Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cntnevol Structured version   Visualization version   GIF version

Theorem cntnevol 32891
Description: Counting and Lebesgue measures are different. (Contributed by Thierry Arnoux, 27-Jan-2017.)
Assertion
Ref Expression
cntnevol (♯ ↾ 𝒫 𝑂) ≠ vol

Proof of Theorem cntnevol
StepHypRef Expression
1 ax-1ne0 11128 . . . . 5 1 ≠ 0
21a1i 11 . . . 4 (1 ∈ 𝑂 → 1 ≠ 0)
3 snelpwi 5404 . . . . . 6 (1 ∈ 𝑂 → {1} ∈ 𝒫 𝑂)
4 fvres 6865 . . . . . 6 ({1} ∈ 𝒫 𝑂 → ((♯ ↾ 𝒫 𝑂)‘{1}) = (♯‘{1}))
53, 4syl 17 . . . . 5 (1 ∈ 𝑂 → ((♯ ↾ 𝒫 𝑂)‘{1}) = (♯‘{1}))
6 1re 11163 . . . . . 6 1 ∈ ℝ
7 hashsng 14278 . . . . . 6 (1 ∈ ℝ → (♯‘{1}) = 1)
86, 7ax-mp 5 . . . . 5 (♯‘{1}) = 1
95, 8eqtrdi 2789 . . . 4 (1 ∈ 𝑂 → ((♯ ↾ 𝒫 𝑂)‘{1}) = 1)
10 snssi 4772 . . . . . . 7 (1 ∈ ℝ → {1} ⊆ ℝ)
11 ovolsn 24882 . . . . . . 7 (1 ∈ ℝ → (vol*‘{1}) = 0)
12 nulmbl 24922 . . . . . . 7 (({1} ⊆ ℝ ∧ (vol*‘{1}) = 0) → {1} ∈ dom vol)
1310, 11, 12syl2anc 585 . . . . . 6 (1 ∈ ℝ → {1} ∈ dom vol)
14 mblvol 24917 . . . . . . 7 ({1} ∈ dom vol → (vol‘{1}) = (vol*‘{1}))
156, 11ax-mp 5 . . . . . . 7 (vol*‘{1}) = 0
1614, 15eqtrdi 2789 . . . . . 6 ({1} ∈ dom vol → (vol‘{1}) = 0)
176, 13, 16mp2b 10 . . . . 5 (vol‘{1}) = 0
1817a1i 11 . . . 4 (1 ∈ 𝑂 → (vol‘{1}) = 0)
192, 9, 183netr4d 3018 . . 3 (1 ∈ 𝑂 → ((♯ ↾ 𝒫 𝑂)‘{1}) ≠ (vol‘{1}))
20 fveq1 6845 . . . 4 ((♯ ↾ 𝒫 𝑂) = vol → ((♯ ↾ 𝒫 𝑂)‘{1}) = (vol‘{1}))
2120necon3i 2973 . . 3 (((♯ ↾ 𝒫 𝑂)‘{1}) ≠ (vol‘{1}) → (♯ ↾ 𝒫 𝑂) ≠ vol)
2219, 21syl 17 . 2 (1 ∈ 𝑂 → (♯ ↾ 𝒫 𝑂) ≠ vol)
236, 13ax-mp 5 . . . . . . 7 {1} ∈ dom vol
2423biantrur 532 . . . . . 6 (¬ {1} ∈ dom (♯ ↾ 𝒫 𝑂) ↔ ({1} ∈ dom vol ∧ ¬ {1} ∈ dom (♯ ↾ 𝒫 𝑂)))
25 snex 5392 . . . . . . . . 9 {1} ∈ V
2625elpw 4568 . . . . . . . 8 ({1} ∈ 𝒫 𝑂 ↔ {1} ⊆ 𝑂)
27 dmhashres 14250 . . . . . . . . 9 dom (♯ ↾ 𝒫 𝑂) = 𝒫 𝑂
2827eleq2i 2826 . . . . . . . 8 ({1} ∈ dom (♯ ↾ 𝒫 𝑂) ↔ {1} ∈ 𝒫 𝑂)
29 1ex 11159 . . . . . . . . 9 1 ∈ V
3029snss 4750 . . . . . . . 8 (1 ∈ 𝑂 ↔ {1} ⊆ 𝑂)
3126, 28, 303bitr4i 303 . . . . . . 7 ({1} ∈ dom (♯ ↾ 𝒫 𝑂) ↔ 1 ∈ 𝑂)
3231notbii 320 . . . . . 6 (¬ {1} ∈ dom (♯ ↾ 𝒫 𝑂) ↔ ¬ 1 ∈ 𝑂)
3324, 32bitr3i 277 . . . . 5 (({1} ∈ dom vol ∧ ¬ {1} ∈ dom (♯ ↾ 𝒫 𝑂)) ↔ ¬ 1 ∈ 𝑂)
34 nelne1 3038 . . . . 5 (({1} ∈ dom vol ∧ ¬ {1} ∈ dom (♯ ↾ 𝒫 𝑂)) → dom vol ≠ dom (♯ ↾ 𝒫 𝑂))
3533, 34sylbir 234 . . . 4 (¬ 1 ∈ 𝑂 → dom vol ≠ dom (♯ ↾ 𝒫 𝑂))
3635necomd 2996 . . 3 (¬ 1 ∈ 𝑂 → dom (♯ ↾ 𝒫 𝑂) ≠ dom vol)
37 dmeq 5863 . . . 4 ((♯ ↾ 𝒫 𝑂) = vol → dom (♯ ↾ 𝒫 𝑂) = dom vol)
3837necon3i 2973 . . 3 (dom (♯ ↾ 𝒫 𝑂) ≠ dom vol → (♯ ↾ 𝒫 𝑂) ≠ vol)
3936, 38syl 17 . 2 (¬ 1 ∈ 𝑂 → (♯ ↾ 𝒫 𝑂) ≠ vol)
4022, 39pm2.61i 182 1 (♯ ↾ 𝒫 𝑂) ≠ vol
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 397   = wceq 1542  wcel 2107  wne 2940  wss 3914  𝒫 cpw 4564  {csn 4590  dom cdm 5637  cres 5639  cfv 6500  cr 11058  0cc0 11059  1c1 11060  chash 14239  vol*covol 24849  volcvol 24850
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5246  ax-sep 5260  ax-nul 5267  ax-pow 5324  ax-pr 5388  ax-un 7676  ax-inf2 9585  ax-cnex 11115  ax-resscn 11116  ax-1cn 11117  ax-icn 11118  ax-addcl 11119  ax-addrcl 11120  ax-mulcl 11121  ax-mulrcl 11122  ax-mulcom 11123  ax-addass 11124  ax-mulass 11125  ax-distr 11126  ax-i2m1 11127  ax-1ne0 11128  ax-1rid 11129  ax-rnegex 11130  ax-rrecex 11131  ax-cnre 11132  ax-pre-lttri 11133  ax-pre-lttrn 11134  ax-pre-ltadd 11135  ax-pre-mulgt0 11136  ax-pre-sup 11137
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3352  df-reu 3353  df-rab 3407  df-v 3449  df-sbc 3744  df-csb 3860  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3933  df-nul 4287  df-if 4491  df-pw 4566  df-sn 4591  df-pr 4593  df-op 4597  df-uni 4870  df-int 4912  df-iun 4960  df-br 5110  df-opab 5172  df-mpt 5193  df-tr 5227  df-id 5535  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5592  df-se 5593  df-we 5594  df-xp 5643  df-rel 5644  df-cnv 5645  df-co 5646  df-dm 5647  df-rn 5648  df-res 5649  df-ima 5650  df-pred 6257  df-ord 6324  df-on 6325  df-lim 6326  df-suc 6327  df-iota 6452  df-fun 6502  df-fn 6503  df-f 6504  df-f1 6505  df-fo 6506  df-f1o 6507  df-fv 6508  df-isom 6509  df-riota 7317  df-ov 7364  df-oprab 7365  df-mpo 7366  df-of 7621  df-om 7807  df-1st 7925  df-2nd 7926  df-frecs 8216  df-wrecs 8247  df-recs 8321  df-rdg 8360  df-1o 8416  df-2o 8417  df-er 8654  df-map 8773  df-en 8890  df-dom 8891  df-sdom 8892  df-fin 8893  df-sup 9386  df-inf 9387  df-oi 9454  df-dju 9845  df-card 9883  df-pnf 11199  df-mnf 11200  df-xr 11201  df-ltxr 11202  df-le 11203  df-sub 11395  df-neg 11396  df-div 11821  df-nn 12162  df-2 12224  df-3 12225  df-n0 12422  df-xnn0 12494  df-z 12508  df-uz 12772  df-q 12882  df-rp 12924  df-xadd 13042  df-ioo 13277  df-ico 13279  df-icc 13280  df-fz 13434  df-fzo 13577  df-fl 13706  df-seq 13916  df-exp 13977  df-hash 14240  df-cj 14993  df-re 14994  df-im 14995  df-sqrt 15129  df-abs 15130  df-clim 15379  df-sum 15580  df-xmet 20812  df-met 20813  df-ovol 24851  df-vol 24852
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator