𝑃) |
| ply1annnr.1 | ⊢ (𝜑 → 𝑅 ∈ NzRing) |
| Ref | Expression |
|---|---|
| ply1annnr | ⊢ (𝜑 → 𝑄 ≠ 𝑈) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ply1annidl.q | . . 3 ⊢ 𝑄 = {𝑞 ∈ dom 𝑂 ∣ ((𝑂‘𝑞)‘𝐴) = 0 } | |
| 2 | 1 | a1i 11 | . 2 ⊢ (𝜑 → 𝑄 = {𝑞 ∈ dom 𝑂 ∣ ((𝑂‘𝑞)‘𝐴) = 0 }) |
| 3 | ply1annidl.r | . . . . . . . . 9 ⊢ (𝜑 → 𝑅 ∈ CRing) | |
| 4 | 3 | crngringd 20164 | . . . . . . . 8 ⊢ (𝜑 → 𝑅 ∈ Ring) |
| 5 | ply1annidl.s | . . . . . . . . 9 ⊢ (𝜑 → 𝑆 ∈ (SubRing‘𝑅)) | |
| 6 | eqid 2731 | . . . . . . . . . 10 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
| 7 | 6 | subrg1cl 20495 | . . . . . . . . 9 ⊢ (𝑆 ∈ (SubRing‘𝑅) → (1r‘𝑅) ∈ 𝑆) |
| 8 | 5, 7 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → (1r‘𝑅) ∈ 𝑆) |
| 9 | ply1annidl.b | . . . . . . . . . 10 ⊢ 𝐵 = (Base‘𝑅) | |
| 10 | 9 | subrgss 20487 | . . . . . . . . 9 ⊢ (𝑆 ∈ (SubRing‘𝑅) → 𝑆 ⊆ 𝐵) |
| 11 | 5, 10 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → 𝑆 ⊆ 𝐵) |
| 12 | eqid 2731 | . . . . . . . . 9 ⊢ (𝑅 ↾s 𝑆) = (𝑅 ↾s 𝑆) | |
| 13 | 12, 9, 6 | ress1r 33201 | . . . . . . . 8 ⊢ ((𝑅 ∈ Ring ∧ (1r‘𝑅) ∈ 𝑆 ∧ 𝑆 ⊆ 𝐵) → (1r‘𝑅) = (1r‘(𝑅 ↾s 𝑆))) |
| 14 | 4, 8, 11, 13 | syl3anc 1373 | . . . . . . 7 ⊢ (𝜑 → (1r‘𝑅) = (1r‘(𝑅 ↾s 𝑆))) |
| 15 | 14 | fveq2d 6826 | . . . . . 6 ⊢ (𝜑 → ((algSc‘𝑃)‘(1r‘𝑅)) = ((algSc‘𝑃)‘(1r‘(𝑅 ↾s 𝑆)))) |
| 16 | ply1annidl.p | . . . . . . 7 ⊢ 𝑃 = (Poly1‘(𝑅 ↾s 𝑆)) | |
| 17 | eqid 2731 | . . . . . . 7 ⊢ (algSc‘𝑃) = (algSc‘𝑃) | |
| 18 | eqid 2731 | . . . . . . 7 ⊢ (1r‘(𝑅 ↾s 𝑆)) = (1r‘(𝑅 ↾s 𝑆)) | |
| 19 | eqid 2731 | . . . . . . 7 ⊢ (1r‘𝑃) = (1r‘𝑃) | |
| 20 | 12 | subrgring 20489 | . . . . . . . 8 ⊢ (𝑆 ∈ (SubRing‘𝑅) → (𝑅 ↾s 𝑆) ∈ Ring) |
| 21 | 5, 20 | syl 17 | . . . . . . 7 ⊢ (𝜑 → (𝑅 ↾s 𝑆) ∈ Ring) |
| 22 | 16, 17, 18, 19, 21 | ply1ascl1 22168 | . . . . . 6 ⊢ (𝜑 → ((algSc‘𝑃)‘(1r‘(𝑅 ↾s 𝑆))) = (1r‘𝑃)) |
| 23 | 15, 22 | eqtrd 2766 | . . . . 5 ⊢ (𝜑 → ((algSc‘𝑃)‘(1r‘𝑅)) = (1r‘𝑃)) |
| 24 | 16 | ply1ring 22160 | . . . . . 6 ⊢ ((𝑅 ↾s 𝑆) ∈ Ring → 𝑃 ∈ Ring) |
| 25 | ply1annnr.u | . . . . . . 7 ⊢ 𝑈 = (Base‘𝑃) | |
| 26 | 25, 19 | ringidcl 20183 | . . . . . 6 ⊢ (𝑃 ∈ Ring → (1r‘𝑃) ∈ 𝑈) |
| 27 | 21, 24, 26 | 3syl 18 | . . . . 5 ⊢ (𝜑 → (1r‘𝑃) ∈ 𝑈) |
| 28 | 23, 27 | eqeltrd 2831 | . . . 4 ⊢ (𝜑 → ((algSc‘𝑃)‘(1r‘𝑅)) ∈ 𝑈) |
| 29 | ply1annidl.o | . . . . . . . 8 ⊢ 𝑂 = (𝑅 evalSub1 𝑆) | |
| 30 | ply1annidl.a | . . . . . . . 8 ⊢ (𝜑 → 𝐴 ∈ 𝐵) | |
| 31 | 29, 16, 12, 9, 17, 3, 5, 8, 30 | evls1scafv 22281 | . . . . . . 7 ⊢ (𝜑 → ((𝑂‘((algSc‘𝑃)‘(1r‘𝑅)))‘𝐴) = (1r‘𝑅)) |
| 32 | ply1annnr.1 | . . . . . . . 8 ⊢ (𝜑 → 𝑅 ∈ NzRing) | |
| 33 | ply1annidl.0 | . . . . . . . . 9 ⊢ 0 = (0g‘𝑅) | |
| 34 | 6, 33 | nzrnz 20430 | . . . . . . . 8 ⊢ (𝑅 ∈ NzRing → (1r‘𝑅) ≠ 0 ) |
| 35 | 32, 34 | syl 17 | . . . . . . 7 ⊢ (𝜑 → (1r‘𝑅) ≠ 0 ) |
| 36 | 31, 35 | eqnetrd 2995 | . . . . . 6 ⊢ (𝜑 → ((𝑂‘((algSc‘𝑃)‘(1r‘𝑅)))‘𝐴) ≠ 0 ) |
| 37 | 36 | neneqd 2933 | . . . . 5 ⊢ (𝜑 → ¬ ((𝑂‘((algSc‘𝑃)‘(1r‘𝑅)))‘𝐴) = 0 ) |
| 38 | fveq2 6822 | . . . . . . . . 9 ⊢ (𝑞 = ((algSc‘𝑃)‘(1r‘𝑅)) → (𝑂‘𝑞) = (𝑂‘((algSc‘𝑃)‘(1r‘𝑅)))) | |
| 39 | 38 | fveq1d 6824 | . . . . . . . 8 ⊢ (𝑞 = ((algSc‘𝑃)‘(1r‘𝑅)) → ((𝑂‘𝑞)‘𝐴) = ((𝑂‘((algSc‘𝑃)‘(1r‘𝑅)))‘𝐴)) |
| 40 | 39 | eqeq1d 2733 | . . . . . . 7 ⊢ (𝑞 = ((algSc‘𝑃)‘(1r‘𝑅)) → (((𝑂‘𝑞)‘𝐴) = 0 ↔ ((𝑂‘((algSc‘𝑃)‘(1r‘𝑅)))‘𝐴) = 0 )) |
| 41 | 40 | elrab 3642 | . . . . . 6 ⊢ (((algSc‘𝑃)‘(1r‘𝑅)) ∈ {𝑞 ∈ dom 𝑂 ∣ ((𝑂‘𝑞)‘𝐴) = 0 } ↔ (((algSc‘𝑃)‘(1r‘𝑅)) ∈ dom 𝑂 ∧ ((𝑂‘((algSc‘𝑃)‘(1r‘𝑅)))‘𝐴) = 0 )) |
| 42 | 41 | simprbi 496 | . . . . 5 ⊢ (((algSc‘𝑃)‘(1r‘𝑅)) ∈ {𝑞 ∈ dom 𝑂 ∣ ((𝑂‘𝑞)‘𝐴) = 0 } → ((𝑂‘((algSc‘𝑃)‘(1r‘𝑅)))‘𝐴) = 0 ) |
| 43 | 37, 42 | nsyl 140 | . . . 4 ⊢ (𝜑 → ¬ ((algSc‘𝑃)‘(1r‘𝑅)) ∈ {𝑞 ∈ dom 𝑂 ∣ ((𝑂‘𝑞)‘𝐴) = 0 }) |
| 44 | nelne1 3025 | . . . 4 ⊢ ((((algSc‘𝑃)‘(1r‘𝑅)) ∈ 𝑈 ∧ ¬ ((algSc‘𝑃)‘(1r‘𝑅)) ∈ {𝑞 ∈ dom 𝑂 ∣ ((𝑂‘𝑞)‘𝐴) = 0 }) → 𝑈 ≠ {𝑞 ∈ dom 𝑂 ∣ ((𝑂‘𝑞)‘𝐴) = 0 }) | |
| 45 | 28, 43, 44 | syl2anc 584 | . . 3 ⊢ (𝜑 → 𝑈 ≠ {𝑞 ∈ dom 𝑂 ∣ ((𝑂‘𝑞)‘𝐴) = 0 }) |
| 46 | 45 | necomd 2983 | . 2 ⊢ (𝜑 → {𝑞 ∈ dom 𝑂 ∣ ((𝑂‘𝑞)‘𝐴) = 0 } ≠ 𝑈) |
| 47 | 2, 46 | eqnetrd 2995 | 1 ⊢ (𝜑 → 𝑄 ≠ 𝑈) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 {crab 3395 ⊆ wss 3897 dom cdm 5614 ‘cfv 6481 (class class class)co 7346 Basecbs 17120 ↾s cress 17141 0gc0g 17343 1rcur 20099 Ringcrg 20151 CRingccrg 20152 NzRingcnzr 20427 SubRingcsubrg 20484 algSccascl 21789 Poly1cpl1 22089 evalSub1 ces1 22228 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-tp 4578 df-op 4580 df-uni 4857 df-int 4896 df-iun 4941 df-iin 4942 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-se 5568 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-isom 6490 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-of 7610 df-ofr 7611 df-om 7797 df-1st 7921 df-2nd 7922 df-supp 8091 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-2o 8386 df-er 8622 df-map 8752 df-pm 8753 df-ixp 8822 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-fsupp 9246 df-sup 9326 df-oi 9396 df-card 9832 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-2 12188 df-3 12189 df-4 12190 df-5 12191 df-6 12192 df-7 12193 df-8 12194 df-9 12195 df-n0 12382 df-z 12469 df-dec 12589 df-uz 12733 df-fz 13408 df-fzo 13555 df-seq 13909 df-hash 14238 df-struct 17058 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-mulr 17175 df-sca 17177 df-vsca 17178 df-ip 17179 df-tset 17180 df-ple 17181 df-ds 17183 df-hom 17185 df-cco 17186 df-0g 17345 df-gsum 17346 df-prds 17351 df-pws 17353 df-mre 17488 df-mrc 17489 df-acs 17491 df-mgm 18548 df-sgrp 18627 df-mnd 18643 df-mhm 18691 df-submnd 18692 df-grp 18849 df-minusg 18850 df-sbg 18851 df-mulg 18981 df-subg 19036 df-ghm 19125 df-cntz 19229 df-cmn 19694 df-abl 19695 df-mgp 20059 df-rng 20071 df-ur 20100 df-srg 20105 df-ring 20153 df-cring 20154 df-rhm 20390 df-nzr 20428 df-subrng 20461 df-subrg 20485 df-lmod 20795 df-lss 20865 df-lsp 20905 df-assa 21790 df-asp 21791 df-ascl 21792 df-psr 21846 df-mvr 21847 df-mpl 21848 df-opsr 21850 df-evls 22009 df-psr1 22092 df-ply1 22094 df-evls1 22230 |
| This theorem is referenced by: minplyirred 33724 |
| Copyright terms: Public domain | W3C validator |