Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lshpnelb Structured version   Visualization version   GIF version

Theorem lshpnelb 36925
Description: The subspace sum of a hyperplane and the span of an element equals the vector space iff the element is not in the hyperplane. (Contributed by NM, 2-Oct-2014.)
Hypotheses
Ref Expression
lshpnelb.v 𝑉 = (Base‘𝑊)
lshpnelb.n 𝑁 = (LSpan‘𝑊)
lshpnelb.p = (LSSum‘𝑊)
lshpnelb.h 𝐻 = (LSHyp‘𝑊)
lshpnelb.w (𝜑𝑊 ∈ LVec)
lshpnelb.u (𝜑𝑈𝐻)
lshpnelb.x (𝜑𝑋𝑉)
Assertion
Ref Expression
lshpnelb (𝜑 → (¬ 𝑋𝑈 ↔ (𝑈 (𝑁‘{𝑋})) = 𝑉))

Proof of Theorem lshpnelb
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 lshpnelb.u . . . . . 6 (𝜑𝑈𝐻)
2 lshpnelb.v . . . . . . 7 𝑉 = (Base‘𝑊)
3 lshpnelb.n . . . . . . 7 𝑁 = (LSpan‘𝑊)
4 eqid 2738 . . . . . . 7 (LSubSp‘𝑊) = (LSubSp‘𝑊)
5 lshpnelb.p . . . . . . 7 = (LSSum‘𝑊)
6 lshpnelb.h . . . . . . 7 𝐻 = (LSHyp‘𝑊)
7 lshpnelb.w . . . . . . . 8 (𝜑𝑊 ∈ LVec)
8 lveclmod 20283 . . . . . . . 8 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
97, 8syl 17 . . . . . . 7 (𝜑𝑊 ∈ LMod)
102, 3, 4, 5, 6, 9islshpsm 36921 . . . . . 6 (𝜑 → (𝑈𝐻 ↔ (𝑈 ∈ (LSubSp‘𝑊) ∧ 𝑈𝑉 ∧ ∃𝑣𝑉 (𝑈 (𝑁‘{𝑣})) = 𝑉)))
111, 10mpbid 231 . . . . 5 (𝜑 → (𝑈 ∈ (LSubSp‘𝑊) ∧ 𝑈𝑉 ∧ ∃𝑣𝑉 (𝑈 (𝑁‘{𝑣})) = 𝑉))
1211simp3d 1142 . . . 4 (𝜑 → ∃𝑣𝑉 (𝑈 (𝑁‘{𝑣})) = 𝑉)
1312adantr 480 . . 3 ((𝜑 ∧ ¬ 𝑋𝑈) → ∃𝑣𝑉 (𝑈 (𝑁‘{𝑣})) = 𝑉)
14 simp1l 1195 . . . . . 6 (((𝜑 ∧ ¬ 𝑋𝑈) ∧ 𝑣𝑉 ∧ (𝑈 (𝑁‘{𝑣})) = 𝑉) → 𝜑)
15 simp2 1135 . . . . . 6 (((𝜑 ∧ ¬ 𝑋𝑈) ∧ 𝑣𝑉 ∧ (𝑈 (𝑁‘{𝑣})) = 𝑉) → 𝑣𝑉)
164lsssssubg 20135 . . . . . . . . . . . 12 (𝑊 ∈ LMod → (LSubSp‘𝑊) ⊆ (SubGrp‘𝑊))
179, 16syl 17 . . . . . . . . . . 11 (𝜑 → (LSubSp‘𝑊) ⊆ (SubGrp‘𝑊))
184, 6, 9, 1lshplss 36922 . . . . . . . . . . 11 (𝜑𝑈 ∈ (LSubSp‘𝑊))
1917, 18sseldd 3918 . . . . . . . . . 10 (𝜑𝑈 ∈ (SubGrp‘𝑊))
20 lshpnelb.x . . . . . . . . . . . 12 (𝜑𝑋𝑉)
212, 4, 3lspsncl 20154 . . . . . . . . . . . 12 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → (𝑁‘{𝑋}) ∈ (LSubSp‘𝑊))
229, 20, 21syl2anc 583 . . . . . . . . . . 11 (𝜑 → (𝑁‘{𝑋}) ∈ (LSubSp‘𝑊))
2317, 22sseldd 3918 . . . . . . . . . 10 (𝜑 → (𝑁‘{𝑋}) ∈ (SubGrp‘𝑊))
245lsmub1 19177 . . . . . . . . . 10 ((𝑈 ∈ (SubGrp‘𝑊) ∧ (𝑁‘{𝑋}) ∈ (SubGrp‘𝑊)) → 𝑈 ⊆ (𝑈 (𝑁‘{𝑋})))
2519, 23, 24syl2anc 583 . . . . . . . . 9 (𝜑𝑈 ⊆ (𝑈 (𝑁‘{𝑋})))
2625adantr 480 . . . . . . . 8 ((𝜑 ∧ ¬ 𝑋𝑈) → 𝑈 ⊆ (𝑈 (𝑁‘{𝑋})))
275lsmub2 19178 . . . . . . . . . . . 12 ((𝑈 ∈ (SubGrp‘𝑊) ∧ (𝑁‘{𝑋}) ∈ (SubGrp‘𝑊)) → (𝑁‘{𝑋}) ⊆ (𝑈 (𝑁‘{𝑋})))
2819, 23, 27syl2anc 583 . . . . . . . . . . 11 (𝜑 → (𝑁‘{𝑋}) ⊆ (𝑈 (𝑁‘{𝑋})))
292, 3lspsnid 20170 . . . . . . . . . . . 12 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → 𝑋 ∈ (𝑁‘{𝑋}))
309, 20, 29syl2anc 583 . . . . . . . . . . 11 (𝜑𝑋 ∈ (𝑁‘{𝑋}))
3128, 30sseldd 3918 . . . . . . . . . 10 (𝜑𝑋 ∈ (𝑈 (𝑁‘{𝑋})))
32 nelne1 3040 . . . . . . . . . 10 ((𝑋 ∈ (𝑈 (𝑁‘{𝑋})) ∧ ¬ 𝑋𝑈) → (𝑈 (𝑁‘{𝑋})) ≠ 𝑈)
3331, 32sylan 579 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝑋𝑈) → (𝑈 (𝑁‘{𝑋})) ≠ 𝑈)
3433necomd 2998 . . . . . . . 8 ((𝜑 ∧ ¬ 𝑋𝑈) → 𝑈 ≠ (𝑈 (𝑁‘{𝑋})))
35 df-pss 3902 . . . . . . . 8 (𝑈 ⊊ (𝑈 (𝑁‘{𝑋})) ↔ (𝑈 ⊆ (𝑈 (𝑁‘{𝑋})) ∧ 𝑈 ≠ (𝑈 (𝑁‘{𝑋}))))
3626, 34, 35sylanbrc 582 . . . . . . 7 ((𝜑 ∧ ¬ 𝑋𝑈) → 𝑈 ⊊ (𝑈 (𝑁‘{𝑋})))
37363ad2ant1 1131 . . . . . 6 (((𝜑 ∧ ¬ 𝑋𝑈) ∧ 𝑣𝑉 ∧ (𝑈 (𝑁‘{𝑣})) = 𝑉) → 𝑈 ⊊ (𝑈 (𝑁‘{𝑋})))
384, 5lsmcl 20260 . . . . . . . . . . . 12 ((𝑊 ∈ LMod ∧ 𝑈 ∈ (LSubSp‘𝑊) ∧ (𝑁‘{𝑋}) ∈ (LSubSp‘𝑊)) → (𝑈 (𝑁‘{𝑋})) ∈ (LSubSp‘𝑊))
399, 18, 22, 38syl3anc 1369 . . . . . . . . . . 11 (𝜑 → (𝑈 (𝑁‘{𝑋})) ∈ (LSubSp‘𝑊))
402, 4lssss 20113 . . . . . . . . . . 11 ((𝑈 (𝑁‘{𝑋})) ∈ (LSubSp‘𝑊) → (𝑈 (𝑁‘{𝑋})) ⊆ 𝑉)
4139, 40syl 17 . . . . . . . . . 10 (𝜑 → (𝑈 (𝑁‘{𝑋})) ⊆ 𝑉)
4241adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑈 (𝑁‘{𝑣})) = 𝑉) → (𝑈 (𝑁‘{𝑋})) ⊆ 𝑉)
43 simpr 484 . . . . . . . . 9 ((𝜑 ∧ (𝑈 (𝑁‘{𝑣})) = 𝑉) → (𝑈 (𝑁‘{𝑣})) = 𝑉)
4442, 43sseqtrrd 3958 . . . . . . . 8 ((𝜑 ∧ (𝑈 (𝑁‘{𝑣})) = 𝑉) → (𝑈 (𝑁‘{𝑋})) ⊆ (𝑈 (𝑁‘{𝑣})))
4544adantlr 711 . . . . . . 7 (((𝜑 ∧ ¬ 𝑋𝑈) ∧ (𝑈 (𝑁‘{𝑣})) = 𝑉) → (𝑈 (𝑁‘{𝑋})) ⊆ (𝑈 (𝑁‘{𝑣})))
46453adant2 1129 . . . . . 6 (((𝜑 ∧ ¬ 𝑋𝑈) ∧ 𝑣𝑉 ∧ (𝑈 (𝑁‘{𝑣})) = 𝑉) → (𝑈 (𝑁‘{𝑋})) ⊆ (𝑈 (𝑁‘{𝑣})))
477adantr 480 . . . . . . 7 ((𝜑𝑣𝑉) → 𝑊 ∈ LVec)
4818adantr 480 . . . . . . 7 ((𝜑𝑣𝑉) → 𝑈 ∈ (LSubSp‘𝑊))
4939adantr 480 . . . . . . 7 ((𝜑𝑣𝑉) → (𝑈 (𝑁‘{𝑋})) ∈ (LSubSp‘𝑊))
50 simpr 484 . . . . . . 7 ((𝜑𝑣𝑉) → 𝑣𝑉)
512, 4, 3, 5, 47, 48, 49, 50lsmcv 20318 . . . . . 6 (((𝜑𝑣𝑉) ∧ 𝑈 ⊊ (𝑈 (𝑁‘{𝑋})) ∧ (𝑈 (𝑁‘{𝑋})) ⊆ (𝑈 (𝑁‘{𝑣}))) → (𝑈 (𝑁‘{𝑋})) = (𝑈 (𝑁‘{𝑣})))
5214, 15, 37, 46, 51syl211anc 1374 . . . . 5 (((𝜑 ∧ ¬ 𝑋𝑈) ∧ 𝑣𝑉 ∧ (𝑈 (𝑁‘{𝑣})) = 𝑉) → (𝑈 (𝑁‘{𝑋})) = (𝑈 (𝑁‘{𝑣})))
53 simp3 1136 . . . . 5 (((𝜑 ∧ ¬ 𝑋𝑈) ∧ 𝑣𝑉 ∧ (𝑈 (𝑁‘{𝑣})) = 𝑉) → (𝑈 (𝑁‘{𝑣})) = 𝑉)
5452, 53eqtrd 2778 . . . 4 (((𝜑 ∧ ¬ 𝑋𝑈) ∧ 𝑣𝑉 ∧ (𝑈 (𝑁‘{𝑣})) = 𝑉) → (𝑈 (𝑁‘{𝑋})) = 𝑉)
5554rexlimdv3a 3214 . . 3 ((𝜑 ∧ ¬ 𝑋𝑈) → (∃𝑣𝑉 (𝑈 (𝑁‘{𝑣})) = 𝑉 → (𝑈 (𝑁‘{𝑋})) = 𝑉))
5613, 55mpd 15 . 2 ((𝜑 ∧ ¬ 𝑋𝑈) → (𝑈 (𝑁‘{𝑋})) = 𝑉)
579adantr 480 . . 3 ((𝜑 ∧ (𝑈 (𝑁‘{𝑋})) = 𝑉) → 𝑊 ∈ LMod)
581adantr 480 . . 3 ((𝜑 ∧ (𝑈 (𝑁‘{𝑋})) = 𝑉) → 𝑈𝐻)
5920adantr 480 . . 3 ((𝜑 ∧ (𝑈 (𝑁‘{𝑋})) = 𝑉) → 𝑋𝑉)
60 simpr 484 . . 3 ((𝜑 ∧ (𝑈 (𝑁‘{𝑋})) = 𝑉) → (𝑈 (𝑁‘{𝑋})) = 𝑉)
612, 3, 5, 6, 57, 58, 59, 60lshpnel 36924 . 2 ((𝜑 ∧ (𝑈 (𝑁‘{𝑋})) = 𝑉) → ¬ 𝑋𝑈)
6256, 61impbida 797 1 (𝜑 → (¬ 𝑋𝑈 ↔ (𝑈 (𝑁‘{𝑋})) = 𝑉))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wne 2942  wrex 3064  wss 3883  wpss 3884  {csn 4558  cfv 6418  (class class class)co 7255  Basecbs 16840  SubGrpcsubg 18664  LSSumclsm 19154  LModclmod 20038  LSubSpclss 20108  LSpanclspn 20148  LVecclvec 20279  LSHypclsh 36916
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-tpos 8013  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-3 11967  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-0g 17069  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-submnd 18346  df-grp 18495  df-minusg 18496  df-sbg 18497  df-subg 18667  df-cntz 18838  df-lsm 19156  df-cmn 19303  df-abl 19304  df-mgp 19636  df-ur 19653  df-ring 19700  df-oppr 19777  df-dvdsr 19798  df-unit 19799  df-invr 19829  df-drng 19908  df-lmod 20040  df-lss 20109  df-lsp 20149  df-lvec 20280  df-lshyp 36918
This theorem is referenced by:  lshpnel2N  36926  l1cvpat  36995  dochexmidat  39400
  Copyright terms: Public domain W3C validator