Mathbox for Norm Megill < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lshpnelb Structured version   Visualization version   GIF version

Theorem lshpnelb 36560
 Description: The subspace sum of a hyperplane and the span of an element equals the vector space iff the element is not in the hyperplane. (Contributed by NM, 2-Oct-2014.)
Hypotheses
Ref Expression
lshpnelb.v 𝑉 = (Base‘𝑊)
lshpnelb.n 𝑁 = (LSpan‘𝑊)
lshpnelb.p = (LSSum‘𝑊)
lshpnelb.h 𝐻 = (LSHyp‘𝑊)
lshpnelb.w (𝜑𝑊 ∈ LVec)
lshpnelb.u (𝜑𝑈𝐻)
lshpnelb.x (𝜑𝑋𝑉)
Assertion
Ref Expression
lshpnelb (𝜑 → (¬ 𝑋𝑈 ↔ (𝑈 (𝑁‘{𝑋})) = 𝑉))

Proof of Theorem lshpnelb
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 lshpnelb.u . . . . . 6 (𝜑𝑈𝐻)
2 lshpnelb.v . . . . . . 7 𝑉 = (Base‘𝑊)
3 lshpnelb.n . . . . . . 7 𝑁 = (LSpan‘𝑊)
4 eqid 2758 . . . . . . 7 (LSubSp‘𝑊) = (LSubSp‘𝑊)
5 lshpnelb.p . . . . . . 7 = (LSSum‘𝑊)
6 lshpnelb.h . . . . . . 7 𝐻 = (LSHyp‘𝑊)
7 lshpnelb.w . . . . . . . 8 (𝜑𝑊 ∈ LVec)
8 lveclmod 19946 . . . . . . . 8 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
97, 8syl 17 . . . . . . 7 (𝜑𝑊 ∈ LMod)
102, 3, 4, 5, 6, 9islshpsm 36556 . . . . . 6 (𝜑 → (𝑈𝐻 ↔ (𝑈 ∈ (LSubSp‘𝑊) ∧ 𝑈𝑉 ∧ ∃𝑣𝑉 (𝑈 (𝑁‘{𝑣})) = 𝑉)))
111, 10mpbid 235 . . . . 5 (𝜑 → (𝑈 ∈ (LSubSp‘𝑊) ∧ 𝑈𝑉 ∧ ∃𝑣𝑉 (𝑈 (𝑁‘{𝑣})) = 𝑉))
1211simp3d 1141 . . . 4 (𝜑 → ∃𝑣𝑉 (𝑈 (𝑁‘{𝑣})) = 𝑉)
1312adantr 484 . . 3 ((𝜑 ∧ ¬ 𝑋𝑈) → ∃𝑣𝑉 (𝑈 (𝑁‘{𝑣})) = 𝑉)
14 simp1l 1194 . . . . . 6 (((𝜑 ∧ ¬ 𝑋𝑈) ∧ 𝑣𝑉 ∧ (𝑈 (𝑁‘{𝑣})) = 𝑉) → 𝜑)
15 simp2 1134 . . . . . 6 (((𝜑 ∧ ¬ 𝑋𝑈) ∧ 𝑣𝑉 ∧ (𝑈 (𝑁‘{𝑣})) = 𝑉) → 𝑣𝑉)
164lsssssubg 19798 . . . . . . . . . . . 12 (𝑊 ∈ LMod → (LSubSp‘𝑊) ⊆ (SubGrp‘𝑊))
179, 16syl 17 . . . . . . . . . . 11 (𝜑 → (LSubSp‘𝑊) ⊆ (SubGrp‘𝑊))
184, 6, 9, 1lshplss 36557 . . . . . . . . . . 11 (𝜑𝑈 ∈ (LSubSp‘𝑊))
1917, 18sseldd 3893 . . . . . . . . . 10 (𝜑𝑈 ∈ (SubGrp‘𝑊))
20 lshpnelb.x . . . . . . . . . . . 12 (𝜑𝑋𝑉)
212, 4, 3lspsncl 19817 . . . . . . . . . . . 12 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → (𝑁‘{𝑋}) ∈ (LSubSp‘𝑊))
229, 20, 21syl2anc 587 . . . . . . . . . . 11 (𝜑 → (𝑁‘{𝑋}) ∈ (LSubSp‘𝑊))
2317, 22sseldd 3893 . . . . . . . . . 10 (𝜑 → (𝑁‘{𝑋}) ∈ (SubGrp‘𝑊))
245lsmub1 18849 . . . . . . . . . 10 ((𝑈 ∈ (SubGrp‘𝑊) ∧ (𝑁‘{𝑋}) ∈ (SubGrp‘𝑊)) → 𝑈 ⊆ (𝑈 (𝑁‘{𝑋})))
2519, 23, 24syl2anc 587 . . . . . . . . 9 (𝜑𝑈 ⊆ (𝑈 (𝑁‘{𝑋})))
2625adantr 484 . . . . . . . 8 ((𝜑 ∧ ¬ 𝑋𝑈) → 𝑈 ⊆ (𝑈 (𝑁‘{𝑋})))
275lsmub2 18850 . . . . . . . . . . . 12 ((𝑈 ∈ (SubGrp‘𝑊) ∧ (𝑁‘{𝑋}) ∈ (SubGrp‘𝑊)) → (𝑁‘{𝑋}) ⊆ (𝑈 (𝑁‘{𝑋})))
2819, 23, 27syl2anc 587 . . . . . . . . . . 11 (𝜑 → (𝑁‘{𝑋}) ⊆ (𝑈 (𝑁‘{𝑋})))
292, 3lspsnid 19833 . . . . . . . . . . . 12 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → 𝑋 ∈ (𝑁‘{𝑋}))
309, 20, 29syl2anc 587 . . . . . . . . . . 11 (𝜑𝑋 ∈ (𝑁‘{𝑋}))
3128, 30sseldd 3893 . . . . . . . . . 10 (𝜑𝑋 ∈ (𝑈 (𝑁‘{𝑋})))
32 nelne1 3047 . . . . . . . . . 10 ((𝑋 ∈ (𝑈 (𝑁‘{𝑋})) ∧ ¬ 𝑋𝑈) → (𝑈 (𝑁‘{𝑋})) ≠ 𝑈)
3331, 32sylan 583 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝑋𝑈) → (𝑈 (𝑁‘{𝑋})) ≠ 𝑈)
3433necomd 3006 . . . . . . . 8 ((𝜑 ∧ ¬ 𝑋𝑈) → 𝑈 ≠ (𝑈 (𝑁‘{𝑋})))
35 df-pss 3877 . . . . . . . 8 (𝑈 ⊊ (𝑈 (𝑁‘{𝑋})) ↔ (𝑈 ⊆ (𝑈 (𝑁‘{𝑋})) ∧ 𝑈 ≠ (𝑈 (𝑁‘{𝑋}))))
3626, 34, 35sylanbrc 586 . . . . . . 7 ((𝜑 ∧ ¬ 𝑋𝑈) → 𝑈 ⊊ (𝑈 (𝑁‘{𝑋})))
37363ad2ant1 1130 . . . . . 6 (((𝜑 ∧ ¬ 𝑋𝑈) ∧ 𝑣𝑉 ∧ (𝑈 (𝑁‘{𝑣})) = 𝑉) → 𝑈 ⊊ (𝑈 (𝑁‘{𝑋})))
384, 5lsmcl 19923 . . . . . . . . . . . 12 ((𝑊 ∈ LMod ∧ 𝑈 ∈ (LSubSp‘𝑊) ∧ (𝑁‘{𝑋}) ∈ (LSubSp‘𝑊)) → (𝑈 (𝑁‘{𝑋})) ∈ (LSubSp‘𝑊))
399, 18, 22, 38syl3anc 1368 . . . . . . . . . . 11 (𝜑 → (𝑈 (𝑁‘{𝑋})) ∈ (LSubSp‘𝑊))
402, 4lssss 19776 . . . . . . . . . . 11 ((𝑈 (𝑁‘{𝑋})) ∈ (LSubSp‘𝑊) → (𝑈 (𝑁‘{𝑋})) ⊆ 𝑉)
4139, 40syl 17 . . . . . . . . . 10 (𝜑 → (𝑈 (𝑁‘{𝑋})) ⊆ 𝑉)
4241adantr 484 . . . . . . . . 9 ((𝜑 ∧ (𝑈 (𝑁‘{𝑣})) = 𝑉) → (𝑈 (𝑁‘{𝑋})) ⊆ 𝑉)
43 simpr 488 . . . . . . . . 9 ((𝜑 ∧ (𝑈 (𝑁‘{𝑣})) = 𝑉) → (𝑈 (𝑁‘{𝑣})) = 𝑉)
4442, 43sseqtrrd 3933 . . . . . . . 8 ((𝜑 ∧ (𝑈 (𝑁‘{𝑣})) = 𝑉) → (𝑈 (𝑁‘{𝑋})) ⊆ (𝑈 (𝑁‘{𝑣})))
4544adantlr 714 . . . . . . 7 (((𝜑 ∧ ¬ 𝑋𝑈) ∧ (𝑈 (𝑁‘{𝑣})) = 𝑉) → (𝑈 (𝑁‘{𝑋})) ⊆ (𝑈 (𝑁‘{𝑣})))
46453adant2 1128 . . . . . 6 (((𝜑 ∧ ¬ 𝑋𝑈) ∧ 𝑣𝑉 ∧ (𝑈 (𝑁‘{𝑣})) = 𝑉) → (𝑈 (𝑁‘{𝑋})) ⊆ (𝑈 (𝑁‘{𝑣})))
477adantr 484 . . . . . . 7 ((𝜑𝑣𝑉) → 𝑊 ∈ LVec)
4818adantr 484 . . . . . . 7 ((𝜑𝑣𝑉) → 𝑈 ∈ (LSubSp‘𝑊))
4939adantr 484 . . . . . . 7 ((𝜑𝑣𝑉) → (𝑈 (𝑁‘{𝑋})) ∈ (LSubSp‘𝑊))
50 simpr 488 . . . . . . 7 ((𝜑𝑣𝑉) → 𝑣𝑉)
512, 4, 3, 5, 47, 48, 49, 50lsmcv 19981 . . . . . 6 (((𝜑𝑣𝑉) ∧ 𝑈 ⊊ (𝑈 (𝑁‘{𝑋})) ∧ (𝑈 (𝑁‘{𝑋})) ⊆ (𝑈 (𝑁‘{𝑣}))) → (𝑈 (𝑁‘{𝑋})) = (𝑈 (𝑁‘{𝑣})))
5214, 15, 37, 46, 51syl211anc 1373 . . . . 5 (((𝜑 ∧ ¬ 𝑋𝑈) ∧ 𝑣𝑉 ∧ (𝑈 (𝑁‘{𝑣})) = 𝑉) → (𝑈 (𝑁‘{𝑋})) = (𝑈 (𝑁‘{𝑣})))
53 simp3 1135 . . . . 5 (((𝜑 ∧ ¬ 𝑋𝑈) ∧ 𝑣𝑉 ∧ (𝑈 (𝑁‘{𝑣})) = 𝑉) → (𝑈 (𝑁‘{𝑣})) = 𝑉)
5452, 53eqtrd 2793 . . . 4 (((𝜑 ∧ ¬ 𝑋𝑈) ∧ 𝑣𝑉 ∧ (𝑈 (𝑁‘{𝑣})) = 𝑉) → (𝑈 (𝑁‘{𝑋})) = 𝑉)
5554rexlimdv3a 3210 . . 3 ((𝜑 ∧ ¬ 𝑋𝑈) → (∃𝑣𝑉 (𝑈 (𝑁‘{𝑣})) = 𝑉 → (𝑈 (𝑁‘{𝑋})) = 𝑉))
5613, 55mpd 15 . 2 ((𝜑 ∧ ¬ 𝑋𝑈) → (𝑈 (𝑁‘{𝑋})) = 𝑉)
579adantr 484 . . 3 ((𝜑 ∧ (𝑈 (𝑁‘{𝑋})) = 𝑉) → 𝑊 ∈ LMod)
581adantr 484 . . 3 ((𝜑 ∧ (𝑈 (𝑁‘{𝑋})) = 𝑉) → 𝑈𝐻)
5920adantr 484 . . 3 ((𝜑 ∧ (𝑈 (𝑁‘{𝑋})) = 𝑉) → 𝑋𝑉)
60 simpr 488 . . 3 ((𝜑 ∧ (𝑈 (𝑁‘{𝑋})) = 𝑉) → (𝑈 (𝑁‘{𝑋})) = 𝑉)
612, 3, 5, 6, 57, 58, 59, 60lshpnel 36559 . 2 ((𝜑 ∧ (𝑈 (𝑁‘{𝑋})) = 𝑉) → ¬ 𝑋𝑈)
6256, 61impbida 800 1 (𝜑 → (¬ 𝑋𝑈 ↔ (𝑈 (𝑁‘{𝑋})) = 𝑉))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 209   ∧ wa 399   ∧ w3a 1084   = wceq 1538   ∈ wcel 2111   ≠ wne 2951  ∃wrex 3071   ⊆ wss 3858   ⊊ wpss 3859  {csn 4522  ‘cfv 6335  (class class class)co 7150  Basecbs 16541  SubGrpcsubg 18340  LSSumclsm 18826  LModclmod 19702  LSubSpclss 19771  LSpanclspn 19811  LVecclvec 19942  LSHypclsh 36551 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5156  ax-sep 5169  ax-nul 5176  ax-pow 5234  ax-pr 5298  ax-un 7459  ax-cnex 10631  ax-resscn 10632  ax-1cn 10633  ax-icn 10634  ax-addcl 10635  ax-addrcl 10636  ax-mulcl 10637  ax-mulrcl 10638  ax-mulcom 10639  ax-addass 10640  ax-mulass 10641  ax-distr 10642  ax-i2m1 10643  ax-1ne0 10644  ax-1rid 10645  ax-rnegex 10646  ax-rrecex 10647  ax-cnre 10648  ax-pre-lttri 10649  ax-pre-lttrn 10650  ax-pre-ltadd 10651  ax-pre-mulgt0 10652 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-nel 3056  df-ral 3075  df-rex 3076  df-reu 3077  df-rmo 3078  df-rab 3079  df-v 3411  df-sbc 3697  df-csb 3806  df-dif 3861  df-un 3863  df-in 3865  df-ss 3875  df-pss 3877  df-nul 4226  df-if 4421  df-pw 4496  df-sn 4523  df-pr 4525  df-tp 4527  df-op 4529  df-uni 4799  df-int 4839  df-iun 4885  df-br 5033  df-opab 5095  df-mpt 5113  df-tr 5139  df-id 5430  df-eprel 5435  df-po 5443  df-so 5444  df-fr 5483  df-we 5485  df-xp 5530  df-rel 5531  df-cnv 5532  df-co 5533  df-dm 5534  df-rn 5535  df-res 5536  df-ima 5537  df-pred 6126  df-ord 6172  df-on 6173  df-lim 6174  df-suc 6175  df-iota 6294  df-fun 6337  df-fn 6338  df-f 6339  df-f1 6340  df-fo 6341  df-f1o 6342  df-fv 6343  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7580  df-1st 7693  df-2nd 7694  df-tpos 7902  df-wrecs 7957  df-recs 8018  df-rdg 8056  df-er 8299  df-en 8528  df-dom 8529  df-sdom 8530  df-pnf 10715  df-mnf 10716  df-xr 10717  df-ltxr 10718  df-le 10719  df-sub 10910  df-neg 10911  df-nn 11675  df-2 11737  df-3 11738  df-ndx 16544  df-slot 16545  df-base 16547  df-sets 16548  df-ress 16549  df-plusg 16636  df-mulr 16637  df-0g 16773  df-mgm 17918  df-sgrp 17967  df-mnd 17978  df-submnd 18023  df-grp 18172  df-minusg 18173  df-sbg 18174  df-subg 18343  df-cntz 18514  df-lsm 18828  df-cmn 18975  df-abl 18976  df-mgp 19308  df-ur 19320  df-ring 19367  df-oppr 19444  df-dvdsr 19462  df-unit 19463  df-invr 19493  df-drng 19572  df-lmod 19704  df-lss 19772  df-lsp 19812  df-lvec 19943  df-lshyp 36553 This theorem is referenced by:  lshpnel2N  36561  l1cvpat  36630  dochexmidat  39035
 Copyright terms: Public domain W3C validator