Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cntnevol Structured version   Visualization version   GIF version

Theorem cntnevol 31597
Description: Counting and Lebesgue measures are different. (Contributed by Thierry Arnoux, 27-Jan-2017.)
Assertion
Ref Expression
cntnevol (♯ ↾ 𝒫 𝑂) ≠ vol

Proof of Theorem cntnevol
StepHypRef Expression
1 ax-1ne0 10595 . . . . 5 1 ≠ 0
21a1i 11 . . . 4 (1 ∈ 𝑂 → 1 ≠ 0)
3 snelpwi 5302 . . . . . 6 (1 ∈ 𝑂 → {1} ∈ 𝒫 𝑂)
4 fvres 6664 . . . . . 6 ({1} ∈ 𝒫 𝑂 → ((♯ ↾ 𝒫 𝑂)‘{1}) = (♯‘{1}))
53, 4syl 17 . . . . 5 (1 ∈ 𝑂 → ((♯ ↾ 𝒫 𝑂)‘{1}) = (♯‘{1}))
6 1re 10630 . . . . . 6 1 ∈ ℝ
7 hashsng 13726 . . . . . 6 (1 ∈ ℝ → (♯‘{1}) = 1)
86, 7ax-mp 5 . . . . 5 (♯‘{1}) = 1
95, 8eqtrdi 2849 . . . 4 (1 ∈ 𝑂 → ((♯ ↾ 𝒫 𝑂)‘{1}) = 1)
10 snssi 4701 . . . . . . 7 (1 ∈ ℝ → {1} ⊆ ℝ)
11 ovolsn 24099 . . . . . . 7 (1 ∈ ℝ → (vol*‘{1}) = 0)
12 nulmbl 24139 . . . . . . 7 (({1} ⊆ ℝ ∧ (vol*‘{1}) = 0) → {1} ∈ dom vol)
1310, 11, 12syl2anc 587 . . . . . 6 (1 ∈ ℝ → {1} ∈ dom vol)
14 mblvol 24134 . . . . . . 7 ({1} ∈ dom vol → (vol‘{1}) = (vol*‘{1}))
156, 11ax-mp 5 . . . . . . 7 (vol*‘{1}) = 0
1614, 15eqtrdi 2849 . . . . . 6 ({1} ∈ dom vol → (vol‘{1}) = 0)
176, 13, 16mp2b 10 . . . . 5 (vol‘{1}) = 0
1817a1i 11 . . . 4 (1 ∈ 𝑂 → (vol‘{1}) = 0)
192, 9, 183netr4d 3064 . . 3 (1 ∈ 𝑂 → ((♯ ↾ 𝒫 𝑂)‘{1}) ≠ (vol‘{1}))
20 fveq1 6644 . . . 4 ((♯ ↾ 𝒫 𝑂) = vol → ((♯ ↾ 𝒫 𝑂)‘{1}) = (vol‘{1}))
2120necon3i 3019 . . 3 (((♯ ↾ 𝒫 𝑂)‘{1}) ≠ (vol‘{1}) → (♯ ↾ 𝒫 𝑂) ≠ vol)
2219, 21syl 17 . 2 (1 ∈ 𝑂 → (♯ ↾ 𝒫 𝑂) ≠ vol)
236, 13ax-mp 5 . . . . . . 7 {1} ∈ dom vol
2423biantrur 534 . . . . . 6 (¬ {1} ∈ dom (♯ ↾ 𝒫 𝑂) ↔ ({1} ∈ dom vol ∧ ¬ {1} ∈ dom (♯ ↾ 𝒫 𝑂)))
25 snex 5297 . . . . . . . . 9 {1} ∈ V
2625elpw 4501 . . . . . . . 8 ({1} ∈ 𝒫 𝑂 ↔ {1} ⊆ 𝑂)
27 dmhashres 13697 . . . . . . . . 9 dom (♯ ↾ 𝒫 𝑂) = 𝒫 𝑂
2827eleq2i 2881 . . . . . . . 8 ({1} ∈ dom (♯ ↾ 𝒫 𝑂) ↔ {1} ∈ 𝒫 𝑂)
29 1ex 10626 . . . . . . . . 9 1 ∈ V
3029snss 4679 . . . . . . . 8 (1 ∈ 𝑂 ↔ {1} ⊆ 𝑂)
3126, 28, 303bitr4i 306 . . . . . . 7 ({1} ∈ dom (♯ ↾ 𝒫 𝑂) ↔ 1 ∈ 𝑂)
3231notbii 323 . . . . . 6 (¬ {1} ∈ dom (♯ ↾ 𝒫 𝑂) ↔ ¬ 1 ∈ 𝑂)
3324, 32bitr3i 280 . . . . 5 (({1} ∈ dom vol ∧ ¬ {1} ∈ dom (♯ ↾ 𝒫 𝑂)) ↔ ¬ 1 ∈ 𝑂)
34 nelne1 3083 . . . . 5 (({1} ∈ dom vol ∧ ¬ {1} ∈ dom (♯ ↾ 𝒫 𝑂)) → dom vol ≠ dom (♯ ↾ 𝒫 𝑂))
3533, 34sylbir 238 . . . 4 (¬ 1 ∈ 𝑂 → dom vol ≠ dom (♯ ↾ 𝒫 𝑂))
3635necomd 3042 . . 3 (¬ 1 ∈ 𝑂 → dom (♯ ↾ 𝒫 𝑂) ≠ dom vol)
37 dmeq 5736 . . . 4 ((♯ ↾ 𝒫 𝑂) = vol → dom (♯ ↾ 𝒫 𝑂) = dom vol)
3837necon3i 3019 . . 3 (dom (♯ ↾ 𝒫 𝑂) ≠ dom vol → (♯ ↾ 𝒫 𝑂) ≠ vol)
3936, 38syl 17 . 2 (¬ 1 ∈ 𝑂 → (♯ ↾ 𝒫 𝑂) ≠ vol)
4022, 39pm2.61i 185 1 (♯ ↾ 𝒫 𝑂) ≠ vol
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 399   = wceq 1538  wcel 2111  wne 2987  wss 3881  𝒫 cpw 4497  {csn 4525  dom cdm 5519  cres 5521  cfv 6324  cr 10525  0cc0 10526  1c1 10527  chash 13686  vol*covol 24066  volcvol 24067
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-inf2 9088  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-of 7389  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-2o 8086  df-oadd 8089  df-er 8272  df-map 8391  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-sup 8890  df-inf 8891  df-oi 8958  df-dju 9314  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-n0 11886  df-xnn0 11956  df-z 11970  df-uz 12232  df-q 12337  df-rp 12378  df-xadd 12496  df-ioo 12730  df-ico 12732  df-icc 12733  df-fz 12886  df-fzo 13029  df-fl 13157  df-seq 13365  df-exp 13426  df-hash 13687  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-clim 14837  df-sum 15035  df-xmet 20084  df-met 20085  df-ovol 24068  df-vol 24069
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator