| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cntnevol | Structured version Visualization version GIF version | ||
| Description: Counting and Lebesgue measures are different. (Contributed by Thierry Arnoux, 27-Jan-2017.) |
| Ref | Expression |
|---|---|
| cntnevol | ⊢ (♯ ↾ 𝒫 𝑂) ≠ vol |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-1ne0 11144 | . . . . 5 ⊢ 1 ≠ 0 | |
| 2 | 1 | a1i 11 | . . . 4 ⊢ (1 ∈ 𝑂 → 1 ≠ 0) |
| 3 | snelpwi 5406 | . . . . . 6 ⊢ (1 ∈ 𝑂 → {1} ∈ 𝒫 𝑂) | |
| 4 | fvres 6880 | . . . . . 6 ⊢ ({1} ∈ 𝒫 𝑂 → ((♯ ↾ 𝒫 𝑂)‘{1}) = (♯‘{1})) | |
| 5 | 3, 4 | syl 17 | . . . . 5 ⊢ (1 ∈ 𝑂 → ((♯ ↾ 𝒫 𝑂)‘{1}) = (♯‘{1})) |
| 6 | 1re 11181 | . . . . . 6 ⊢ 1 ∈ ℝ | |
| 7 | hashsng 14341 | . . . . . 6 ⊢ (1 ∈ ℝ → (♯‘{1}) = 1) | |
| 8 | 6, 7 | ax-mp 5 | . . . . 5 ⊢ (♯‘{1}) = 1 |
| 9 | 5, 8 | eqtrdi 2781 | . . . 4 ⊢ (1 ∈ 𝑂 → ((♯ ↾ 𝒫 𝑂)‘{1}) = 1) |
| 10 | snssi 4775 | . . . . . . 7 ⊢ (1 ∈ ℝ → {1} ⊆ ℝ) | |
| 11 | ovolsn 25403 | . . . . . . 7 ⊢ (1 ∈ ℝ → (vol*‘{1}) = 0) | |
| 12 | nulmbl 25443 | . . . . . . 7 ⊢ (({1} ⊆ ℝ ∧ (vol*‘{1}) = 0) → {1} ∈ dom vol) | |
| 13 | 10, 11, 12 | syl2anc 584 | . . . . . 6 ⊢ (1 ∈ ℝ → {1} ∈ dom vol) |
| 14 | mblvol 25438 | . . . . . . 7 ⊢ ({1} ∈ dom vol → (vol‘{1}) = (vol*‘{1})) | |
| 15 | 6, 11 | ax-mp 5 | . . . . . . 7 ⊢ (vol*‘{1}) = 0 |
| 16 | 14, 15 | eqtrdi 2781 | . . . . . 6 ⊢ ({1} ∈ dom vol → (vol‘{1}) = 0) |
| 17 | 6, 13, 16 | mp2b 10 | . . . . 5 ⊢ (vol‘{1}) = 0 |
| 18 | 17 | a1i 11 | . . . 4 ⊢ (1 ∈ 𝑂 → (vol‘{1}) = 0) |
| 19 | 2, 9, 18 | 3netr4d 3003 | . . 3 ⊢ (1 ∈ 𝑂 → ((♯ ↾ 𝒫 𝑂)‘{1}) ≠ (vol‘{1})) |
| 20 | fveq1 6860 | . . . 4 ⊢ ((♯ ↾ 𝒫 𝑂) = vol → ((♯ ↾ 𝒫 𝑂)‘{1}) = (vol‘{1})) | |
| 21 | 20 | necon3i 2958 | . . 3 ⊢ (((♯ ↾ 𝒫 𝑂)‘{1}) ≠ (vol‘{1}) → (♯ ↾ 𝒫 𝑂) ≠ vol) |
| 22 | 19, 21 | syl 17 | . 2 ⊢ (1 ∈ 𝑂 → (♯ ↾ 𝒫 𝑂) ≠ vol) |
| 23 | 6, 13 | ax-mp 5 | . . . . . . 7 ⊢ {1} ∈ dom vol |
| 24 | 23 | biantrur 530 | . . . . . 6 ⊢ (¬ {1} ∈ dom (♯ ↾ 𝒫 𝑂) ↔ ({1} ∈ dom vol ∧ ¬ {1} ∈ dom (♯ ↾ 𝒫 𝑂))) |
| 25 | snex 5394 | . . . . . . . . 9 ⊢ {1} ∈ V | |
| 26 | 25 | elpw 4570 | . . . . . . . 8 ⊢ ({1} ∈ 𝒫 𝑂 ↔ {1} ⊆ 𝑂) |
| 27 | dmhashres 14313 | . . . . . . . . 9 ⊢ dom (♯ ↾ 𝒫 𝑂) = 𝒫 𝑂 | |
| 28 | 27 | eleq2i 2821 | . . . . . . . 8 ⊢ ({1} ∈ dom (♯ ↾ 𝒫 𝑂) ↔ {1} ∈ 𝒫 𝑂) |
| 29 | 1ex 11177 | . . . . . . . . 9 ⊢ 1 ∈ V | |
| 30 | 29 | snss 4752 | . . . . . . . 8 ⊢ (1 ∈ 𝑂 ↔ {1} ⊆ 𝑂) |
| 31 | 26, 28, 30 | 3bitr4i 303 | . . . . . . 7 ⊢ ({1} ∈ dom (♯ ↾ 𝒫 𝑂) ↔ 1 ∈ 𝑂) |
| 32 | 31 | notbii 320 | . . . . . 6 ⊢ (¬ {1} ∈ dom (♯ ↾ 𝒫 𝑂) ↔ ¬ 1 ∈ 𝑂) |
| 33 | 24, 32 | bitr3i 277 | . . . . 5 ⊢ (({1} ∈ dom vol ∧ ¬ {1} ∈ dom (♯ ↾ 𝒫 𝑂)) ↔ ¬ 1 ∈ 𝑂) |
| 34 | nelne1 3023 | . . . . 5 ⊢ (({1} ∈ dom vol ∧ ¬ {1} ∈ dom (♯ ↾ 𝒫 𝑂)) → dom vol ≠ dom (♯ ↾ 𝒫 𝑂)) | |
| 35 | 33, 34 | sylbir 235 | . . . 4 ⊢ (¬ 1 ∈ 𝑂 → dom vol ≠ dom (♯ ↾ 𝒫 𝑂)) |
| 36 | 35 | necomd 2981 | . . 3 ⊢ (¬ 1 ∈ 𝑂 → dom (♯ ↾ 𝒫 𝑂) ≠ dom vol) |
| 37 | dmeq 5870 | . . . 4 ⊢ ((♯ ↾ 𝒫 𝑂) = vol → dom (♯ ↾ 𝒫 𝑂) = dom vol) | |
| 38 | 37 | necon3i 2958 | . . 3 ⊢ (dom (♯ ↾ 𝒫 𝑂) ≠ dom vol → (♯ ↾ 𝒫 𝑂) ≠ vol) |
| 39 | 36, 38 | syl 17 | . 2 ⊢ (¬ 1 ∈ 𝑂 → (♯ ↾ 𝒫 𝑂) ≠ vol) |
| 40 | 22, 39 | pm2.61i 182 | 1 ⊢ (♯ ↾ 𝒫 𝑂) ≠ vol |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2926 ⊆ wss 3917 𝒫 cpw 4566 {csn 4592 dom cdm 5641 ↾ cres 5643 ‘cfv 6514 ℝcr 11074 0cc0 11075 1c1 11076 ♯chash 14302 vol*covol 25370 volcvol 25371 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-inf2 9601 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 ax-pre-sup 11153 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-se 5595 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-isom 6523 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-of 7656 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-2o 8438 df-er 8674 df-map 8804 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-sup 9400 df-inf 9401 df-oi 9470 df-dju 9861 df-card 9899 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-div 11843 df-nn 12194 df-2 12256 df-3 12257 df-n0 12450 df-xnn0 12523 df-z 12537 df-uz 12801 df-q 12915 df-rp 12959 df-xadd 13080 df-ioo 13317 df-ico 13319 df-icc 13320 df-fz 13476 df-fzo 13623 df-fl 13761 df-seq 13974 df-exp 14034 df-hash 14303 df-cj 15072 df-re 15073 df-im 15074 df-sqrt 15208 df-abs 15209 df-clim 15461 df-sum 15660 df-xmet 21264 df-met 21265 df-ovol 25372 df-vol 25373 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |