Step | Hyp | Ref
| Expression |
1 | | ply1annidl.q |
. . 3
β’ π = {π β dom π β£ ((πβπ)βπ΄) = 0 } |
2 | 1 | a1i 11 |
. 2
β’ (π β π = {π β dom π β£ ((πβπ)βπ΄) = 0 }) |
3 | | ply1annidl.r |
. . . . . . . . 9
β’ (π β π
β CRing) |
4 | 3 | crngringd 20068 |
. . . . . . . 8
β’ (π β π
β Ring) |
5 | | ply1annidl.s |
. . . . . . . . 9
β’ (π β π β (SubRingβπ
)) |
6 | | eqid 2732 |
. . . . . . . . . 10
β’
(1rβπ
) = (1rβπ
) |
7 | 6 | subrg1cl 20326 |
. . . . . . . . 9
β’ (π β (SubRingβπ
) β
(1rβπ
)
β π) |
8 | 5, 7 | syl 17 |
. . . . . . . 8
β’ (π β (1rβπ
) β π) |
9 | | ply1annidl.b |
. . . . . . . . . 10
β’ π΅ = (Baseβπ
) |
10 | 9 | subrgss 20319 |
. . . . . . . . 9
β’ (π β (SubRingβπ
) β π β π΅) |
11 | 5, 10 | syl 17 |
. . . . . . . 8
β’ (π β π β π΅) |
12 | | eqid 2732 |
. . . . . . . . 9
β’ (π
βΎs π) = (π
βΎs π) |
13 | 12, 9, 6 | ress1r 32378 |
. . . . . . . 8
β’ ((π
β Ring β§
(1rβπ
)
β π β§ π β π΅) β (1rβπ
) = (1rβ(π
βΎs π))) |
14 | 4, 8, 11, 13 | syl3anc 1371 |
. . . . . . 7
β’ (π β (1rβπ
) = (1rβ(π
βΎs π))) |
15 | 14 | fveq2d 6895 |
. . . . . 6
β’ (π β ((algScβπ)β(1rβπ
)) = ((algScβπ)β(1rβ(π
βΎs π)))) |
16 | | ply1annidl.p |
. . . . . . 7
β’ π =
(Poly1β(π
βΎs π)) |
17 | | eqid 2732 |
. . . . . . 7
β’
(algScβπ) =
(algScβπ) |
18 | | eqid 2732 |
. . . . . . 7
β’
(1rβ(π
βΎs π)) = (1rβ(π
βΎs π)) |
19 | | eqid 2732 |
. . . . . . 7
β’
(1rβπ) = (1rβπ) |
20 | 12 | subrgring 20321 |
. . . . . . . 8
β’ (π β (SubRingβπ
) β (π
βΎs π) β Ring) |
21 | 5, 20 | syl 17 |
. . . . . . 7
β’ (π β (π
βΎs π) β Ring) |
22 | 16, 17, 18, 19, 21 | ply1ascl1 32648 |
. . . . . 6
β’ (π β ((algScβπ)β(1rβ(π
βΎs π))) = (1rβπ)) |
23 | 15, 22 | eqtrd 2772 |
. . . . 5
β’ (π β ((algScβπ)β(1rβπ
)) = (1rβπ)) |
24 | 16 | ply1ring 21769 |
. . . . . 6
β’ ((π
βΎs π) β Ring β π β Ring) |
25 | | ply1annnr.u |
. . . . . . 7
β’ π = (Baseβπ) |
26 | 25, 19 | ringidcl 20082 |
. . . . . 6
β’ (π β Ring β
(1rβπ)
β π) |
27 | 21, 24, 26 | 3syl 18 |
. . . . 5
β’ (π β (1rβπ) β π) |
28 | 23, 27 | eqeltrd 2833 |
. . . 4
β’ (π β ((algScβπ)β(1rβπ
)) β π) |
29 | | ply1annidl.o |
. . . . . . . 8
β’ π = (π
evalSub1 π) |
30 | | ply1annidl.a |
. . . . . . . 8
β’ (π β π΄ β π΅) |
31 | 29, 16, 12, 9, 17, 3, 5, 8, 30 | evls1scafv 32638 |
. . . . . . 7
β’ (π β ((πβ((algScβπ)β(1rβπ
)))βπ΄) = (1rβπ
)) |
32 | | ply1annnr.1 |
. . . . . . . 8
β’ (π β π
β NzRing) |
33 | | ply1annidl.0 |
. . . . . . . . 9
β’ 0 =
(0gβπ
) |
34 | 6, 33 | nzrnz 20293 |
. . . . . . . 8
β’ (π
β NzRing β
(1rβπ
)
β 0
) |
35 | 32, 34 | syl 17 |
. . . . . . 7
β’ (π β (1rβπ
) β 0 ) |
36 | 31, 35 | eqnetrd 3008 |
. . . . . 6
β’ (π β ((πβ((algScβπ)β(1rβπ
)))βπ΄) β 0 ) |
37 | 36 | neneqd 2945 |
. . . . 5
β’ (π β Β¬ ((πβ((algScβπ)β(1rβπ
)))βπ΄) = 0 ) |
38 | | fveq2 6891 |
. . . . . . . . 9
β’ (π = ((algScβπ)β(1rβπ
)) β (πβπ) = (πβ((algScβπ)β(1rβπ
)))) |
39 | 38 | fveq1d 6893 |
. . . . . . . 8
β’ (π = ((algScβπ)β(1rβπ
)) β ((πβπ)βπ΄) = ((πβ((algScβπ)β(1rβπ
)))βπ΄)) |
40 | 39 | eqeq1d 2734 |
. . . . . . 7
β’ (π = ((algScβπ)β(1rβπ
)) β (((πβπ)βπ΄) = 0 β ((πβ((algScβπ)β(1rβπ
)))βπ΄) = 0 )) |
41 | 40 | elrab 3683 |
. . . . . 6
β’
(((algScβπ)β(1rβπ
)) β {π β dom π β£ ((πβπ)βπ΄) = 0 } β
(((algScβπ)β(1rβπ
)) β dom π β§ ((πβ((algScβπ)β(1rβπ
)))βπ΄) = 0 )) |
42 | 41 | simprbi 497 |
. . . . 5
β’
(((algScβπ)β(1rβπ
)) β {π β dom π β£ ((πβπ)βπ΄) = 0 } β ((πβ((algScβπ)β(1rβπ
)))βπ΄) = 0 ) |
43 | 37, 42 | nsyl 140 |
. . . 4
β’ (π β Β¬ ((algScβπ)β(1rβπ
)) β {π β dom π β£ ((πβπ)βπ΄) = 0 }) |
44 | | nelne1 3039 |
. . . 4
β’
((((algScβπ)β(1rβπ
)) β π β§ Β¬ ((algScβπ)β(1rβπ
)) β {π β dom π β£ ((πβπ)βπ΄) = 0 }) β π β {π β dom π β£ ((πβπ)βπ΄) = 0 }) |
45 | 28, 43, 44 | syl2anc 584 |
. . 3
β’ (π β π β {π β dom π β£ ((πβπ)βπ΄) = 0 }) |
46 | 45 | necomd 2996 |
. 2
β’ (π β {π β dom π β£ ((πβπ)βπ΄) = 0 } β π) |
47 | 2, 46 | eqnetrd 3008 |
1
β’ (π β π β π) |