Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ply1annnr Structured version   Visualization version   GIF version

Theorem ply1annnr 33676
Description: The set 𝑄 of polynomials annihilating an element 𝐴 is not the whole polynomial ring. (Contributed by Thierry Arnoux, 22-Mar-2025.)
Hypotheses
Ref Expression
ply1annidl.o 𝑂 = (𝑅 evalSub1 𝑆)
ply1annidl.p 𝑃 = (Poly1‘(𝑅s 𝑆))
ply1annidl.b 𝐵 = (Base‘𝑅)
ply1annidl.r (𝜑𝑅 ∈ CRing)
ply1annidl.s (𝜑𝑆 ∈ (SubRing‘𝑅))
ply1annidl.a (𝜑𝐴𝐵)
ply1annidl.0 0 = (0g𝑅)
ply1annidl.q 𝑄 = {𝑞 ∈ dom 𝑂 ∣ ((𝑂𝑞)‘𝐴) = 0 }
ply1annnr.u 𝑈 = (Base‘𝑃)
ply1annnr.1 (𝜑𝑅 ∈ NzRing)
Assertion
Ref Expression
ply1annnr (𝜑𝑄𝑈)
Distinct variable groups:   0 ,𝑞   𝐴,𝑞   𝑂,𝑞   𝑃,𝑞   𝜑,𝑞   𝑅,𝑞
Allowed substitution hints:   𝐵(𝑞)   𝑄(𝑞)   𝑆(𝑞)   𝑈(𝑞)

Proof of Theorem ply1annnr
StepHypRef Expression
1 ply1annidl.q . . 3 𝑄 = {𝑞 ∈ dom 𝑂 ∣ ((𝑂𝑞)‘𝐴) = 0 }
21a1i 11 . 2 (𝜑𝑄 = {𝑞 ∈ dom 𝑂 ∣ ((𝑂𝑞)‘𝐴) = 0 })
3 ply1annidl.r . . . . . . . . 9 (𝜑𝑅 ∈ CRing)
43crngringd 20131 . . . . . . . 8 (𝜑𝑅 ∈ Ring)
5 ply1annidl.s . . . . . . . . 9 (𝜑𝑆 ∈ (SubRing‘𝑅))
6 eqid 2729 . . . . . . . . . 10 (1r𝑅) = (1r𝑅)
76subrg1cl 20465 . . . . . . . . 9 (𝑆 ∈ (SubRing‘𝑅) → (1r𝑅) ∈ 𝑆)
85, 7syl 17 . . . . . . . 8 (𝜑 → (1r𝑅) ∈ 𝑆)
9 ply1annidl.b . . . . . . . . . 10 𝐵 = (Base‘𝑅)
109subrgss 20457 . . . . . . . . 9 (𝑆 ∈ (SubRing‘𝑅) → 𝑆𝐵)
115, 10syl 17 . . . . . . . 8 (𝜑𝑆𝐵)
12 eqid 2729 . . . . . . . . 9 (𝑅s 𝑆) = (𝑅s 𝑆)
1312, 9, 6ress1r 33175 . . . . . . . 8 ((𝑅 ∈ Ring ∧ (1r𝑅) ∈ 𝑆𝑆𝐵) → (1r𝑅) = (1r‘(𝑅s 𝑆)))
144, 8, 11, 13syl3anc 1373 . . . . . . 7 (𝜑 → (1r𝑅) = (1r‘(𝑅s 𝑆)))
1514fveq2d 6826 . . . . . 6 (𝜑 → ((algSc‘𝑃)‘(1r𝑅)) = ((algSc‘𝑃)‘(1r‘(𝑅s 𝑆))))
16 ply1annidl.p . . . . . . 7 𝑃 = (Poly1‘(𝑅s 𝑆))
17 eqid 2729 . . . . . . 7 (algSc‘𝑃) = (algSc‘𝑃)
18 eqid 2729 . . . . . . 7 (1r‘(𝑅s 𝑆)) = (1r‘(𝑅s 𝑆))
19 eqid 2729 . . . . . . 7 (1r𝑃) = (1r𝑃)
2012subrgring 20459 . . . . . . . 8 (𝑆 ∈ (SubRing‘𝑅) → (𝑅s 𝑆) ∈ Ring)
215, 20syl 17 . . . . . . 7 (𝜑 → (𝑅s 𝑆) ∈ Ring)
2216, 17, 18, 19, 21ply1ascl1 22138 . . . . . 6 (𝜑 → ((algSc‘𝑃)‘(1r‘(𝑅s 𝑆))) = (1r𝑃))
2315, 22eqtrd 2764 . . . . 5 (𝜑 → ((algSc‘𝑃)‘(1r𝑅)) = (1r𝑃))
2416ply1ring 22130 . . . . . 6 ((𝑅s 𝑆) ∈ Ring → 𝑃 ∈ Ring)
25 ply1annnr.u . . . . . . 7 𝑈 = (Base‘𝑃)
2625, 19ringidcl 20150 . . . . . 6 (𝑃 ∈ Ring → (1r𝑃) ∈ 𝑈)
2721, 24, 263syl 18 . . . . 5 (𝜑 → (1r𝑃) ∈ 𝑈)
2823, 27eqeltrd 2828 . . . 4 (𝜑 → ((algSc‘𝑃)‘(1r𝑅)) ∈ 𝑈)
29 ply1annidl.o . . . . . . . 8 𝑂 = (𝑅 evalSub1 𝑆)
30 ply1annidl.a . . . . . . . 8 (𝜑𝐴𝐵)
3129, 16, 12, 9, 17, 3, 5, 8, 30evls1scafv 22251 . . . . . . 7 (𝜑 → ((𝑂‘((algSc‘𝑃)‘(1r𝑅)))‘𝐴) = (1r𝑅))
32 ply1annnr.1 . . . . . . . 8 (𝜑𝑅 ∈ NzRing)
33 ply1annidl.0 . . . . . . . . 9 0 = (0g𝑅)
346, 33nzrnz 20400 . . . . . . . 8 (𝑅 ∈ NzRing → (1r𝑅) ≠ 0 )
3532, 34syl 17 . . . . . . 7 (𝜑 → (1r𝑅) ≠ 0 )
3631, 35eqnetrd 2992 . . . . . 6 (𝜑 → ((𝑂‘((algSc‘𝑃)‘(1r𝑅)))‘𝐴) ≠ 0 )
3736neneqd 2930 . . . . 5 (𝜑 → ¬ ((𝑂‘((algSc‘𝑃)‘(1r𝑅)))‘𝐴) = 0 )
38 fveq2 6822 . . . . . . . . 9 (𝑞 = ((algSc‘𝑃)‘(1r𝑅)) → (𝑂𝑞) = (𝑂‘((algSc‘𝑃)‘(1r𝑅))))
3938fveq1d 6824 . . . . . . . 8 (𝑞 = ((algSc‘𝑃)‘(1r𝑅)) → ((𝑂𝑞)‘𝐴) = ((𝑂‘((algSc‘𝑃)‘(1r𝑅)))‘𝐴))
4039eqeq1d 2731 . . . . . . 7 (𝑞 = ((algSc‘𝑃)‘(1r𝑅)) → (((𝑂𝑞)‘𝐴) = 0 ↔ ((𝑂‘((algSc‘𝑃)‘(1r𝑅)))‘𝐴) = 0 ))
4140elrab 3648 . . . . . 6 (((algSc‘𝑃)‘(1r𝑅)) ∈ {𝑞 ∈ dom 𝑂 ∣ ((𝑂𝑞)‘𝐴) = 0 } ↔ (((algSc‘𝑃)‘(1r𝑅)) ∈ dom 𝑂 ∧ ((𝑂‘((algSc‘𝑃)‘(1r𝑅)))‘𝐴) = 0 ))
4241simprbi 496 . . . . 5 (((algSc‘𝑃)‘(1r𝑅)) ∈ {𝑞 ∈ dom 𝑂 ∣ ((𝑂𝑞)‘𝐴) = 0 } → ((𝑂‘((algSc‘𝑃)‘(1r𝑅)))‘𝐴) = 0 )
4337, 42nsyl 140 . . . 4 (𝜑 → ¬ ((algSc‘𝑃)‘(1r𝑅)) ∈ {𝑞 ∈ dom 𝑂 ∣ ((𝑂𝑞)‘𝐴) = 0 })
44 nelne1 3022 . . . 4 ((((algSc‘𝑃)‘(1r𝑅)) ∈ 𝑈 ∧ ¬ ((algSc‘𝑃)‘(1r𝑅)) ∈ {𝑞 ∈ dom 𝑂 ∣ ((𝑂𝑞)‘𝐴) = 0 }) → 𝑈 ≠ {𝑞 ∈ dom 𝑂 ∣ ((𝑂𝑞)‘𝐴) = 0 })
4528, 43, 44syl2anc 584 . . 3 (𝜑𝑈 ≠ {𝑞 ∈ dom 𝑂 ∣ ((𝑂𝑞)‘𝐴) = 0 })
4645necomd 2980 . 2 (𝜑 → {𝑞 ∈ dom 𝑂 ∣ ((𝑂𝑞)‘𝐴) = 0 } ≠ 𝑈)
472, 46eqnetrd 2992 1 (𝜑𝑄𝑈)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1540  wcel 2109  wne 2925  {crab 3394  wss 3903  dom cdm 5619  cfv 6482  (class class class)co 7349  Basecbs 17120  s cress 17141  0gc0g 17343  1rcur 20066  Ringcrg 20118  CRingccrg 20119  NzRingcnzr 20397  SubRingcsubrg 20454  algSccascl 21759  Poly1cpl1 22059   evalSub1 ces1 22198
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-iin 4944  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-isom 6491  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-of 7613  df-ofr 7614  df-om 7800  df-1st 7924  df-2nd 7925  df-supp 8094  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-2o 8389  df-er 8625  df-map 8755  df-pm 8756  df-ixp 8825  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-fsupp 9252  df-sup 9332  df-oi 9402  df-card 9835  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-nn 12129  df-2 12191  df-3 12192  df-4 12193  df-5 12194  df-6 12195  df-7 12196  df-8 12197  df-9 12198  df-n0 12385  df-z 12472  df-dec 12592  df-uz 12736  df-fz 13411  df-fzo 13558  df-seq 13909  df-hash 14238  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-hom 17185  df-cco 17186  df-0g 17345  df-gsum 17346  df-prds 17351  df-pws 17353  df-mre 17488  df-mrc 17489  df-acs 17491  df-mgm 18514  df-sgrp 18593  df-mnd 18609  df-mhm 18657  df-submnd 18658  df-grp 18815  df-minusg 18816  df-sbg 18817  df-mulg 18947  df-subg 19002  df-ghm 19092  df-cntz 19196  df-cmn 19661  df-abl 19662  df-mgp 20026  df-rng 20038  df-ur 20067  df-srg 20072  df-ring 20120  df-cring 20121  df-rhm 20357  df-nzr 20398  df-subrng 20431  df-subrg 20455  df-lmod 20765  df-lss 20835  df-lsp 20875  df-assa 21760  df-asp 21761  df-ascl 21762  df-psr 21816  df-mvr 21817  df-mpl 21818  df-opsr 21820  df-evls 21979  df-psr1 22062  df-ply1 22064  df-evls1 22200
This theorem is referenced by:  minplyirred  33684
  Copyright terms: Public domain W3C validator