| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cntnevol | Structured version Visualization version GIF version | ||
| Description: Counting and Lebesgue measures are different. (Contributed by Thierry Arnoux, 27-Jan-2017.) |
| Ref | Expression |
|---|---|
| cntnevol | ⊢ (♯ ↾ 𝒫 𝑂) ≠ vol |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-1ne0 11075 | . . . . 5 ⊢ 1 ≠ 0 | |
| 2 | 1 | a1i 11 | . . . 4 ⊢ (1 ∈ 𝑂 → 1 ≠ 0) |
| 3 | snelpwi 5383 | . . . . . 6 ⊢ (1 ∈ 𝑂 → {1} ∈ 𝒫 𝑂) | |
| 4 | fvres 6841 | . . . . . 6 ⊢ ({1} ∈ 𝒫 𝑂 → ((♯ ↾ 𝒫 𝑂)‘{1}) = (♯‘{1})) | |
| 5 | 3, 4 | syl 17 | . . . . 5 ⊢ (1 ∈ 𝑂 → ((♯ ↾ 𝒫 𝑂)‘{1}) = (♯‘{1})) |
| 6 | 1re 11112 | . . . . . 6 ⊢ 1 ∈ ℝ | |
| 7 | hashsng 14276 | . . . . . 6 ⊢ (1 ∈ ℝ → (♯‘{1}) = 1) | |
| 8 | 6, 7 | ax-mp 5 | . . . . 5 ⊢ (♯‘{1}) = 1 |
| 9 | 5, 8 | eqtrdi 2782 | . . . 4 ⊢ (1 ∈ 𝑂 → ((♯ ↾ 𝒫 𝑂)‘{1}) = 1) |
| 10 | snssi 4757 | . . . . . . 7 ⊢ (1 ∈ ℝ → {1} ⊆ ℝ) | |
| 11 | ovolsn 25423 | . . . . . . 7 ⊢ (1 ∈ ℝ → (vol*‘{1}) = 0) | |
| 12 | nulmbl 25463 | . . . . . . 7 ⊢ (({1} ⊆ ℝ ∧ (vol*‘{1}) = 0) → {1} ∈ dom vol) | |
| 13 | 10, 11, 12 | syl2anc 584 | . . . . . 6 ⊢ (1 ∈ ℝ → {1} ∈ dom vol) |
| 14 | mblvol 25458 | . . . . . . 7 ⊢ ({1} ∈ dom vol → (vol‘{1}) = (vol*‘{1})) | |
| 15 | 6, 11 | ax-mp 5 | . . . . . . 7 ⊢ (vol*‘{1}) = 0 |
| 16 | 14, 15 | eqtrdi 2782 | . . . . . 6 ⊢ ({1} ∈ dom vol → (vol‘{1}) = 0) |
| 17 | 6, 13, 16 | mp2b 10 | . . . . 5 ⊢ (vol‘{1}) = 0 |
| 18 | 17 | a1i 11 | . . . 4 ⊢ (1 ∈ 𝑂 → (vol‘{1}) = 0) |
| 19 | 2, 9, 18 | 3netr4d 3005 | . . 3 ⊢ (1 ∈ 𝑂 → ((♯ ↾ 𝒫 𝑂)‘{1}) ≠ (vol‘{1})) |
| 20 | fveq1 6821 | . . . 4 ⊢ ((♯ ↾ 𝒫 𝑂) = vol → ((♯ ↾ 𝒫 𝑂)‘{1}) = (vol‘{1})) | |
| 21 | 20 | necon3i 2960 | . . 3 ⊢ (((♯ ↾ 𝒫 𝑂)‘{1}) ≠ (vol‘{1}) → (♯ ↾ 𝒫 𝑂) ≠ vol) |
| 22 | 19, 21 | syl 17 | . 2 ⊢ (1 ∈ 𝑂 → (♯ ↾ 𝒫 𝑂) ≠ vol) |
| 23 | 6, 13 | ax-mp 5 | . . . . . . 7 ⊢ {1} ∈ dom vol |
| 24 | 23 | biantrur 530 | . . . . . 6 ⊢ (¬ {1} ∈ dom (♯ ↾ 𝒫 𝑂) ↔ ({1} ∈ dom vol ∧ ¬ {1} ∈ dom (♯ ↾ 𝒫 𝑂))) |
| 25 | snex 5372 | . . . . . . . . 9 ⊢ {1} ∈ V | |
| 26 | 25 | elpw 4551 | . . . . . . . 8 ⊢ ({1} ∈ 𝒫 𝑂 ↔ {1} ⊆ 𝑂) |
| 27 | dmhashres 14248 | . . . . . . . . 9 ⊢ dom (♯ ↾ 𝒫 𝑂) = 𝒫 𝑂 | |
| 28 | 27 | eleq2i 2823 | . . . . . . . 8 ⊢ ({1} ∈ dom (♯ ↾ 𝒫 𝑂) ↔ {1} ∈ 𝒫 𝑂) |
| 29 | 1ex 11108 | . . . . . . . . 9 ⊢ 1 ∈ V | |
| 30 | 29 | snss 4734 | . . . . . . . 8 ⊢ (1 ∈ 𝑂 ↔ {1} ⊆ 𝑂) |
| 31 | 26, 28, 30 | 3bitr4i 303 | . . . . . . 7 ⊢ ({1} ∈ dom (♯ ↾ 𝒫 𝑂) ↔ 1 ∈ 𝑂) |
| 32 | 31 | notbii 320 | . . . . . 6 ⊢ (¬ {1} ∈ dom (♯ ↾ 𝒫 𝑂) ↔ ¬ 1 ∈ 𝑂) |
| 33 | 24, 32 | bitr3i 277 | . . . . 5 ⊢ (({1} ∈ dom vol ∧ ¬ {1} ∈ dom (♯ ↾ 𝒫 𝑂)) ↔ ¬ 1 ∈ 𝑂) |
| 34 | nelne1 3025 | . . . . 5 ⊢ (({1} ∈ dom vol ∧ ¬ {1} ∈ dom (♯ ↾ 𝒫 𝑂)) → dom vol ≠ dom (♯ ↾ 𝒫 𝑂)) | |
| 35 | 33, 34 | sylbir 235 | . . . 4 ⊢ (¬ 1 ∈ 𝑂 → dom vol ≠ dom (♯ ↾ 𝒫 𝑂)) |
| 36 | 35 | necomd 2983 | . . 3 ⊢ (¬ 1 ∈ 𝑂 → dom (♯ ↾ 𝒫 𝑂) ≠ dom vol) |
| 37 | dmeq 5842 | . . . 4 ⊢ ((♯ ↾ 𝒫 𝑂) = vol → dom (♯ ↾ 𝒫 𝑂) = dom vol) | |
| 38 | 37 | necon3i 2960 | . . 3 ⊢ (dom (♯ ↾ 𝒫 𝑂) ≠ dom vol → (♯ ↾ 𝒫 𝑂) ≠ vol) |
| 39 | 36, 38 | syl 17 | . 2 ⊢ (¬ 1 ∈ 𝑂 → (♯ ↾ 𝒫 𝑂) ≠ vol) |
| 40 | 22, 39 | pm2.61i 182 | 1 ⊢ (♯ ↾ 𝒫 𝑂) ≠ vol |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 ⊆ wss 3897 𝒫 cpw 4547 {csn 4573 dom cdm 5614 ↾ cres 5616 ‘cfv 6481 ℝcr 11005 0cc0 11006 1c1 11007 ♯chash 14237 vol*covol 25390 volcvol 25391 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-inf2 9531 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 ax-pre-sup 11084 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-int 4896 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-se 5568 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-isom 6490 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-of 7610 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-2o 8386 df-er 8622 df-map 8752 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-sup 9326 df-inf 9327 df-oi 9396 df-dju 9794 df-card 9832 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-div 11775 df-nn 12126 df-2 12188 df-3 12189 df-n0 12382 df-xnn0 12455 df-z 12469 df-uz 12733 df-q 12847 df-rp 12891 df-xadd 13012 df-ioo 13249 df-ico 13251 df-icc 13252 df-fz 13408 df-fzo 13555 df-fl 13696 df-seq 13909 df-exp 13969 df-hash 14238 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 df-clim 15395 df-sum 15594 df-xmet 21284 df-met 21285 df-ovol 25392 df-vol 25393 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |