Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cntnevol Structured version   Visualization version   GIF version

Theorem cntnevol 34209
Description: Counting and Lebesgue measures are different. (Contributed by Thierry Arnoux, 27-Jan-2017.)
Assertion
Ref Expression
cntnevol (♯ ↾ 𝒫 𝑂) ≠ vol

Proof of Theorem cntnevol
StepHypRef Expression
1 ax-1ne0 11222 . . . . 5 1 ≠ 0
21a1i 11 . . . 4 (1 ∈ 𝑂 → 1 ≠ 0)
3 snelpwi 5454 . . . . . 6 (1 ∈ 𝑂 → {1} ∈ 𝒫 𝑂)
4 fvres 6926 . . . . . 6 ({1} ∈ 𝒫 𝑂 → ((♯ ↾ 𝒫 𝑂)‘{1}) = (♯‘{1}))
53, 4syl 17 . . . . 5 (1 ∈ 𝑂 → ((♯ ↾ 𝒫 𝑂)‘{1}) = (♯‘{1}))
6 1re 11259 . . . . . 6 1 ∈ ℝ
7 hashsng 14405 . . . . . 6 (1 ∈ ℝ → (♯‘{1}) = 1)
86, 7ax-mp 5 . . . . 5 (♯‘{1}) = 1
95, 8eqtrdi 2791 . . . 4 (1 ∈ 𝑂 → ((♯ ↾ 𝒫 𝑂)‘{1}) = 1)
10 snssi 4813 . . . . . . 7 (1 ∈ ℝ → {1} ⊆ ℝ)
11 ovolsn 25544 . . . . . . 7 (1 ∈ ℝ → (vol*‘{1}) = 0)
12 nulmbl 25584 . . . . . . 7 (({1} ⊆ ℝ ∧ (vol*‘{1}) = 0) → {1} ∈ dom vol)
1310, 11, 12syl2anc 584 . . . . . 6 (1 ∈ ℝ → {1} ∈ dom vol)
14 mblvol 25579 . . . . . . 7 ({1} ∈ dom vol → (vol‘{1}) = (vol*‘{1}))
156, 11ax-mp 5 . . . . . . 7 (vol*‘{1}) = 0
1614, 15eqtrdi 2791 . . . . . 6 ({1} ∈ dom vol → (vol‘{1}) = 0)
176, 13, 16mp2b 10 . . . . 5 (vol‘{1}) = 0
1817a1i 11 . . . 4 (1 ∈ 𝑂 → (vol‘{1}) = 0)
192, 9, 183netr4d 3016 . . 3 (1 ∈ 𝑂 → ((♯ ↾ 𝒫 𝑂)‘{1}) ≠ (vol‘{1}))
20 fveq1 6906 . . . 4 ((♯ ↾ 𝒫 𝑂) = vol → ((♯ ↾ 𝒫 𝑂)‘{1}) = (vol‘{1}))
2120necon3i 2971 . . 3 (((♯ ↾ 𝒫 𝑂)‘{1}) ≠ (vol‘{1}) → (♯ ↾ 𝒫 𝑂) ≠ vol)
2219, 21syl 17 . 2 (1 ∈ 𝑂 → (♯ ↾ 𝒫 𝑂) ≠ vol)
236, 13ax-mp 5 . . . . . . 7 {1} ∈ dom vol
2423biantrur 530 . . . . . 6 (¬ {1} ∈ dom (♯ ↾ 𝒫 𝑂) ↔ ({1} ∈ dom vol ∧ ¬ {1} ∈ dom (♯ ↾ 𝒫 𝑂)))
25 snex 5442 . . . . . . . . 9 {1} ∈ V
2625elpw 4609 . . . . . . . 8 ({1} ∈ 𝒫 𝑂 ↔ {1} ⊆ 𝑂)
27 dmhashres 14377 . . . . . . . . 9 dom (♯ ↾ 𝒫 𝑂) = 𝒫 𝑂
2827eleq2i 2831 . . . . . . . 8 ({1} ∈ dom (♯ ↾ 𝒫 𝑂) ↔ {1} ∈ 𝒫 𝑂)
29 1ex 11255 . . . . . . . . 9 1 ∈ V
3029snss 4790 . . . . . . . 8 (1 ∈ 𝑂 ↔ {1} ⊆ 𝑂)
3126, 28, 303bitr4i 303 . . . . . . 7 ({1} ∈ dom (♯ ↾ 𝒫 𝑂) ↔ 1 ∈ 𝑂)
3231notbii 320 . . . . . 6 (¬ {1} ∈ dom (♯ ↾ 𝒫 𝑂) ↔ ¬ 1 ∈ 𝑂)
3324, 32bitr3i 277 . . . . 5 (({1} ∈ dom vol ∧ ¬ {1} ∈ dom (♯ ↾ 𝒫 𝑂)) ↔ ¬ 1 ∈ 𝑂)
34 nelne1 3037 . . . . 5 (({1} ∈ dom vol ∧ ¬ {1} ∈ dom (♯ ↾ 𝒫 𝑂)) → dom vol ≠ dom (♯ ↾ 𝒫 𝑂))
3533, 34sylbir 235 . . . 4 (¬ 1 ∈ 𝑂 → dom vol ≠ dom (♯ ↾ 𝒫 𝑂))
3635necomd 2994 . . 3 (¬ 1 ∈ 𝑂 → dom (♯ ↾ 𝒫 𝑂) ≠ dom vol)
37 dmeq 5917 . . . 4 ((♯ ↾ 𝒫 𝑂) = vol → dom (♯ ↾ 𝒫 𝑂) = dom vol)
3837necon3i 2971 . . 3 (dom (♯ ↾ 𝒫 𝑂) ≠ dom vol → (♯ ↾ 𝒫 𝑂) ≠ vol)
3936, 38syl 17 . 2 (¬ 1 ∈ 𝑂 → (♯ ↾ 𝒫 𝑂) ≠ vol)
4022, 39pm2.61i 182 1 (♯ ↾ 𝒫 𝑂) ≠ vol
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 395   = wceq 1537  wcel 2106  wne 2938  wss 3963  𝒫 cpw 4605  {csn 4631  dom cdm 5689  cres 5691  cfv 6563  cr 11152  0cc0 11153  1c1 11154  chash 14366  vol*covol 25511  volcvol 25512
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-inf2 9679  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-isom 6572  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-2o 8506  df-er 8744  df-map 8867  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-sup 9480  df-inf 9481  df-oi 9548  df-dju 9939  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-n0 12525  df-xnn0 12598  df-z 12612  df-uz 12877  df-q 12989  df-rp 13033  df-xadd 13153  df-ioo 13388  df-ico 13390  df-icc 13391  df-fz 13545  df-fzo 13692  df-fl 13829  df-seq 14040  df-exp 14100  df-hash 14367  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-abs 15272  df-clim 15521  df-sum 15720  df-xmet 21375  df-met 21376  df-ovol 25513  df-vol 25514
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator