Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > cntnevol | Structured version Visualization version GIF version |
Description: Counting and Lebesgue measures are different. (Contributed by Thierry Arnoux, 27-Jan-2017.) |
Ref | Expression |
---|---|
cntnevol | ⊢ (♯ ↾ 𝒫 𝑂) ≠ vol |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-1ne0 10637 | . . . . 5 ⊢ 1 ≠ 0 | |
2 | 1 | a1i 11 | . . . 4 ⊢ (1 ∈ 𝑂 → 1 ≠ 0) |
3 | snelpwi 5306 | . . . . . 6 ⊢ (1 ∈ 𝑂 → {1} ∈ 𝒫 𝑂) | |
4 | fvres 6678 | . . . . . 6 ⊢ ({1} ∈ 𝒫 𝑂 → ((♯ ↾ 𝒫 𝑂)‘{1}) = (♯‘{1})) | |
5 | 3, 4 | syl 17 | . . . . 5 ⊢ (1 ∈ 𝑂 → ((♯ ↾ 𝒫 𝑂)‘{1}) = (♯‘{1})) |
6 | 1re 10672 | . . . . . 6 ⊢ 1 ∈ ℝ | |
7 | hashsng 13773 | . . . . . 6 ⊢ (1 ∈ ℝ → (♯‘{1}) = 1) | |
8 | 6, 7 | ax-mp 5 | . . . . 5 ⊢ (♯‘{1}) = 1 |
9 | 5, 8 | eqtrdi 2810 | . . . 4 ⊢ (1 ∈ 𝑂 → ((♯ ↾ 𝒫 𝑂)‘{1}) = 1) |
10 | snssi 4699 | . . . . . . 7 ⊢ (1 ∈ ℝ → {1} ⊆ ℝ) | |
11 | ovolsn 24188 | . . . . . . 7 ⊢ (1 ∈ ℝ → (vol*‘{1}) = 0) | |
12 | nulmbl 24228 | . . . . . . 7 ⊢ (({1} ⊆ ℝ ∧ (vol*‘{1}) = 0) → {1} ∈ dom vol) | |
13 | 10, 11, 12 | syl2anc 588 | . . . . . 6 ⊢ (1 ∈ ℝ → {1} ∈ dom vol) |
14 | mblvol 24223 | . . . . . . 7 ⊢ ({1} ∈ dom vol → (vol‘{1}) = (vol*‘{1})) | |
15 | 6, 11 | ax-mp 5 | . . . . . . 7 ⊢ (vol*‘{1}) = 0 |
16 | 14, 15 | eqtrdi 2810 | . . . . . 6 ⊢ ({1} ∈ dom vol → (vol‘{1}) = 0) |
17 | 6, 13, 16 | mp2b 10 | . . . . 5 ⊢ (vol‘{1}) = 0 |
18 | 17 | a1i 11 | . . . 4 ⊢ (1 ∈ 𝑂 → (vol‘{1}) = 0) |
19 | 2, 9, 18 | 3netr4d 3029 | . . 3 ⊢ (1 ∈ 𝑂 → ((♯ ↾ 𝒫 𝑂)‘{1}) ≠ (vol‘{1})) |
20 | fveq1 6658 | . . . 4 ⊢ ((♯ ↾ 𝒫 𝑂) = vol → ((♯ ↾ 𝒫 𝑂)‘{1}) = (vol‘{1})) | |
21 | 20 | necon3i 2984 | . . 3 ⊢ (((♯ ↾ 𝒫 𝑂)‘{1}) ≠ (vol‘{1}) → (♯ ↾ 𝒫 𝑂) ≠ vol) |
22 | 19, 21 | syl 17 | . 2 ⊢ (1 ∈ 𝑂 → (♯ ↾ 𝒫 𝑂) ≠ vol) |
23 | 6, 13 | ax-mp 5 | . . . . . . 7 ⊢ {1} ∈ dom vol |
24 | 23 | biantrur 535 | . . . . . 6 ⊢ (¬ {1} ∈ dom (♯ ↾ 𝒫 𝑂) ↔ ({1} ∈ dom vol ∧ ¬ {1} ∈ dom (♯ ↾ 𝒫 𝑂))) |
25 | snex 5301 | . . . . . . . . 9 ⊢ {1} ∈ V | |
26 | 25 | elpw 4499 | . . . . . . . 8 ⊢ ({1} ∈ 𝒫 𝑂 ↔ {1} ⊆ 𝑂) |
27 | dmhashres 13744 | . . . . . . . . 9 ⊢ dom (♯ ↾ 𝒫 𝑂) = 𝒫 𝑂 | |
28 | 27 | eleq2i 2844 | . . . . . . . 8 ⊢ ({1} ∈ dom (♯ ↾ 𝒫 𝑂) ↔ {1} ∈ 𝒫 𝑂) |
29 | 1ex 10668 | . . . . . . . . 9 ⊢ 1 ∈ V | |
30 | 29 | snss 4677 | . . . . . . . 8 ⊢ (1 ∈ 𝑂 ↔ {1} ⊆ 𝑂) |
31 | 26, 28, 30 | 3bitr4i 307 | . . . . . . 7 ⊢ ({1} ∈ dom (♯ ↾ 𝒫 𝑂) ↔ 1 ∈ 𝑂) |
32 | 31 | notbii 324 | . . . . . 6 ⊢ (¬ {1} ∈ dom (♯ ↾ 𝒫 𝑂) ↔ ¬ 1 ∈ 𝑂) |
33 | 24, 32 | bitr3i 280 | . . . . 5 ⊢ (({1} ∈ dom vol ∧ ¬ {1} ∈ dom (♯ ↾ 𝒫 𝑂)) ↔ ¬ 1 ∈ 𝑂) |
34 | nelne1 3048 | . . . . 5 ⊢ (({1} ∈ dom vol ∧ ¬ {1} ∈ dom (♯ ↾ 𝒫 𝑂)) → dom vol ≠ dom (♯ ↾ 𝒫 𝑂)) | |
35 | 33, 34 | sylbir 238 | . . . 4 ⊢ (¬ 1 ∈ 𝑂 → dom vol ≠ dom (♯ ↾ 𝒫 𝑂)) |
36 | 35 | necomd 3007 | . . 3 ⊢ (¬ 1 ∈ 𝑂 → dom (♯ ↾ 𝒫 𝑂) ≠ dom vol) |
37 | dmeq 5744 | . . . 4 ⊢ ((♯ ↾ 𝒫 𝑂) = vol → dom (♯ ↾ 𝒫 𝑂) = dom vol) | |
38 | 37 | necon3i 2984 | . . 3 ⊢ (dom (♯ ↾ 𝒫 𝑂) ≠ dom vol → (♯ ↾ 𝒫 𝑂) ≠ vol) |
39 | 36, 38 | syl 17 | . 2 ⊢ (¬ 1 ∈ 𝑂 → (♯ ↾ 𝒫 𝑂) ≠ vol) |
40 | 22, 39 | pm2.61i 185 | 1 ⊢ (♯ ↾ 𝒫 𝑂) ≠ vol |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∧ wa 400 = wceq 1539 ∈ wcel 2112 ≠ wne 2952 ⊆ wss 3859 𝒫 cpw 4495 {csn 4523 dom cdm 5525 ↾ cres 5527 ‘cfv 6336 ℝcr 10567 0cc0 10568 1c1 10569 ♯chash 13733 vol*covol 24155 volcvol 24156 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-rep 5157 ax-sep 5170 ax-nul 5177 ax-pow 5235 ax-pr 5299 ax-un 7460 ax-inf2 9130 ax-cnex 10624 ax-resscn 10625 ax-1cn 10626 ax-icn 10627 ax-addcl 10628 ax-addrcl 10629 ax-mulcl 10630 ax-mulrcl 10631 ax-mulcom 10632 ax-addass 10633 ax-mulass 10634 ax-distr 10635 ax-i2m1 10636 ax-1ne0 10637 ax-1rid 10638 ax-rnegex 10639 ax-rrecex 10640 ax-cnre 10641 ax-pre-lttri 10642 ax-pre-lttrn 10643 ax-pre-ltadd 10644 ax-pre-mulgt0 10645 ax-pre-sup 10646 |
This theorem depends on definitions: df-bi 210 df-an 401 df-or 846 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2071 df-mo 2558 df-eu 2589 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2902 df-ne 2953 df-nel 3057 df-ral 3076 df-rex 3077 df-reu 3078 df-rmo 3079 df-rab 3080 df-v 3412 df-sbc 3698 df-csb 3807 df-dif 3862 df-un 3864 df-in 3866 df-ss 3876 df-pss 3878 df-nul 4227 df-if 4422 df-pw 4497 df-sn 4524 df-pr 4526 df-tp 4528 df-op 4530 df-uni 4800 df-int 4840 df-iun 4886 df-br 5034 df-opab 5096 df-mpt 5114 df-tr 5140 df-id 5431 df-eprel 5436 df-po 5444 df-so 5445 df-fr 5484 df-se 5485 df-we 5486 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-res 5537 df-ima 5538 df-pred 6127 df-ord 6173 df-on 6174 df-lim 6175 df-suc 6176 df-iota 6295 df-fun 6338 df-fn 6339 df-f 6340 df-f1 6341 df-fo 6342 df-f1o 6343 df-fv 6344 df-isom 6345 df-riota 7109 df-ov 7154 df-oprab 7155 df-mpo 7156 df-of 7406 df-om 7581 df-1st 7694 df-2nd 7695 df-wrecs 7958 df-recs 8019 df-rdg 8057 df-1o 8113 df-2o 8114 df-oadd 8117 df-er 8300 df-map 8419 df-en 8529 df-dom 8530 df-sdom 8531 df-fin 8532 df-sup 8932 df-inf 8933 df-oi 9000 df-dju 9356 df-card 9394 df-pnf 10708 df-mnf 10709 df-xr 10710 df-ltxr 10711 df-le 10712 df-sub 10903 df-neg 10904 df-div 11329 df-nn 11668 df-2 11730 df-3 11731 df-n0 11928 df-xnn0 12000 df-z 12014 df-uz 12276 df-q 12382 df-rp 12424 df-xadd 12542 df-ioo 12776 df-ico 12778 df-icc 12779 df-fz 12933 df-fzo 13076 df-fl 13204 df-seq 13412 df-exp 13473 df-hash 13734 df-cj 14499 df-re 14500 df-im 14501 df-sqrt 14635 df-abs 14636 df-clim 14886 df-sum 15084 df-xmet 20152 df-met 20153 df-ovol 24157 df-vol 24158 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |