Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lvecpsslmod Structured version   Visualization version   GIF version

Theorem lvecpsslmod 48391
Description: The class of all (left) vector spaces is a proper subclass of the class of all (left) modules. Although it is obvious (and proven by lveclmod 21132) that every left vector space is a left module, there is (at least) one left module which is no left vector space, for example the zero module over the zero ring, see lmod1zrnlvec 48378. (Contributed by AV, 29-Apr-2019.)
Assertion
Ref Expression
lvecpsslmod LVec ⊊ LMod

Proof of Theorem lvecpsslmod
StepHypRef Expression
1 lveclmod 21132 . . 3 (𝑣 ∈ LVec → 𝑣 ∈ LMod)
21ssriv 4002 . 2 LVec ⊆ LMod
3 vex 3485 . . . 4 𝑖 ∈ V
4 vex 3485 . . . 4 𝑧 ∈ V
53, 4pm3.2i 470 . . 3 (𝑖 ∈ V ∧ 𝑧 ∈ V)
6 eqid 2737 . . . . 5 {⟨(Base‘ndx), {𝑧}⟩, ⟨(+g‘ndx), {⟨⟨𝑧, 𝑧⟩, 𝑧⟩}⟩, ⟨(.r‘ndx), {⟨⟨𝑧, 𝑧⟩, 𝑧⟩}⟩} = {⟨(Base‘ndx), {𝑧}⟩, ⟨(+g‘ndx), {⟨⟨𝑧, 𝑧⟩, 𝑧⟩}⟩, ⟨(.r‘ndx), {⟨⟨𝑧, 𝑧⟩, 𝑧⟩}⟩}
7 eqid 2737 . . . . 5 ({⟨(Base‘ndx), {𝑖}⟩, ⟨(+g‘ndx), {⟨⟨𝑖, 𝑖⟩, 𝑖⟩}⟩, ⟨(Scalar‘ndx), {⟨(Base‘ndx), {𝑧}⟩, ⟨(+g‘ndx), {⟨⟨𝑧, 𝑧⟩, 𝑧⟩}⟩, ⟨(.r‘ndx), {⟨⟨𝑧, 𝑧⟩, 𝑧⟩}⟩}⟩} ∪ {⟨( ·𝑠 ‘ndx), {⟨⟨𝑧, 𝑖⟩, 𝑖⟩}⟩}) = ({⟨(Base‘ndx), {𝑖}⟩, ⟨(+g‘ndx), {⟨⟨𝑖, 𝑖⟩, 𝑖⟩}⟩, ⟨(Scalar‘ndx), {⟨(Base‘ndx), {𝑧}⟩, ⟨(+g‘ndx), {⟨⟨𝑧, 𝑧⟩, 𝑧⟩}⟩, ⟨(.r‘ndx), {⟨⟨𝑧, 𝑧⟩, 𝑧⟩}⟩}⟩} ∪ {⟨( ·𝑠 ‘ndx), {⟨⟨𝑧, 𝑖⟩, 𝑖⟩}⟩})
86, 7lmod1zr 48377 . . . 4 ((𝑖 ∈ V ∧ 𝑧 ∈ V) → ({⟨(Base‘ndx), {𝑖}⟩, ⟨(+g‘ndx), {⟨⟨𝑖, 𝑖⟩, 𝑖⟩}⟩, ⟨(Scalar‘ndx), {⟨(Base‘ndx), {𝑧}⟩, ⟨(+g‘ndx), {⟨⟨𝑧, 𝑧⟩, 𝑧⟩}⟩, ⟨(.r‘ndx), {⟨⟨𝑧, 𝑧⟩, 𝑧⟩}⟩}⟩} ∪ {⟨( ·𝑠 ‘ndx), {⟨⟨𝑧, 𝑖⟩, 𝑖⟩}⟩}) ∈ LMod)
96, 7lmod1zrnlvec 48378 . . . . 5 ((𝑖 ∈ V ∧ 𝑧 ∈ V) → ({⟨(Base‘ndx), {𝑖}⟩, ⟨(+g‘ndx), {⟨⟨𝑖, 𝑖⟩, 𝑖⟩}⟩, ⟨(Scalar‘ndx), {⟨(Base‘ndx), {𝑧}⟩, ⟨(+g‘ndx), {⟨⟨𝑧, 𝑧⟩, 𝑧⟩}⟩, ⟨(.r‘ndx), {⟨⟨𝑧, 𝑧⟩, 𝑧⟩}⟩}⟩} ∪ {⟨( ·𝑠 ‘ndx), {⟨⟨𝑧, 𝑖⟩, 𝑖⟩}⟩}) ∉ LVec)
10 df-nel 3047 . . . . 5 (({⟨(Base‘ndx), {𝑖}⟩, ⟨(+g‘ndx), {⟨⟨𝑖, 𝑖⟩, 𝑖⟩}⟩, ⟨(Scalar‘ndx), {⟨(Base‘ndx), {𝑧}⟩, ⟨(+g‘ndx), {⟨⟨𝑧, 𝑧⟩, 𝑧⟩}⟩, ⟨(.r‘ndx), {⟨⟨𝑧, 𝑧⟩, 𝑧⟩}⟩}⟩} ∪ {⟨( ·𝑠 ‘ndx), {⟨⟨𝑧, 𝑖⟩, 𝑖⟩}⟩}) ∉ LVec ↔ ¬ ({⟨(Base‘ndx), {𝑖}⟩, ⟨(+g‘ndx), {⟨⟨𝑖, 𝑖⟩, 𝑖⟩}⟩, ⟨(Scalar‘ndx), {⟨(Base‘ndx), {𝑧}⟩, ⟨(+g‘ndx), {⟨⟨𝑧, 𝑧⟩, 𝑧⟩}⟩, ⟨(.r‘ndx), {⟨⟨𝑧, 𝑧⟩, 𝑧⟩}⟩}⟩} ∪ {⟨( ·𝑠 ‘ndx), {⟨⟨𝑧, 𝑖⟩, 𝑖⟩}⟩}) ∈ LVec)
119, 10sylib 218 . . . 4 ((𝑖 ∈ V ∧ 𝑧 ∈ V) → ¬ ({⟨(Base‘ndx), {𝑖}⟩, ⟨(+g‘ndx), {⟨⟨𝑖, 𝑖⟩, 𝑖⟩}⟩, ⟨(Scalar‘ndx), {⟨(Base‘ndx), {𝑧}⟩, ⟨(+g‘ndx), {⟨⟨𝑧, 𝑧⟩, 𝑧⟩}⟩, ⟨(.r‘ndx), {⟨⟨𝑧, 𝑧⟩, 𝑧⟩}⟩}⟩} ∪ {⟨( ·𝑠 ‘ndx), {⟨⟨𝑧, 𝑖⟩, 𝑖⟩}⟩}) ∈ LVec)
128, 11jca 511 . . 3 ((𝑖 ∈ V ∧ 𝑧 ∈ V) → (({⟨(Base‘ndx), {𝑖}⟩, ⟨(+g‘ndx), {⟨⟨𝑖, 𝑖⟩, 𝑖⟩}⟩, ⟨(Scalar‘ndx), {⟨(Base‘ndx), {𝑧}⟩, ⟨(+g‘ndx), {⟨⟨𝑧, 𝑧⟩, 𝑧⟩}⟩, ⟨(.r‘ndx), {⟨⟨𝑧, 𝑧⟩, 𝑧⟩}⟩}⟩} ∪ {⟨( ·𝑠 ‘ndx), {⟨⟨𝑧, 𝑖⟩, 𝑖⟩}⟩}) ∈ LMod ∧ ¬ ({⟨(Base‘ndx), {𝑖}⟩, ⟨(+g‘ndx), {⟨⟨𝑖, 𝑖⟩, 𝑖⟩}⟩, ⟨(Scalar‘ndx), {⟨(Base‘ndx), {𝑧}⟩, ⟨(+g‘ndx), {⟨⟨𝑧, 𝑧⟩, 𝑧⟩}⟩, ⟨(.r‘ndx), {⟨⟨𝑧, 𝑧⟩, 𝑧⟩}⟩}⟩} ∪ {⟨( ·𝑠 ‘ndx), {⟨⟨𝑧, 𝑖⟩, 𝑖⟩}⟩}) ∈ LVec))
13 nelne1 3039 . . . 4 ((({⟨(Base‘ndx), {𝑖}⟩, ⟨(+g‘ndx), {⟨⟨𝑖, 𝑖⟩, 𝑖⟩}⟩, ⟨(Scalar‘ndx), {⟨(Base‘ndx), {𝑧}⟩, ⟨(+g‘ndx), {⟨⟨𝑧, 𝑧⟩, 𝑧⟩}⟩, ⟨(.r‘ndx), {⟨⟨𝑧, 𝑧⟩, 𝑧⟩}⟩}⟩} ∪ {⟨( ·𝑠 ‘ndx), {⟨⟨𝑧, 𝑖⟩, 𝑖⟩}⟩}) ∈ LMod ∧ ¬ ({⟨(Base‘ndx), {𝑖}⟩, ⟨(+g‘ndx), {⟨⟨𝑖, 𝑖⟩, 𝑖⟩}⟩, ⟨(Scalar‘ndx), {⟨(Base‘ndx), {𝑧}⟩, ⟨(+g‘ndx), {⟨⟨𝑧, 𝑧⟩, 𝑧⟩}⟩, ⟨(.r‘ndx), {⟨⟨𝑧, 𝑧⟩, 𝑧⟩}⟩}⟩} ∪ {⟨( ·𝑠 ‘ndx), {⟨⟨𝑧, 𝑖⟩, 𝑖⟩}⟩}) ∈ LVec) → LMod ≠ LVec)
1413necomd 2996 . . 3 ((({⟨(Base‘ndx), {𝑖}⟩, ⟨(+g‘ndx), {⟨⟨𝑖, 𝑖⟩, 𝑖⟩}⟩, ⟨(Scalar‘ndx), {⟨(Base‘ndx), {𝑧}⟩, ⟨(+g‘ndx), {⟨⟨𝑧, 𝑧⟩, 𝑧⟩}⟩, ⟨(.r‘ndx), {⟨⟨𝑧, 𝑧⟩, 𝑧⟩}⟩}⟩} ∪ {⟨( ·𝑠 ‘ndx), {⟨⟨𝑧, 𝑖⟩, 𝑖⟩}⟩}) ∈ LMod ∧ ¬ ({⟨(Base‘ndx), {𝑖}⟩, ⟨(+g‘ndx), {⟨⟨𝑖, 𝑖⟩, 𝑖⟩}⟩, ⟨(Scalar‘ndx), {⟨(Base‘ndx), {𝑧}⟩, ⟨(+g‘ndx), {⟨⟨𝑧, 𝑧⟩, 𝑧⟩}⟩, ⟨(.r‘ndx), {⟨⟨𝑧, 𝑧⟩, 𝑧⟩}⟩}⟩} ∪ {⟨( ·𝑠 ‘ndx), {⟨⟨𝑧, 𝑖⟩, 𝑖⟩}⟩}) ∈ LVec) → LVec ≠ LMod)
155, 12, 14mp2b 10 . 2 LVec ≠ LMod
16 df-pss 3986 . 2 (LVec ⊊ LMod ↔ (LVec ⊆ LMod ∧ LVec ≠ LMod))
172, 15, 16mpbir2an 711 1 LVec ⊊ LMod
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 395  wcel 2108  wne 2940  wnel 3046  Vcvv 3481  cun 3964  wss 3966  wpss 3967  {csn 4634  {ctp 4638  cop 4640  cfv 6569  ndxcnx 17236  Basecbs 17254  +gcplusg 17307  .rcmulr 17308  Scalarcsca 17310   ·𝑠 cvsca 17311  LModclmod 20884  LVecclvec 21128
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5288  ax-sep 5305  ax-nul 5315  ax-pow 5374  ax-pr 5441  ax-un 7761  ax-cnex 11218  ax-resscn 11219  ax-1cn 11220  ax-icn 11221  ax-addcl 11222  ax-addrcl 11223  ax-mulcl 11224  ax-mulrcl 11225  ax-mulcom 11226  ax-addass 11227  ax-mulass 11228  ax-distr 11229  ax-i2m1 11230  ax-1ne0 11231  ax-1rid 11232  ax-rnegex 11233  ax-rrecex 11234  ax-cnre 11235  ax-pre-lttri 11236  ax-pre-lttrn 11237  ax-pre-ltadd 11238  ax-pre-mulgt0 11239
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3483  df-sbc 3795  df-csb 3912  df-dif 3969  df-un 3971  df-in 3973  df-ss 3983  df-pss 3986  df-nul 4343  df-if 4535  df-pw 4610  df-sn 4635  df-pr 4637  df-tp 4639  df-op 4641  df-uni 4916  df-int 4955  df-iun 5001  df-br 5152  df-opab 5214  df-mpt 5235  df-tr 5269  df-id 5587  df-eprel 5593  df-po 5601  df-so 5602  df-fr 5645  df-we 5647  df-xp 5699  df-rel 5700  df-cnv 5701  df-co 5702  df-dm 5703  df-rn 5704  df-res 5705  df-ima 5706  df-pred 6329  df-ord 6395  df-on 6396  df-lim 6397  df-suc 6398  df-iota 6522  df-fun 6571  df-fn 6572  df-f 6573  df-f1 6574  df-fo 6575  df-f1o 6576  df-fv 6577  df-riota 7395  df-ov 7441  df-oprab 7442  df-mpo 7443  df-om 7895  df-1st 8022  df-2nd 8023  df-tpos 8259  df-frecs 8314  df-wrecs 8345  df-recs 8419  df-rdg 8458  df-1o 8514  df-oadd 8518  df-er 8753  df-en 8994  df-dom 8995  df-sdom 8996  df-fin 8997  df-dju 9948  df-card 9986  df-pnf 11304  df-mnf 11305  df-xr 11306  df-ltxr 11307  df-le 11308  df-sub 11501  df-neg 11502  df-nn 12274  df-2 12336  df-3 12337  df-4 12338  df-5 12339  df-6 12340  df-n0 12534  df-xnn0 12607  df-z 12621  df-uz 12886  df-fz 13554  df-hash 14376  df-struct 17190  df-sets 17207  df-slot 17225  df-ndx 17237  df-base 17255  df-plusg 17320  df-mulr 17321  df-sca 17323  df-vsca 17324  df-0g 17497  df-mgm 18675  df-sgrp 18754  df-mnd 18770  df-grp 18976  df-minusg 18977  df-cmn 19824  df-abl 19825  df-mgp 20162  df-rng 20180  df-ur 20209  df-ring 20262  df-oppr 20360  df-dvdsr 20383  df-unit 20384  df-nzr 20539  df-drng 20757  df-lmod 20886  df-lvec 21129
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator