Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lshpnelb Structured version   Visualization version   GIF version

Theorem lshpnelb 38971
Description: The subspace sum of a hyperplane and the span of an element equals the vector space iff the element is not in the hyperplane. (Contributed by NM, 2-Oct-2014.)
Hypotheses
Ref Expression
lshpnelb.v 𝑉 = (Base‘𝑊)
lshpnelb.n 𝑁 = (LSpan‘𝑊)
lshpnelb.p = (LSSum‘𝑊)
lshpnelb.h 𝐻 = (LSHyp‘𝑊)
lshpnelb.w (𝜑𝑊 ∈ LVec)
lshpnelb.u (𝜑𝑈𝐻)
lshpnelb.x (𝜑𝑋𝑉)
Assertion
Ref Expression
lshpnelb (𝜑 → (¬ 𝑋𝑈 ↔ (𝑈 (𝑁‘{𝑋})) = 𝑉))

Proof of Theorem lshpnelb
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 lshpnelb.u . . . . . 6 (𝜑𝑈𝐻)
2 lshpnelb.v . . . . . . 7 𝑉 = (Base‘𝑊)
3 lshpnelb.n . . . . . . 7 𝑁 = (LSpan‘𝑊)
4 eqid 2729 . . . . . . 7 (LSubSp‘𝑊) = (LSubSp‘𝑊)
5 lshpnelb.p . . . . . . 7 = (LSSum‘𝑊)
6 lshpnelb.h . . . . . . 7 𝐻 = (LSHyp‘𝑊)
7 lshpnelb.w . . . . . . . 8 (𝜑𝑊 ∈ LVec)
8 lveclmod 21046 . . . . . . . 8 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
97, 8syl 17 . . . . . . 7 (𝜑𝑊 ∈ LMod)
102, 3, 4, 5, 6, 9islshpsm 38967 . . . . . 6 (𝜑 → (𝑈𝐻 ↔ (𝑈 ∈ (LSubSp‘𝑊) ∧ 𝑈𝑉 ∧ ∃𝑣𝑉 (𝑈 (𝑁‘{𝑣})) = 𝑉)))
111, 10mpbid 232 . . . . 5 (𝜑 → (𝑈 ∈ (LSubSp‘𝑊) ∧ 𝑈𝑉 ∧ ∃𝑣𝑉 (𝑈 (𝑁‘{𝑣})) = 𝑉))
1211simp3d 1144 . . . 4 (𝜑 → ∃𝑣𝑉 (𝑈 (𝑁‘{𝑣})) = 𝑉)
1312adantr 480 . . 3 ((𝜑 ∧ ¬ 𝑋𝑈) → ∃𝑣𝑉 (𝑈 (𝑁‘{𝑣})) = 𝑉)
14 simp1l 1198 . . . . . 6 (((𝜑 ∧ ¬ 𝑋𝑈) ∧ 𝑣𝑉 ∧ (𝑈 (𝑁‘{𝑣})) = 𝑉) → 𝜑)
15 simp2 1137 . . . . . 6 (((𝜑 ∧ ¬ 𝑋𝑈) ∧ 𝑣𝑉 ∧ (𝑈 (𝑁‘{𝑣})) = 𝑉) → 𝑣𝑉)
164lsssssubg 20897 . . . . . . . . . . . 12 (𝑊 ∈ LMod → (LSubSp‘𝑊) ⊆ (SubGrp‘𝑊))
179, 16syl 17 . . . . . . . . . . 11 (𝜑 → (LSubSp‘𝑊) ⊆ (SubGrp‘𝑊))
184, 6, 9, 1lshplss 38968 . . . . . . . . . . 11 (𝜑𝑈 ∈ (LSubSp‘𝑊))
1917, 18sseldd 3944 . . . . . . . . . 10 (𝜑𝑈 ∈ (SubGrp‘𝑊))
20 lshpnelb.x . . . . . . . . . . . 12 (𝜑𝑋𝑉)
212, 4, 3lspsncl 20916 . . . . . . . . . . . 12 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → (𝑁‘{𝑋}) ∈ (LSubSp‘𝑊))
229, 20, 21syl2anc 584 . . . . . . . . . . 11 (𝜑 → (𝑁‘{𝑋}) ∈ (LSubSp‘𝑊))
2317, 22sseldd 3944 . . . . . . . . . 10 (𝜑 → (𝑁‘{𝑋}) ∈ (SubGrp‘𝑊))
245lsmub1 19572 . . . . . . . . . 10 ((𝑈 ∈ (SubGrp‘𝑊) ∧ (𝑁‘{𝑋}) ∈ (SubGrp‘𝑊)) → 𝑈 ⊆ (𝑈 (𝑁‘{𝑋})))
2519, 23, 24syl2anc 584 . . . . . . . . 9 (𝜑𝑈 ⊆ (𝑈 (𝑁‘{𝑋})))
2625adantr 480 . . . . . . . 8 ((𝜑 ∧ ¬ 𝑋𝑈) → 𝑈 ⊆ (𝑈 (𝑁‘{𝑋})))
275lsmub2 19573 . . . . . . . . . . . 12 ((𝑈 ∈ (SubGrp‘𝑊) ∧ (𝑁‘{𝑋}) ∈ (SubGrp‘𝑊)) → (𝑁‘{𝑋}) ⊆ (𝑈 (𝑁‘{𝑋})))
2819, 23, 27syl2anc 584 . . . . . . . . . . 11 (𝜑 → (𝑁‘{𝑋}) ⊆ (𝑈 (𝑁‘{𝑋})))
292, 3lspsnid 20932 . . . . . . . . . . . 12 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → 𝑋 ∈ (𝑁‘{𝑋}))
309, 20, 29syl2anc 584 . . . . . . . . . . 11 (𝜑𝑋 ∈ (𝑁‘{𝑋}))
3128, 30sseldd 3944 . . . . . . . . . 10 (𝜑𝑋 ∈ (𝑈 (𝑁‘{𝑋})))
32 nelne1 3022 . . . . . . . . . 10 ((𝑋 ∈ (𝑈 (𝑁‘{𝑋})) ∧ ¬ 𝑋𝑈) → (𝑈 (𝑁‘{𝑋})) ≠ 𝑈)
3331, 32sylan 580 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝑋𝑈) → (𝑈 (𝑁‘{𝑋})) ≠ 𝑈)
3433necomd 2980 . . . . . . . 8 ((𝜑 ∧ ¬ 𝑋𝑈) → 𝑈 ≠ (𝑈 (𝑁‘{𝑋})))
35 df-pss 3931 . . . . . . . 8 (𝑈 ⊊ (𝑈 (𝑁‘{𝑋})) ↔ (𝑈 ⊆ (𝑈 (𝑁‘{𝑋})) ∧ 𝑈 ≠ (𝑈 (𝑁‘{𝑋}))))
3626, 34, 35sylanbrc 583 . . . . . . 7 ((𝜑 ∧ ¬ 𝑋𝑈) → 𝑈 ⊊ (𝑈 (𝑁‘{𝑋})))
37363ad2ant1 1133 . . . . . 6 (((𝜑 ∧ ¬ 𝑋𝑈) ∧ 𝑣𝑉 ∧ (𝑈 (𝑁‘{𝑣})) = 𝑉) → 𝑈 ⊊ (𝑈 (𝑁‘{𝑋})))
384, 5lsmcl 21023 . . . . . . . . . . . 12 ((𝑊 ∈ LMod ∧ 𝑈 ∈ (LSubSp‘𝑊) ∧ (𝑁‘{𝑋}) ∈ (LSubSp‘𝑊)) → (𝑈 (𝑁‘{𝑋})) ∈ (LSubSp‘𝑊))
399, 18, 22, 38syl3anc 1373 . . . . . . . . . . 11 (𝜑 → (𝑈 (𝑁‘{𝑋})) ∈ (LSubSp‘𝑊))
402, 4lssss 20875 . . . . . . . . . . 11 ((𝑈 (𝑁‘{𝑋})) ∈ (LSubSp‘𝑊) → (𝑈 (𝑁‘{𝑋})) ⊆ 𝑉)
4139, 40syl 17 . . . . . . . . . 10 (𝜑 → (𝑈 (𝑁‘{𝑋})) ⊆ 𝑉)
4241adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑈 (𝑁‘{𝑣})) = 𝑉) → (𝑈 (𝑁‘{𝑋})) ⊆ 𝑉)
43 simpr 484 . . . . . . . . 9 ((𝜑 ∧ (𝑈 (𝑁‘{𝑣})) = 𝑉) → (𝑈 (𝑁‘{𝑣})) = 𝑉)
4442, 43sseqtrrd 3981 . . . . . . . 8 ((𝜑 ∧ (𝑈 (𝑁‘{𝑣})) = 𝑉) → (𝑈 (𝑁‘{𝑋})) ⊆ (𝑈 (𝑁‘{𝑣})))
4544adantlr 715 . . . . . . 7 (((𝜑 ∧ ¬ 𝑋𝑈) ∧ (𝑈 (𝑁‘{𝑣})) = 𝑉) → (𝑈 (𝑁‘{𝑋})) ⊆ (𝑈 (𝑁‘{𝑣})))
46453adant2 1131 . . . . . 6 (((𝜑 ∧ ¬ 𝑋𝑈) ∧ 𝑣𝑉 ∧ (𝑈 (𝑁‘{𝑣})) = 𝑉) → (𝑈 (𝑁‘{𝑋})) ⊆ (𝑈 (𝑁‘{𝑣})))
477adantr 480 . . . . . . 7 ((𝜑𝑣𝑉) → 𝑊 ∈ LVec)
4818adantr 480 . . . . . . 7 ((𝜑𝑣𝑉) → 𝑈 ∈ (LSubSp‘𝑊))
4939adantr 480 . . . . . . 7 ((𝜑𝑣𝑉) → (𝑈 (𝑁‘{𝑋})) ∈ (LSubSp‘𝑊))
50 simpr 484 . . . . . . 7 ((𝜑𝑣𝑉) → 𝑣𝑉)
512, 4, 3, 5, 47, 48, 49, 50lsmcv 21084 . . . . . 6 (((𝜑𝑣𝑉) ∧ 𝑈 ⊊ (𝑈 (𝑁‘{𝑋})) ∧ (𝑈 (𝑁‘{𝑋})) ⊆ (𝑈 (𝑁‘{𝑣}))) → (𝑈 (𝑁‘{𝑋})) = (𝑈 (𝑁‘{𝑣})))
5214, 15, 37, 46, 51syl211anc 1378 . . . . 5 (((𝜑 ∧ ¬ 𝑋𝑈) ∧ 𝑣𝑉 ∧ (𝑈 (𝑁‘{𝑣})) = 𝑉) → (𝑈 (𝑁‘{𝑋})) = (𝑈 (𝑁‘{𝑣})))
53 simp3 1138 . . . . 5 (((𝜑 ∧ ¬ 𝑋𝑈) ∧ 𝑣𝑉 ∧ (𝑈 (𝑁‘{𝑣})) = 𝑉) → (𝑈 (𝑁‘{𝑣})) = 𝑉)
5452, 53eqtrd 2764 . . . 4 (((𝜑 ∧ ¬ 𝑋𝑈) ∧ 𝑣𝑉 ∧ (𝑈 (𝑁‘{𝑣})) = 𝑉) → (𝑈 (𝑁‘{𝑋})) = 𝑉)
5554rexlimdv3a 3138 . . 3 ((𝜑 ∧ ¬ 𝑋𝑈) → (∃𝑣𝑉 (𝑈 (𝑁‘{𝑣})) = 𝑉 → (𝑈 (𝑁‘{𝑋})) = 𝑉))
5613, 55mpd 15 . 2 ((𝜑 ∧ ¬ 𝑋𝑈) → (𝑈 (𝑁‘{𝑋})) = 𝑉)
579adantr 480 . . 3 ((𝜑 ∧ (𝑈 (𝑁‘{𝑋})) = 𝑉) → 𝑊 ∈ LMod)
581adantr 480 . . 3 ((𝜑 ∧ (𝑈 (𝑁‘{𝑋})) = 𝑉) → 𝑈𝐻)
5920adantr 480 . . 3 ((𝜑 ∧ (𝑈 (𝑁‘{𝑋})) = 𝑉) → 𝑋𝑉)
60 simpr 484 . . 3 ((𝜑 ∧ (𝑈 (𝑁‘{𝑋})) = 𝑉) → (𝑈 (𝑁‘{𝑋})) = 𝑉)
612, 3, 5, 6, 57, 58, 59, 60lshpnel 38970 . 2 ((𝜑 ∧ (𝑈 (𝑁‘{𝑋})) = 𝑉) → ¬ 𝑋𝑈)
6256, 61impbida 800 1 (𝜑 → (¬ 𝑋𝑈 ↔ (𝑈 (𝑁‘{𝑋})) = 𝑉))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wrex 3053  wss 3911  wpss 3912  {csn 4585  cfv 6499  (class class class)co 7369  Basecbs 17156  SubGrpcsubg 19035  LSSumclsm 19549  LModclmod 20799  LSubSpclss 20870  LSpanclspn 20910  LVecclvec 21042  LSHypclsh 38962
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11102  ax-resscn 11103  ax-1cn 11104  ax-icn 11105  ax-addcl 11106  ax-addrcl 11107  ax-mulcl 11108  ax-mulrcl 11109  ax-mulcom 11110  ax-addass 11111  ax-mulass 11112  ax-distr 11113  ax-i2m1 11114  ax-1ne0 11115  ax-1rid 11116  ax-rnegex 11117  ax-rrecex 11118  ax-cnre 11119  ax-pre-lttri 11120  ax-pre-lttrn 11121  ax-pre-ltadd 11122  ax-pre-mulgt0 11123
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-tpos 8182  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-pnf 11188  df-mnf 11189  df-xr 11190  df-ltxr 11191  df-le 11192  df-sub 11385  df-neg 11386  df-nn 12165  df-2 12227  df-3 12228  df-sets 17111  df-slot 17129  df-ndx 17141  df-base 17157  df-ress 17178  df-plusg 17210  df-mulr 17211  df-0g 17381  df-mgm 18550  df-sgrp 18629  df-mnd 18645  df-submnd 18694  df-grp 18851  df-minusg 18852  df-sbg 18853  df-subg 19038  df-cntz 19232  df-lsm 19551  df-cmn 19697  df-abl 19698  df-mgp 20062  df-rng 20074  df-ur 20103  df-ring 20156  df-oppr 20258  df-dvdsr 20278  df-unit 20279  df-invr 20309  df-drng 20652  df-lmod 20801  df-lss 20871  df-lsp 20911  df-lvec 21043  df-lshyp 38964
This theorem is referenced by:  lshpnel2N  38972  l1cvpat  39041  dochexmidat  41447
  Copyright terms: Public domain W3C validator