| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cntnevol | Structured version Visualization version GIF version | ||
| Description: Counting and Lebesgue measures are different. (Contributed by Thierry Arnoux, 27-Jan-2017.) |
| Ref | Expression |
|---|---|
| cntnevol | ⊢ (♯ ↾ 𝒫 𝑂) ≠ vol |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-1ne0 11078 | . . . . 5 ⊢ 1 ≠ 0 | |
| 2 | 1 | a1i 11 | . . . 4 ⊢ (1 ∈ 𝑂 → 1 ≠ 0) |
| 3 | snelpwi 5386 | . . . . . 6 ⊢ (1 ∈ 𝑂 → {1} ∈ 𝒫 𝑂) | |
| 4 | fvres 6841 | . . . . . 6 ⊢ ({1} ∈ 𝒫 𝑂 → ((♯ ↾ 𝒫 𝑂)‘{1}) = (♯‘{1})) | |
| 5 | 3, 4 | syl 17 | . . . . 5 ⊢ (1 ∈ 𝑂 → ((♯ ↾ 𝒫 𝑂)‘{1}) = (♯‘{1})) |
| 6 | 1re 11115 | . . . . . 6 ⊢ 1 ∈ ℝ | |
| 7 | hashsng 14276 | . . . . . 6 ⊢ (1 ∈ ℝ → (♯‘{1}) = 1) | |
| 8 | 6, 7 | ax-mp 5 | . . . . 5 ⊢ (♯‘{1}) = 1 |
| 9 | 5, 8 | eqtrdi 2780 | . . . 4 ⊢ (1 ∈ 𝑂 → ((♯ ↾ 𝒫 𝑂)‘{1}) = 1) |
| 10 | snssi 4759 | . . . . . . 7 ⊢ (1 ∈ ℝ → {1} ⊆ ℝ) | |
| 11 | ovolsn 25394 | . . . . . . 7 ⊢ (1 ∈ ℝ → (vol*‘{1}) = 0) | |
| 12 | nulmbl 25434 | . . . . . . 7 ⊢ (({1} ⊆ ℝ ∧ (vol*‘{1}) = 0) → {1} ∈ dom vol) | |
| 13 | 10, 11, 12 | syl2anc 584 | . . . . . 6 ⊢ (1 ∈ ℝ → {1} ∈ dom vol) |
| 14 | mblvol 25429 | . . . . . . 7 ⊢ ({1} ∈ dom vol → (vol‘{1}) = (vol*‘{1})) | |
| 15 | 6, 11 | ax-mp 5 | . . . . . . 7 ⊢ (vol*‘{1}) = 0 |
| 16 | 14, 15 | eqtrdi 2780 | . . . . . 6 ⊢ ({1} ∈ dom vol → (vol‘{1}) = 0) |
| 17 | 6, 13, 16 | mp2b 10 | . . . . 5 ⊢ (vol‘{1}) = 0 |
| 18 | 17 | a1i 11 | . . . 4 ⊢ (1 ∈ 𝑂 → (vol‘{1}) = 0) |
| 19 | 2, 9, 18 | 3netr4d 3002 | . . 3 ⊢ (1 ∈ 𝑂 → ((♯ ↾ 𝒫 𝑂)‘{1}) ≠ (vol‘{1})) |
| 20 | fveq1 6821 | . . . 4 ⊢ ((♯ ↾ 𝒫 𝑂) = vol → ((♯ ↾ 𝒫 𝑂)‘{1}) = (vol‘{1})) | |
| 21 | 20 | necon3i 2957 | . . 3 ⊢ (((♯ ↾ 𝒫 𝑂)‘{1}) ≠ (vol‘{1}) → (♯ ↾ 𝒫 𝑂) ≠ vol) |
| 22 | 19, 21 | syl 17 | . 2 ⊢ (1 ∈ 𝑂 → (♯ ↾ 𝒫 𝑂) ≠ vol) |
| 23 | 6, 13 | ax-mp 5 | . . . . . . 7 ⊢ {1} ∈ dom vol |
| 24 | 23 | biantrur 530 | . . . . . 6 ⊢ (¬ {1} ∈ dom (♯ ↾ 𝒫 𝑂) ↔ ({1} ∈ dom vol ∧ ¬ {1} ∈ dom (♯ ↾ 𝒫 𝑂))) |
| 25 | snex 5375 | . . . . . . . . 9 ⊢ {1} ∈ V | |
| 26 | 25 | elpw 4555 | . . . . . . . 8 ⊢ ({1} ∈ 𝒫 𝑂 ↔ {1} ⊆ 𝑂) |
| 27 | dmhashres 14248 | . . . . . . . . 9 ⊢ dom (♯ ↾ 𝒫 𝑂) = 𝒫 𝑂 | |
| 28 | 27 | eleq2i 2820 | . . . . . . . 8 ⊢ ({1} ∈ dom (♯ ↾ 𝒫 𝑂) ↔ {1} ∈ 𝒫 𝑂) |
| 29 | 1ex 11111 | . . . . . . . . 9 ⊢ 1 ∈ V | |
| 30 | 29 | snss 4736 | . . . . . . . 8 ⊢ (1 ∈ 𝑂 ↔ {1} ⊆ 𝑂) |
| 31 | 26, 28, 30 | 3bitr4i 303 | . . . . . . 7 ⊢ ({1} ∈ dom (♯ ↾ 𝒫 𝑂) ↔ 1 ∈ 𝑂) |
| 32 | 31 | notbii 320 | . . . . . 6 ⊢ (¬ {1} ∈ dom (♯ ↾ 𝒫 𝑂) ↔ ¬ 1 ∈ 𝑂) |
| 33 | 24, 32 | bitr3i 277 | . . . . 5 ⊢ (({1} ∈ dom vol ∧ ¬ {1} ∈ dom (♯ ↾ 𝒫 𝑂)) ↔ ¬ 1 ∈ 𝑂) |
| 34 | nelne1 3022 | . . . . 5 ⊢ (({1} ∈ dom vol ∧ ¬ {1} ∈ dom (♯ ↾ 𝒫 𝑂)) → dom vol ≠ dom (♯ ↾ 𝒫 𝑂)) | |
| 35 | 33, 34 | sylbir 235 | . . . 4 ⊢ (¬ 1 ∈ 𝑂 → dom vol ≠ dom (♯ ↾ 𝒫 𝑂)) |
| 36 | 35 | necomd 2980 | . . 3 ⊢ (¬ 1 ∈ 𝑂 → dom (♯ ↾ 𝒫 𝑂) ≠ dom vol) |
| 37 | dmeq 5846 | . . . 4 ⊢ ((♯ ↾ 𝒫 𝑂) = vol → dom (♯ ↾ 𝒫 𝑂) = dom vol) | |
| 38 | 37 | necon3i 2957 | . . 3 ⊢ (dom (♯ ↾ 𝒫 𝑂) ≠ dom vol → (♯ ↾ 𝒫 𝑂) ≠ vol) |
| 39 | 36, 38 | syl 17 | . 2 ⊢ (¬ 1 ∈ 𝑂 → (♯ ↾ 𝒫 𝑂) ≠ vol) |
| 40 | 22, 39 | pm2.61i 182 | 1 ⊢ (♯ ↾ 𝒫 𝑂) ≠ vol |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ⊆ wss 3903 𝒫 cpw 4551 {csn 4577 dom cdm 5619 ↾ cres 5621 ‘cfv 6482 ℝcr 11008 0cc0 11009 1c1 11010 ♯chash 14237 vol*covol 25361 volcvol 25362 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-inf2 9537 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 ax-pre-sup 11087 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-int 4897 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-se 5573 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-isom 6491 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-of 7613 df-om 7800 df-1st 7924 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-1o 8388 df-2o 8389 df-er 8625 df-map 8755 df-en 8873 df-dom 8874 df-sdom 8875 df-fin 8876 df-sup 9332 df-inf 9333 df-oi 9402 df-dju 9797 df-card 9835 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-div 11778 df-nn 12129 df-2 12191 df-3 12192 df-n0 12385 df-xnn0 12458 df-z 12472 df-uz 12736 df-q 12850 df-rp 12894 df-xadd 13015 df-ioo 13252 df-ico 13254 df-icc 13255 df-fz 13411 df-fzo 13558 df-fl 13696 df-seq 13909 df-exp 13969 df-hash 14238 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 df-clim 15395 df-sum 15594 df-xmet 21254 df-met 21255 df-ovol 25363 df-vol 25364 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |