![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lvecpsslmod | Structured version Visualization version GIF version |
Description: The class of all (left) vector spaces is a proper subclass of the class of all (left) modules. Although it is obvious (and proven by lveclmod 20611) that every left vector space is a left module, there is (at least) one left module which is no left vector space, for example the zero module over the zero ring, see lmod1zrnlvec 46665. (Contributed by AV, 29-Apr-2019.) |
Ref | Expression |
---|---|
lvecpsslmod | ⊢ LVec ⊊ LMod |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lveclmod 20611 | . . 3 ⊢ (𝑣 ∈ LVec → 𝑣 ∈ LMod) | |
2 | 1 | ssriv 3952 | . 2 ⊢ LVec ⊆ LMod |
3 | vex 3451 | . . . 4 ⊢ 𝑖 ∈ V | |
4 | vex 3451 | . . . 4 ⊢ 𝑧 ∈ V | |
5 | 3, 4 | pm3.2i 472 | . . 3 ⊢ (𝑖 ∈ V ∧ 𝑧 ∈ V) |
6 | eqid 2733 | . . . . 5 ⊢ {⟨(Base‘ndx), {𝑧}⟩, ⟨(+g‘ndx), {⟨⟨𝑧, 𝑧⟩, 𝑧⟩}⟩, ⟨(.r‘ndx), {⟨⟨𝑧, 𝑧⟩, 𝑧⟩}⟩} = {⟨(Base‘ndx), {𝑧}⟩, ⟨(+g‘ndx), {⟨⟨𝑧, 𝑧⟩, 𝑧⟩}⟩, ⟨(.r‘ndx), {⟨⟨𝑧, 𝑧⟩, 𝑧⟩}⟩} | |
7 | eqid 2733 | . . . . 5 ⊢ ({⟨(Base‘ndx), {𝑖}⟩, ⟨(+g‘ndx), {⟨⟨𝑖, 𝑖⟩, 𝑖⟩}⟩, ⟨(Scalar‘ndx), {⟨(Base‘ndx), {𝑧}⟩, ⟨(+g‘ndx), {⟨⟨𝑧, 𝑧⟩, 𝑧⟩}⟩, ⟨(.r‘ndx), {⟨⟨𝑧, 𝑧⟩, 𝑧⟩}⟩}⟩} ∪ {⟨( ·𝑠 ‘ndx), {⟨⟨𝑧, 𝑖⟩, 𝑖⟩}⟩}) = ({⟨(Base‘ndx), {𝑖}⟩, ⟨(+g‘ndx), {⟨⟨𝑖, 𝑖⟩, 𝑖⟩}⟩, ⟨(Scalar‘ndx), {⟨(Base‘ndx), {𝑧}⟩, ⟨(+g‘ndx), {⟨⟨𝑧, 𝑧⟩, 𝑧⟩}⟩, ⟨(.r‘ndx), {⟨⟨𝑧, 𝑧⟩, 𝑧⟩}⟩}⟩} ∪ {⟨( ·𝑠 ‘ndx), {⟨⟨𝑧, 𝑖⟩, 𝑖⟩}⟩}) | |
8 | 6, 7 | lmod1zr 46664 | . . . 4 ⊢ ((𝑖 ∈ V ∧ 𝑧 ∈ V) → ({⟨(Base‘ndx), {𝑖}⟩, ⟨(+g‘ndx), {⟨⟨𝑖, 𝑖⟩, 𝑖⟩}⟩, ⟨(Scalar‘ndx), {⟨(Base‘ndx), {𝑧}⟩, ⟨(+g‘ndx), {⟨⟨𝑧, 𝑧⟩, 𝑧⟩}⟩, ⟨(.r‘ndx), {⟨⟨𝑧, 𝑧⟩, 𝑧⟩}⟩}⟩} ∪ {⟨( ·𝑠 ‘ndx), {⟨⟨𝑧, 𝑖⟩, 𝑖⟩}⟩}) ∈ LMod) |
9 | 6, 7 | lmod1zrnlvec 46665 | . . . . 5 ⊢ ((𝑖 ∈ V ∧ 𝑧 ∈ V) → ({⟨(Base‘ndx), {𝑖}⟩, ⟨(+g‘ndx), {⟨⟨𝑖, 𝑖⟩, 𝑖⟩}⟩, ⟨(Scalar‘ndx), {⟨(Base‘ndx), {𝑧}⟩, ⟨(+g‘ndx), {⟨⟨𝑧, 𝑧⟩, 𝑧⟩}⟩, ⟨(.r‘ndx), {⟨⟨𝑧, 𝑧⟩, 𝑧⟩}⟩}⟩} ∪ {⟨( ·𝑠 ‘ndx), {⟨⟨𝑧, 𝑖⟩, 𝑖⟩}⟩}) ∉ LVec) |
10 | df-nel 3047 | . . . . 5 ⊢ (({⟨(Base‘ndx), {𝑖}⟩, ⟨(+g‘ndx), {⟨⟨𝑖, 𝑖⟩, 𝑖⟩}⟩, ⟨(Scalar‘ndx), {⟨(Base‘ndx), {𝑧}⟩, ⟨(+g‘ndx), {⟨⟨𝑧, 𝑧⟩, 𝑧⟩}⟩, ⟨(.r‘ndx), {⟨⟨𝑧, 𝑧⟩, 𝑧⟩}⟩}⟩} ∪ {⟨( ·𝑠 ‘ndx), {⟨⟨𝑧, 𝑖⟩, 𝑖⟩}⟩}) ∉ LVec ↔ ¬ ({⟨(Base‘ndx), {𝑖}⟩, ⟨(+g‘ndx), {⟨⟨𝑖, 𝑖⟩, 𝑖⟩}⟩, ⟨(Scalar‘ndx), {⟨(Base‘ndx), {𝑧}⟩, ⟨(+g‘ndx), {⟨⟨𝑧, 𝑧⟩, 𝑧⟩}⟩, ⟨(.r‘ndx), {⟨⟨𝑧, 𝑧⟩, 𝑧⟩}⟩}⟩} ∪ {⟨( ·𝑠 ‘ndx), {⟨⟨𝑧, 𝑖⟩, 𝑖⟩}⟩}) ∈ LVec) | |
11 | 9, 10 | sylib 217 | . . . 4 ⊢ ((𝑖 ∈ V ∧ 𝑧 ∈ V) → ¬ ({⟨(Base‘ndx), {𝑖}⟩, ⟨(+g‘ndx), {⟨⟨𝑖, 𝑖⟩, 𝑖⟩}⟩, ⟨(Scalar‘ndx), {⟨(Base‘ndx), {𝑧}⟩, ⟨(+g‘ndx), {⟨⟨𝑧, 𝑧⟩, 𝑧⟩}⟩, ⟨(.r‘ndx), {⟨⟨𝑧, 𝑧⟩, 𝑧⟩}⟩}⟩} ∪ {⟨( ·𝑠 ‘ndx), {⟨⟨𝑧, 𝑖⟩, 𝑖⟩}⟩}) ∈ LVec) |
12 | 8, 11 | jca 513 | . . 3 ⊢ ((𝑖 ∈ V ∧ 𝑧 ∈ V) → (({⟨(Base‘ndx), {𝑖}⟩, ⟨(+g‘ndx), {⟨⟨𝑖, 𝑖⟩, 𝑖⟩}⟩, ⟨(Scalar‘ndx), {⟨(Base‘ndx), {𝑧}⟩, ⟨(+g‘ndx), {⟨⟨𝑧, 𝑧⟩, 𝑧⟩}⟩, ⟨(.r‘ndx), {⟨⟨𝑧, 𝑧⟩, 𝑧⟩}⟩}⟩} ∪ {⟨( ·𝑠 ‘ndx), {⟨⟨𝑧, 𝑖⟩, 𝑖⟩}⟩}) ∈ LMod ∧ ¬ ({⟨(Base‘ndx), {𝑖}⟩, ⟨(+g‘ndx), {⟨⟨𝑖, 𝑖⟩, 𝑖⟩}⟩, ⟨(Scalar‘ndx), {⟨(Base‘ndx), {𝑧}⟩, ⟨(+g‘ndx), {⟨⟨𝑧, 𝑧⟩, 𝑧⟩}⟩, ⟨(.r‘ndx), {⟨⟨𝑧, 𝑧⟩, 𝑧⟩}⟩}⟩} ∪ {⟨( ·𝑠 ‘ndx), {⟨⟨𝑧, 𝑖⟩, 𝑖⟩}⟩}) ∈ LVec)) |
13 | nelne1 3038 | . . . 4 ⊢ ((({⟨(Base‘ndx), {𝑖}⟩, ⟨(+g‘ndx), {⟨⟨𝑖, 𝑖⟩, 𝑖⟩}⟩, ⟨(Scalar‘ndx), {⟨(Base‘ndx), {𝑧}⟩, ⟨(+g‘ndx), {⟨⟨𝑧, 𝑧⟩, 𝑧⟩}⟩, ⟨(.r‘ndx), {⟨⟨𝑧, 𝑧⟩, 𝑧⟩}⟩}⟩} ∪ {⟨( ·𝑠 ‘ndx), {⟨⟨𝑧, 𝑖⟩, 𝑖⟩}⟩}) ∈ LMod ∧ ¬ ({⟨(Base‘ndx), {𝑖}⟩, ⟨(+g‘ndx), {⟨⟨𝑖, 𝑖⟩, 𝑖⟩}⟩, ⟨(Scalar‘ndx), {⟨(Base‘ndx), {𝑧}⟩, ⟨(+g‘ndx), {⟨⟨𝑧, 𝑧⟩, 𝑧⟩}⟩, ⟨(.r‘ndx), {⟨⟨𝑧, 𝑧⟩, 𝑧⟩}⟩}⟩} ∪ {⟨( ·𝑠 ‘ndx), {⟨⟨𝑧, 𝑖⟩, 𝑖⟩}⟩}) ∈ LVec) → LMod ≠ LVec) | |
14 | 13 | necomd 2996 | . . 3 ⊢ ((({⟨(Base‘ndx), {𝑖}⟩, ⟨(+g‘ndx), {⟨⟨𝑖, 𝑖⟩, 𝑖⟩}⟩, ⟨(Scalar‘ndx), {⟨(Base‘ndx), {𝑧}⟩, ⟨(+g‘ndx), {⟨⟨𝑧, 𝑧⟩, 𝑧⟩}⟩, ⟨(.r‘ndx), {⟨⟨𝑧, 𝑧⟩, 𝑧⟩}⟩}⟩} ∪ {⟨( ·𝑠 ‘ndx), {⟨⟨𝑧, 𝑖⟩, 𝑖⟩}⟩}) ∈ LMod ∧ ¬ ({⟨(Base‘ndx), {𝑖}⟩, ⟨(+g‘ndx), {⟨⟨𝑖, 𝑖⟩, 𝑖⟩}⟩, ⟨(Scalar‘ndx), {⟨(Base‘ndx), {𝑧}⟩, ⟨(+g‘ndx), {⟨⟨𝑧, 𝑧⟩, 𝑧⟩}⟩, ⟨(.r‘ndx), {⟨⟨𝑧, 𝑧⟩, 𝑧⟩}⟩}⟩} ∪ {⟨( ·𝑠 ‘ndx), {⟨⟨𝑧, 𝑖⟩, 𝑖⟩}⟩}) ∈ LVec) → LVec ≠ LMod) |
15 | 5, 12, 14 | mp2b 10 | . 2 ⊢ LVec ≠ LMod |
16 | df-pss 3933 | . 2 ⊢ (LVec ⊊ LMod ↔ (LVec ⊆ LMod ∧ LVec ≠ LMod)) | |
17 | 2, 15, 16 | mpbir2an 710 | 1 ⊢ LVec ⊊ LMod |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∧ wa 397 ∈ wcel 2107 ≠ wne 2940 ∉ wnel 3046 Vcvv 3447 ∪ cun 3912 ⊆ wss 3914 ⊊ wpss 3915 {csn 4590 {ctp 4594 ⟨cop 4596 ‘cfv 6500 ndxcnx 17073 Basecbs 17091 +gcplusg 17141 .rcmulr 17142 Scalarcsca 17144 ·𝑠 cvsca 17145 LModclmod 20365 LVecclvec 20607 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5246 ax-sep 5260 ax-nul 5267 ax-pow 5324 ax-pr 5388 ax-un 7676 ax-cnex 11115 ax-resscn 11116 ax-1cn 11117 ax-icn 11118 ax-addcl 11119 ax-addrcl 11120 ax-mulcl 11121 ax-mulrcl 11122 ax-mulcom 11123 ax-addass 11124 ax-mulass 11125 ax-distr 11126 ax-i2m1 11127 ax-1ne0 11128 ax-1rid 11129 ax-rnegex 11130 ax-rrecex 11131 ax-cnre 11132 ax-pre-lttri 11133 ax-pre-lttrn 11134 ax-pre-ltadd 11135 ax-pre-mulgt0 11136 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3352 df-reu 3353 df-rab 3407 df-v 3449 df-sbc 3744 df-csb 3860 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3933 df-nul 4287 df-if 4491 df-pw 4566 df-sn 4591 df-pr 4593 df-tp 4595 df-op 4597 df-uni 4870 df-int 4912 df-iun 4960 df-br 5110 df-opab 5172 df-mpt 5193 df-tr 5227 df-id 5535 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5592 df-we 5594 df-xp 5643 df-rel 5644 df-cnv 5645 df-co 5646 df-dm 5647 df-rn 5648 df-res 5649 df-ima 5650 df-pred 6257 df-ord 6324 df-on 6325 df-lim 6326 df-suc 6327 df-iota 6452 df-fun 6502 df-fn 6503 df-f 6504 df-f1 6505 df-fo 6506 df-f1o 6507 df-fv 6508 df-riota 7317 df-ov 7364 df-oprab 7365 df-mpo 7366 df-om 7807 df-1st 7925 df-2nd 7926 df-tpos 8161 df-frecs 8216 df-wrecs 8247 df-recs 8321 df-rdg 8360 df-1o 8416 df-oadd 8420 df-er 8654 df-en 8890 df-dom 8891 df-sdom 8892 df-fin 8893 df-dju 9845 df-card 9883 df-pnf 11199 df-mnf 11200 df-xr 11201 df-ltxr 11202 df-le 11203 df-sub 11395 df-neg 11396 df-nn 12162 df-2 12224 df-3 12225 df-4 12226 df-5 12227 df-6 12228 df-n0 12422 df-xnn0 12494 df-z 12508 df-uz 12772 df-fz 13434 df-hash 14240 df-struct 17027 df-sets 17044 df-slot 17062 df-ndx 17074 df-base 17092 df-plusg 17154 df-mulr 17155 df-sca 17157 df-vsca 17158 df-0g 17331 df-mgm 18505 df-sgrp 18554 df-mnd 18565 df-grp 18759 df-minusg 18760 df-mgp 19905 df-ur 19922 df-ring 19974 df-oppr 20057 df-dvdsr 20078 df-unit 20079 df-nzr 20196 df-drng 20221 df-lmod 20367 df-lvec 20608 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |