Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  osumcllem10N Structured version   Visualization version   GIF version

Theorem osumcllem10N 37563
Description: Lemma for osumclN 37565. Contradict osumcllem9N 37562. (Contributed by NM, 25-Mar-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
osumcllem.l = (le‘𝐾)
osumcllem.j = (join‘𝐾)
osumcllem.a 𝐴 = (Atoms‘𝐾)
osumcllem.p + = (+𝑃𝐾)
osumcllem.o = (⊥𝑃𝐾)
osumcllem.c 𝐶 = (PSubCl‘𝐾)
osumcllem.m 𝑀 = (𝑋 + {𝑝})
osumcllem.u 𝑈 = ( ‘( ‘(𝑋 + 𝑌)))
Assertion
Ref Expression
osumcllem10N (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ 𝑝𝐴 ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → 𝑀𝑋)

Proof of Theorem osumcllem10N
StepHypRef Expression
1 simp11 1200 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ 𝑝𝐴 ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → 𝐾 ∈ HL)
2 simp2 1134 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ 𝑝𝐴 ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → 𝑝𝐴)
32snssd 4699 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ 𝑝𝐴 ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → {𝑝} ⊆ 𝐴)
4 simp12 1201 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ 𝑝𝐴 ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → 𝑋𝐴)
5 osumcllem.a . . . . . 6 𝐴 = (Atoms‘𝐾)
6 osumcllem.p . . . . . 6 + = (+𝑃𝐾)
75, 6sspadd2 37414 . . . . 5 ((𝐾 ∈ HL ∧ {𝑝} ⊆ 𝐴𝑋𝐴) → {𝑝} ⊆ (𝑋 + {𝑝}))
81, 3, 4, 7syl3anc 1368 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ 𝑝𝐴 ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → {𝑝} ⊆ (𝑋 + {𝑝}))
9 vex 3413 . . . . 5 𝑝 ∈ V
109snss 4676 . . . 4 (𝑝 ∈ (𝑋 + {𝑝}) ↔ {𝑝} ⊆ (𝑋 + {𝑝}))
118, 10sylibr 237 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ 𝑝𝐴 ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → 𝑝 ∈ (𝑋 + {𝑝}))
12 osumcllem.m . . 3 𝑀 = (𝑋 + {𝑝})
1311, 12eleqtrrdi 2863 . 2 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ 𝑝𝐴 ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → 𝑝𝑀)
145, 6sspadd1 37413 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) → 𝑋 ⊆ (𝑋 + 𝑌))
15143ad2ant1 1130 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ 𝑝𝐴 ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → 𝑋 ⊆ (𝑋 + 𝑌))
16 simp3 1135 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ 𝑝𝐴 ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → ¬ 𝑝 ∈ (𝑋 + 𝑌))
1715, 16ssneldd 3895 . 2 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ 𝑝𝐴 ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → ¬ 𝑝𝑋)
18 nelne1 3047 . 2 ((𝑝𝑀 ∧ ¬ 𝑝𝑋) → 𝑀𝑋)
1913, 17, 18syl2anc 587 1 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ 𝑝𝐴 ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → 𝑀𝑋)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  w3a 1084   = wceq 1538  wcel 2111  wne 2951  wss 3858  {csn 4522  cfv 6335  (class class class)co 7150  lecple 16630  joincjn 17620  Atomscatm 36861  HLchlt 36948  +𝑃cpadd 37393  𝑃cpolN 37500  PSubClcpscN 37532
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5156  ax-sep 5169  ax-nul 5176  ax-pow 5234  ax-pr 5298  ax-un 7459
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-ral 3075  df-rex 3076  df-reu 3077  df-rab 3079  df-v 3411  df-sbc 3697  df-csb 3806  df-dif 3861  df-un 3863  df-in 3865  df-ss 3875  df-nul 4226  df-if 4421  df-pw 4496  df-sn 4523  df-pr 4525  df-op 4529  df-uni 4799  df-iun 4885  df-br 5033  df-opab 5095  df-mpt 5113  df-id 5430  df-xp 5530  df-rel 5531  df-cnv 5532  df-co 5533  df-dm 5534  df-rn 5535  df-res 5536  df-ima 5537  df-iota 6294  df-fun 6337  df-fn 6338  df-f 6339  df-f1 6340  df-fo 6341  df-f1o 6342  df-fv 6343  df-ov 7153  df-oprab 7154  df-mpo 7155  df-1st 7693  df-2nd 7694  df-padd 37394
This theorem is referenced by:  osumcllem11N  37564
  Copyright terms: Public domain W3C validator