Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lshpnelb Structured version   Visualization version   GIF version

Theorem lshpnelb 36280
Description: The subspace sum of a hyperplane and the span of an element equals the vector space iff the element is not in the hyperplane. (Contributed by NM, 2-Oct-2014.)
Hypotheses
Ref Expression
lshpnelb.v 𝑉 = (Base‘𝑊)
lshpnelb.n 𝑁 = (LSpan‘𝑊)
lshpnelb.p = (LSSum‘𝑊)
lshpnelb.h 𝐻 = (LSHyp‘𝑊)
lshpnelb.w (𝜑𝑊 ∈ LVec)
lshpnelb.u (𝜑𝑈𝐻)
lshpnelb.x (𝜑𝑋𝑉)
Assertion
Ref Expression
lshpnelb (𝜑 → (¬ 𝑋𝑈 ↔ (𝑈 (𝑁‘{𝑋})) = 𝑉))

Proof of Theorem lshpnelb
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 lshpnelb.u . . . . . 6 (𝜑𝑈𝐻)
2 lshpnelb.v . . . . . . 7 𝑉 = (Base‘𝑊)
3 lshpnelb.n . . . . . . 7 𝑁 = (LSpan‘𝑊)
4 eqid 2798 . . . . . . 7 (LSubSp‘𝑊) = (LSubSp‘𝑊)
5 lshpnelb.p . . . . . . 7 = (LSSum‘𝑊)
6 lshpnelb.h . . . . . . 7 𝐻 = (LSHyp‘𝑊)
7 lshpnelb.w . . . . . . . 8 (𝜑𝑊 ∈ LVec)
8 lveclmod 19871 . . . . . . . 8 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
97, 8syl 17 . . . . . . 7 (𝜑𝑊 ∈ LMod)
102, 3, 4, 5, 6, 9islshpsm 36276 . . . . . 6 (𝜑 → (𝑈𝐻 ↔ (𝑈 ∈ (LSubSp‘𝑊) ∧ 𝑈𝑉 ∧ ∃𝑣𝑉 (𝑈 (𝑁‘{𝑣})) = 𝑉)))
111, 10mpbid 235 . . . . 5 (𝜑 → (𝑈 ∈ (LSubSp‘𝑊) ∧ 𝑈𝑉 ∧ ∃𝑣𝑉 (𝑈 (𝑁‘{𝑣})) = 𝑉))
1211simp3d 1141 . . . 4 (𝜑 → ∃𝑣𝑉 (𝑈 (𝑁‘{𝑣})) = 𝑉)
1312adantr 484 . . 3 ((𝜑 ∧ ¬ 𝑋𝑈) → ∃𝑣𝑉 (𝑈 (𝑁‘{𝑣})) = 𝑉)
14 simp1l 1194 . . . . . 6 (((𝜑 ∧ ¬ 𝑋𝑈) ∧ 𝑣𝑉 ∧ (𝑈 (𝑁‘{𝑣})) = 𝑉) → 𝜑)
15 simp2 1134 . . . . . 6 (((𝜑 ∧ ¬ 𝑋𝑈) ∧ 𝑣𝑉 ∧ (𝑈 (𝑁‘{𝑣})) = 𝑉) → 𝑣𝑉)
164lsssssubg 19723 . . . . . . . . . . . 12 (𝑊 ∈ LMod → (LSubSp‘𝑊) ⊆ (SubGrp‘𝑊))
179, 16syl 17 . . . . . . . . . . 11 (𝜑 → (LSubSp‘𝑊) ⊆ (SubGrp‘𝑊))
184, 6, 9, 1lshplss 36277 . . . . . . . . . . 11 (𝜑𝑈 ∈ (LSubSp‘𝑊))
1917, 18sseldd 3916 . . . . . . . . . 10 (𝜑𝑈 ∈ (SubGrp‘𝑊))
20 lshpnelb.x . . . . . . . . . . . 12 (𝜑𝑋𝑉)
212, 4, 3lspsncl 19742 . . . . . . . . . . . 12 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → (𝑁‘{𝑋}) ∈ (LSubSp‘𝑊))
229, 20, 21syl2anc 587 . . . . . . . . . . 11 (𝜑 → (𝑁‘{𝑋}) ∈ (LSubSp‘𝑊))
2317, 22sseldd 3916 . . . . . . . . . 10 (𝜑 → (𝑁‘{𝑋}) ∈ (SubGrp‘𝑊))
245lsmub1 18774 . . . . . . . . . 10 ((𝑈 ∈ (SubGrp‘𝑊) ∧ (𝑁‘{𝑋}) ∈ (SubGrp‘𝑊)) → 𝑈 ⊆ (𝑈 (𝑁‘{𝑋})))
2519, 23, 24syl2anc 587 . . . . . . . . 9 (𝜑𝑈 ⊆ (𝑈 (𝑁‘{𝑋})))
2625adantr 484 . . . . . . . 8 ((𝜑 ∧ ¬ 𝑋𝑈) → 𝑈 ⊆ (𝑈 (𝑁‘{𝑋})))
275lsmub2 18775 . . . . . . . . . . . 12 ((𝑈 ∈ (SubGrp‘𝑊) ∧ (𝑁‘{𝑋}) ∈ (SubGrp‘𝑊)) → (𝑁‘{𝑋}) ⊆ (𝑈 (𝑁‘{𝑋})))
2819, 23, 27syl2anc 587 . . . . . . . . . . 11 (𝜑 → (𝑁‘{𝑋}) ⊆ (𝑈 (𝑁‘{𝑋})))
292, 3lspsnid 19758 . . . . . . . . . . . 12 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → 𝑋 ∈ (𝑁‘{𝑋}))
309, 20, 29syl2anc 587 . . . . . . . . . . 11 (𝜑𝑋 ∈ (𝑁‘{𝑋}))
3128, 30sseldd 3916 . . . . . . . . . 10 (𝜑𝑋 ∈ (𝑈 (𝑁‘{𝑋})))
32 nelne1 3083 . . . . . . . . . 10 ((𝑋 ∈ (𝑈 (𝑁‘{𝑋})) ∧ ¬ 𝑋𝑈) → (𝑈 (𝑁‘{𝑋})) ≠ 𝑈)
3331, 32sylan 583 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝑋𝑈) → (𝑈 (𝑁‘{𝑋})) ≠ 𝑈)
3433necomd 3042 . . . . . . . 8 ((𝜑 ∧ ¬ 𝑋𝑈) → 𝑈 ≠ (𝑈 (𝑁‘{𝑋})))
35 df-pss 3900 . . . . . . . 8 (𝑈 ⊊ (𝑈 (𝑁‘{𝑋})) ↔ (𝑈 ⊆ (𝑈 (𝑁‘{𝑋})) ∧ 𝑈 ≠ (𝑈 (𝑁‘{𝑋}))))
3626, 34, 35sylanbrc 586 . . . . . . 7 ((𝜑 ∧ ¬ 𝑋𝑈) → 𝑈 ⊊ (𝑈 (𝑁‘{𝑋})))
37363ad2ant1 1130 . . . . . 6 (((𝜑 ∧ ¬ 𝑋𝑈) ∧ 𝑣𝑉 ∧ (𝑈 (𝑁‘{𝑣})) = 𝑉) → 𝑈 ⊊ (𝑈 (𝑁‘{𝑋})))
384, 5lsmcl 19848 . . . . . . . . . . . 12 ((𝑊 ∈ LMod ∧ 𝑈 ∈ (LSubSp‘𝑊) ∧ (𝑁‘{𝑋}) ∈ (LSubSp‘𝑊)) → (𝑈 (𝑁‘{𝑋})) ∈ (LSubSp‘𝑊))
399, 18, 22, 38syl3anc 1368 . . . . . . . . . . 11 (𝜑 → (𝑈 (𝑁‘{𝑋})) ∈ (LSubSp‘𝑊))
402, 4lssss 19701 . . . . . . . . . . 11 ((𝑈 (𝑁‘{𝑋})) ∈ (LSubSp‘𝑊) → (𝑈 (𝑁‘{𝑋})) ⊆ 𝑉)
4139, 40syl 17 . . . . . . . . . 10 (𝜑 → (𝑈 (𝑁‘{𝑋})) ⊆ 𝑉)
4241adantr 484 . . . . . . . . 9 ((𝜑 ∧ (𝑈 (𝑁‘{𝑣})) = 𝑉) → (𝑈 (𝑁‘{𝑋})) ⊆ 𝑉)
43 simpr 488 . . . . . . . . 9 ((𝜑 ∧ (𝑈 (𝑁‘{𝑣})) = 𝑉) → (𝑈 (𝑁‘{𝑣})) = 𝑉)
4442, 43sseqtrrd 3956 . . . . . . . 8 ((𝜑 ∧ (𝑈 (𝑁‘{𝑣})) = 𝑉) → (𝑈 (𝑁‘{𝑋})) ⊆ (𝑈 (𝑁‘{𝑣})))
4544adantlr 714 . . . . . . 7 (((𝜑 ∧ ¬ 𝑋𝑈) ∧ (𝑈 (𝑁‘{𝑣})) = 𝑉) → (𝑈 (𝑁‘{𝑋})) ⊆ (𝑈 (𝑁‘{𝑣})))
46453adant2 1128 . . . . . 6 (((𝜑 ∧ ¬ 𝑋𝑈) ∧ 𝑣𝑉 ∧ (𝑈 (𝑁‘{𝑣})) = 𝑉) → (𝑈 (𝑁‘{𝑋})) ⊆ (𝑈 (𝑁‘{𝑣})))
477adantr 484 . . . . . . 7 ((𝜑𝑣𝑉) → 𝑊 ∈ LVec)
4818adantr 484 . . . . . . 7 ((𝜑𝑣𝑉) → 𝑈 ∈ (LSubSp‘𝑊))
4939adantr 484 . . . . . . 7 ((𝜑𝑣𝑉) → (𝑈 (𝑁‘{𝑋})) ∈ (LSubSp‘𝑊))
50 simpr 488 . . . . . . 7 ((𝜑𝑣𝑉) → 𝑣𝑉)
512, 4, 3, 5, 47, 48, 49, 50lsmcv 19906 . . . . . 6 (((𝜑𝑣𝑉) ∧ 𝑈 ⊊ (𝑈 (𝑁‘{𝑋})) ∧ (𝑈 (𝑁‘{𝑋})) ⊆ (𝑈 (𝑁‘{𝑣}))) → (𝑈 (𝑁‘{𝑋})) = (𝑈 (𝑁‘{𝑣})))
5214, 15, 37, 46, 51syl211anc 1373 . . . . 5 (((𝜑 ∧ ¬ 𝑋𝑈) ∧ 𝑣𝑉 ∧ (𝑈 (𝑁‘{𝑣})) = 𝑉) → (𝑈 (𝑁‘{𝑋})) = (𝑈 (𝑁‘{𝑣})))
53 simp3 1135 . . . . 5 (((𝜑 ∧ ¬ 𝑋𝑈) ∧ 𝑣𝑉 ∧ (𝑈 (𝑁‘{𝑣})) = 𝑉) → (𝑈 (𝑁‘{𝑣})) = 𝑉)
5452, 53eqtrd 2833 . . . 4 (((𝜑 ∧ ¬ 𝑋𝑈) ∧ 𝑣𝑉 ∧ (𝑈 (𝑁‘{𝑣})) = 𝑉) → (𝑈 (𝑁‘{𝑋})) = 𝑉)
5554rexlimdv3a 3245 . . 3 ((𝜑 ∧ ¬ 𝑋𝑈) → (∃𝑣𝑉 (𝑈 (𝑁‘{𝑣})) = 𝑉 → (𝑈 (𝑁‘{𝑋})) = 𝑉))
5613, 55mpd 15 . 2 ((𝜑 ∧ ¬ 𝑋𝑈) → (𝑈 (𝑁‘{𝑋})) = 𝑉)
579adantr 484 . . 3 ((𝜑 ∧ (𝑈 (𝑁‘{𝑋})) = 𝑉) → 𝑊 ∈ LMod)
581adantr 484 . . 3 ((𝜑 ∧ (𝑈 (𝑁‘{𝑋})) = 𝑉) → 𝑈𝐻)
5920adantr 484 . . 3 ((𝜑 ∧ (𝑈 (𝑁‘{𝑋})) = 𝑉) → 𝑋𝑉)
60 simpr 488 . . 3 ((𝜑 ∧ (𝑈 (𝑁‘{𝑋})) = 𝑉) → (𝑈 (𝑁‘{𝑋})) = 𝑉)
612, 3, 5, 6, 57, 58, 59, 60lshpnel 36279 . 2 ((𝜑 ∧ (𝑈 (𝑁‘{𝑋})) = 𝑉) → ¬ 𝑋𝑈)
6256, 61impbida 800 1 (𝜑 → (¬ 𝑋𝑈 ↔ (𝑈 (𝑁‘{𝑋})) = 𝑉))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2111  wne 2987  wrex 3107  wss 3881  wpss 3882  {csn 4525  cfv 6324  (class class class)co 7135  Basecbs 16475  SubGrpcsubg 18265  LSSumclsm 18751  LModclmod 19627  LSubSpclss 19696  LSpanclspn 19736  LVecclvec 19867  LSHypclsh 36271
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-tpos 7875  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-2 11688  df-3 11689  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-0g 16707  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-submnd 17949  df-grp 18098  df-minusg 18099  df-sbg 18100  df-subg 18268  df-cntz 18439  df-lsm 18753  df-cmn 18900  df-abl 18901  df-mgp 19233  df-ur 19245  df-ring 19292  df-oppr 19369  df-dvdsr 19387  df-unit 19388  df-invr 19418  df-drng 19497  df-lmod 19629  df-lss 19697  df-lsp 19737  df-lvec 19868  df-lshyp 36273
This theorem is referenced by:  lshpnel2N  36281  l1cvpat  36350  dochexmidat  38755
  Copyright terms: Public domain W3C validator