Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cntnevol Structured version   Visualization version   GIF version

Theorem cntnevol 34201
Description: Counting and Lebesgue measures are different. (Contributed by Thierry Arnoux, 27-Jan-2017.)
Assertion
Ref Expression
cntnevol (♯ ↾ 𝒫 𝑂) ≠ vol

Proof of Theorem cntnevol
StepHypRef Expression
1 ax-1ne0 11078 . . . . 5 1 ≠ 0
21a1i 11 . . . 4 (1 ∈ 𝑂 → 1 ≠ 0)
3 snelpwi 5386 . . . . . 6 (1 ∈ 𝑂 → {1} ∈ 𝒫 𝑂)
4 fvres 6841 . . . . . 6 ({1} ∈ 𝒫 𝑂 → ((♯ ↾ 𝒫 𝑂)‘{1}) = (♯‘{1}))
53, 4syl 17 . . . . 5 (1 ∈ 𝑂 → ((♯ ↾ 𝒫 𝑂)‘{1}) = (♯‘{1}))
6 1re 11115 . . . . . 6 1 ∈ ℝ
7 hashsng 14276 . . . . . 6 (1 ∈ ℝ → (♯‘{1}) = 1)
86, 7ax-mp 5 . . . . 5 (♯‘{1}) = 1
95, 8eqtrdi 2780 . . . 4 (1 ∈ 𝑂 → ((♯ ↾ 𝒫 𝑂)‘{1}) = 1)
10 snssi 4759 . . . . . . 7 (1 ∈ ℝ → {1} ⊆ ℝ)
11 ovolsn 25394 . . . . . . 7 (1 ∈ ℝ → (vol*‘{1}) = 0)
12 nulmbl 25434 . . . . . . 7 (({1} ⊆ ℝ ∧ (vol*‘{1}) = 0) → {1} ∈ dom vol)
1310, 11, 12syl2anc 584 . . . . . 6 (1 ∈ ℝ → {1} ∈ dom vol)
14 mblvol 25429 . . . . . . 7 ({1} ∈ dom vol → (vol‘{1}) = (vol*‘{1}))
156, 11ax-mp 5 . . . . . . 7 (vol*‘{1}) = 0
1614, 15eqtrdi 2780 . . . . . 6 ({1} ∈ dom vol → (vol‘{1}) = 0)
176, 13, 16mp2b 10 . . . . 5 (vol‘{1}) = 0
1817a1i 11 . . . 4 (1 ∈ 𝑂 → (vol‘{1}) = 0)
192, 9, 183netr4d 3002 . . 3 (1 ∈ 𝑂 → ((♯ ↾ 𝒫 𝑂)‘{1}) ≠ (vol‘{1}))
20 fveq1 6821 . . . 4 ((♯ ↾ 𝒫 𝑂) = vol → ((♯ ↾ 𝒫 𝑂)‘{1}) = (vol‘{1}))
2120necon3i 2957 . . 3 (((♯ ↾ 𝒫 𝑂)‘{1}) ≠ (vol‘{1}) → (♯ ↾ 𝒫 𝑂) ≠ vol)
2219, 21syl 17 . 2 (1 ∈ 𝑂 → (♯ ↾ 𝒫 𝑂) ≠ vol)
236, 13ax-mp 5 . . . . . . 7 {1} ∈ dom vol
2423biantrur 530 . . . . . 6 (¬ {1} ∈ dom (♯ ↾ 𝒫 𝑂) ↔ ({1} ∈ dom vol ∧ ¬ {1} ∈ dom (♯ ↾ 𝒫 𝑂)))
25 snex 5375 . . . . . . . . 9 {1} ∈ V
2625elpw 4555 . . . . . . . 8 ({1} ∈ 𝒫 𝑂 ↔ {1} ⊆ 𝑂)
27 dmhashres 14248 . . . . . . . . 9 dom (♯ ↾ 𝒫 𝑂) = 𝒫 𝑂
2827eleq2i 2820 . . . . . . . 8 ({1} ∈ dom (♯ ↾ 𝒫 𝑂) ↔ {1} ∈ 𝒫 𝑂)
29 1ex 11111 . . . . . . . . 9 1 ∈ V
3029snss 4736 . . . . . . . 8 (1 ∈ 𝑂 ↔ {1} ⊆ 𝑂)
3126, 28, 303bitr4i 303 . . . . . . 7 ({1} ∈ dom (♯ ↾ 𝒫 𝑂) ↔ 1 ∈ 𝑂)
3231notbii 320 . . . . . 6 (¬ {1} ∈ dom (♯ ↾ 𝒫 𝑂) ↔ ¬ 1 ∈ 𝑂)
3324, 32bitr3i 277 . . . . 5 (({1} ∈ dom vol ∧ ¬ {1} ∈ dom (♯ ↾ 𝒫 𝑂)) ↔ ¬ 1 ∈ 𝑂)
34 nelne1 3022 . . . . 5 (({1} ∈ dom vol ∧ ¬ {1} ∈ dom (♯ ↾ 𝒫 𝑂)) → dom vol ≠ dom (♯ ↾ 𝒫 𝑂))
3533, 34sylbir 235 . . . 4 (¬ 1 ∈ 𝑂 → dom vol ≠ dom (♯ ↾ 𝒫 𝑂))
3635necomd 2980 . . 3 (¬ 1 ∈ 𝑂 → dom (♯ ↾ 𝒫 𝑂) ≠ dom vol)
37 dmeq 5846 . . . 4 ((♯ ↾ 𝒫 𝑂) = vol → dom (♯ ↾ 𝒫 𝑂) = dom vol)
3837necon3i 2957 . . 3 (dom (♯ ↾ 𝒫 𝑂) ≠ dom vol → (♯ ↾ 𝒫 𝑂) ≠ vol)
3936, 38syl 17 . 2 (¬ 1 ∈ 𝑂 → (♯ ↾ 𝒫 𝑂) ≠ vol)
4022, 39pm2.61i 182 1 (♯ ↾ 𝒫 𝑂) ≠ vol
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 395   = wceq 1540  wcel 2109  wne 2925  wss 3903  𝒫 cpw 4551  {csn 4577  dom cdm 5619  cres 5621  cfv 6482  cr 11008  0cc0 11009  1c1 11010  chash 14237  vol*covol 25361  volcvol 25362
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-inf2 9537  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-isom 6491  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-of 7613  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-2o 8389  df-er 8625  df-map 8755  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-sup 9332  df-inf 9333  df-oi 9402  df-dju 9797  df-card 9835  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-3 12192  df-n0 12385  df-xnn0 12458  df-z 12472  df-uz 12736  df-q 12850  df-rp 12894  df-xadd 13015  df-ioo 13252  df-ico 13254  df-icc 13255  df-fz 13411  df-fzo 13558  df-fl 13696  df-seq 13909  df-exp 13969  df-hash 14238  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-clim 15395  df-sum 15594  df-xmet 21254  df-met 21255  df-ovol 25363  df-vol 25364
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator