Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cntnevol Structured version   Visualization version   GIF version

Theorem cntnevol 34229
Description: Counting and Lebesgue measures are different. (Contributed by Thierry Arnoux, 27-Jan-2017.)
Assertion
Ref Expression
cntnevol (♯ ↾ 𝒫 𝑂) ≠ vol

Proof of Theorem cntnevol
StepHypRef Expression
1 ax-1ne0 11224 . . . . 5 1 ≠ 0
21a1i 11 . . . 4 (1 ∈ 𝑂 → 1 ≠ 0)
3 snelpwi 5448 . . . . . 6 (1 ∈ 𝑂 → {1} ∈ 𝒫 𝑂)
4 fvres 6925 . . . . . 6 ({1} ∈ 𝒫 𝑂 → ((♯ ↾ 𝒫 𝑂)‘{1}) = (♯‘{1}))
53, 4syl 17 . . . . 5 (1 ∈ 𝑂 → ((♯ ↾ 𝒫 𝑂)‘{1}) = (♯‘{1}))
6 1re 11261 . . . . . 6 1 ∈ ℝ
7 hashsng 14408 . . . . . 6 (1 ∈ ℝ → (♯‘{1}) = 1)
86, 7ax-mp 5 . . . . 5 (♯‘{1}) = 1
95, 8eqtrdi 2793 . . . 4 (1 ∈ 𝑂 → ((♯ ↾ 𝒫 𝑂)‘{1}) = 1)
10 snssi 4808 . . . . . . 7 (1 ∈ ℝ → {1} ⊆ ℝ)
11 ovolsn 25530 . . . . . . 7 (1 ∈ ℝ → (vol*‘{1}) = 0)
12 nulmbl 25570 . . . . . . 7 (({1} ⊆ ℝ ∧ (vol*‘{1}) = 0) → {1} ∈ dom vol)
1310, 11, 12syl2anc 584 . . . . . 6 (1 ∈ ℝ → {1} ∈ dom vol)
14 mblvol 25565 . . . . . . 7 ({1} ∈ dom vol → (vol‘{1}) = (vol*‘{1}))
156, 11ax-mp 5 . . . . . . 7 (vol*‘{1}) = 0
1614, 15eqtrdi 2793 . . . . . 6 ({1} ∈ dom vol → (vol‘{1}) = 0)
176, 13, 16mp2b 10 . . . . 5 (vol‘{1}) = 0
1817a1i 11 . . . 4 (1 ∈ 𝑂 → (vol‘{1}) = 0)
192, 9, 183netr4d 3018 . . 3 (1 ∈ 𝑂 → ((♯ ↾ 𝒫 𝑂)‘{1}) ≠ (vol‘{1}))
20 fveq1 6905 . . . 4 ((♯ ↾ 𝒫 𝑂) = vol → ((♯ ↾ 𝒫 𝑂)‘{1}) = (vol‘{1}))
2120necon3i 2973 . . 3 (((♯ ↾ 𝒫 𝑂)‘{1}) ≠ (vol‘{1}) → (♯ ↾ 𝒫 𝑂) ≠ vol)
2219, 21syl 17 . 2 (1 ∈ 𝑂 → (♯ ↾ 𝒫 𝑂) ≠ vol)
236, 13ax-mp 5 . . . . . . 7 {1} ∈ dom vol
2423biantrur 530 . . . . . 6 (¬ {1} ∈ dom (♯ ↾ 𝒫 𝑂) ↔ ({1} ∈ dom vol ∧ ¬ {1} ∈ dom (♯ ↾ 𝒫 𝑂)))
25 snex 5436 . . . . . . . . 9 {1} ∈ V
2625elpw 4604 . . . . . . . 8 ({1} ∈ 𝒫 𝑂 ↔ {1} ⊆ 𝑂)
27 dmhashres 14380 . . . . . . . . 9 dom (♯ ↾ 𝒫 𝑂) = 𝒫 𝑂
2827eleq2i 2833 . . . . . . . 8 ({1} ∈ dom (♯ ↾ 𝒫 𝑂) ↔ {1} ∈ 𝒫 𝑂)
29 1ex 11257 . . . . . . . . 9 1 ∈ V
3029snss 4785 . . . . . . . 8 (1 ∈ 𝑂 ↔ {1} ⊆ 𝑂)
3126, 28, 303bitr4i 303 . . . . . . 7 ({1} ∈ dom (♯ ↾ 𝒫 𝑂) ↔ 1 ∈ 𝑂)
3231notbii 320 . . . . . 6 (¬ {1} ∈ dom (♯ ↾ 𝒫 𝑂) ↔ ¬ 1 ∈ 𝑂)
3324, 32bitr3i 277 . . . . 5 (({1} ∈ dom vol ∧ ¬ {1} ∈ dom (♯ ↾ 𝒫 𝑂)) ↔ ¬ 1 ∈ 𝑂)
34 nelne1 3039 . . . . 5 (({1} ∈ dom vol ∧ ¬ {1} ∈ dom (♯ ↾ 𝒫 𝑂)) → dom vol ≠ dom (♯ ↾ 𝒫 𝑂))
3533, 34sylbir 235 . . . 4 (¬ 1 ∈ 𝑂 → dom vol ≠ dom (♯ ↾ 𝒫 𝑂))
3635necomd 2996 . . 3 (¬ 1 ∈ 𝑂 → dom (♯ ↾ 𝒫 𝑂) ≠ dom vol)
37 dmeq 5914 . . . 4 ((♯ ↾ 𝒫 𝑂) = vol → dom (♯ ↾ 𝒫 𝑂) = dom vol)
3837necon3i 2973 . . 3 (dom (♯ ↾ 𝒫 𝑂) ≠ dom vol → (♯ ↾ 𝒫 𝑂) ≠ vol)
3936, 38syl 17 . 2 (¬ 1 ∈ 𝑂 → (♯ ↾ 𝒫 𝑂) ≠ vol)
4022, 39pm2.61i 182 1 (♯ ↾ 𝒫 𝑂) ≠ vol
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 395   = wceq 1540  wcel 2108  wne 2940  wss 3951  𝒫 cpw 4600  {csn 4626  dom cdm 5685  cres 5687  cfv 6561  cr 11154  0cc0 11155  1c1 11156  chash 14369  vol*covol 25497  volcvol 25498
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-inf2 9681  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-er 8745  df-map 8868  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-sup 9482  df-inf 9483  df-oi 9550  df-dju 9941  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-n0 12527  df-xnn0 12600  df-z 12614  df-uz 12879  df-q 12991  df-rp 13035  df-xadd 13155  df-ioo 13391  df-ico 13393  df-icc 13394  df-fz 13548  df-fzo 13695  df-fl 13832  df-seq 14043  df-exp 14103  df-hash 14370  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-clim 15524  df-sum 15723  df-xmet 21357  df-met 21358  df-ovol 25499  df-vol 25500
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator