| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > pexmidlem7N | Structured version Visualization version GIF version | ||
| Description: Lemma for pexmidN 40078. Contradict pexmidlem6N 40084. (Contributed by NM, 3-Feb-2012.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| pexmidlem.l | ⊢ ≤ = (le‘𝐾) |
| pexmidlem.j | ⊢ ∨ = (join‘𝐾) |
| pexmidlem.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| pexmidlem.p | ⊢ + = (+𝑃‘𝐾) |
| pexmidlem.o | ⊢ ⊥ = (⊥𝑃‘𝐾) |
| pexmidlem.m | ⊢ 𝑀 = (𝑋 + {𝑝}) |
| Ref | Expression |
|---|---|
| pexmidlem7N | ⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑝 ∈ 𝐴) ∧ (( ⊥ ‘( ⊥ ‘𝑋)) = 𝑋 ∧ 𝑋 ≠ ∅ ∧ ¬ 𝑝 ∈ (𝑋 + ( ⊥ ‘𝑋)))) → 𝑀 ≠ 𝑋) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl1 1192 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑝 ∈ 𝐴) ∧ (( ⊥ ‘( ⊥ ‘𝑋)) = 𝑋 ∧ 𝑋 ≠ ∅ ∧ ¬ 𝑝 ∈ (𝑋 + ( ⊥ ‘𝑋)))) → 𝐾 ∈ HL) | |
| 2 | simpl3 1194 | . . . . . 6 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑝 ∈ 𝐴) ∧ (( ⊥ ‘( ⊥ ‘𝑋)) = 𝑋 ∧ 𝑋 ≠ ∅ ∧ ¬ 𝑝 ∈ (𝑋 + ( ⊥ ‘𝑋)))) → 𝑝 ∈ 𝐴) | |
| 3 | 2 | snssd 4758 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑝 ∈ 𝐴) ∧ (( ⊥ ‘( ⊥ ‘𝑋)) = 𝑋 ∧ 𝑋 ≠ ∅ ∧ ¬ 𝑝 ∈ (𝑋 + ( ⊥ ‘𝑋)))) → {𝑝} ⊆ 𝐴) |
| 4 | simpl2 1193 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑝 ∈ 𝐴) ∧ (( ⊥ ‘( ⊥ ‘𝑋)) = 𝑋 ∧ 𝑋 ≠ ∅ ∧ ¬ 𝑝 ∈ (𝑋 + ( ⊥ ‘𝑋)))) → 𝑋 ⊆ 𝐴) | |
| 5 | pexmidlem.a | . . . . . 6 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 6 | pexmidlem.p | . . . . . 6 ⊢ + = (+𝑃‘𝐾) | |
| 7 | 5, 6 | sspadd2 39925 | . . . . 5 ⊢ ((𝐾 ∈ HL ∧ {𝑝} ⊆ 𝐴 ∧ 𝑋 ⊆ 𝐴) → {𝑝} ⊆ (𝑋 + {𝑝})) |
| 8 | 1, 3, 4, 7 | syl3anc 1373 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑝 ∈ 𝐴) ∧ (( ⊥ ‘( ⊥ ‘𝑋)) = 𝑋 ∧ 𝑋 ≠ ∅ ∧ ¬ 𝑝 ∈ (𝑋 + ( ⊥ ‘𝑋)))) → {𝑝} ⊆ (𝑋 + {𝑝})) |
| 9 | vex 3440 | . . . . 5 ⊢ 𝑝 ∈ V | |
| 10 | 9 | snss 4734 | . . . 4 ⊢ (𝑝 ∈ (𝑋 + {𝑝}) ↔ {𝑝} ⊆ (𝑋 + {𝑝})) |
| 11 | 8, 10 | sylibr 234 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑝 ∈ 𝐴) ∧ (( ⊥ ‘( ⊥ ‘𝑋)) = 𝑋 ∧ 𝑋 ≠ ∅ ∧ ¬ 𝑝 ∈ (𝑋 + ( ⊥ ‘𝑋)))) → 𝑝 ∈ (𝑋 + {𝑝})) |
| 12 | pexmidlem.m | . . 3 ⊢ 𝑀 = (𝑋 + {𝑝}) | |
| 13 | 11, 12 | eleqtrrdi 2842 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑝 ∈ 𝐴) ∧ (( ⊥ ‘( ⊥ ‘𝑋)) = 𝑋 ∧ 𝑋 ≠ ∅ ∧ ¬ 𝑝 ∈ (𝑋 + ( ⊥ ‘𝑋)))) → 𝑝 ∈ 𝑀) |
| 14 | pexmidlem.o | . . . . . 6 ⊢ ⊥ = (⊥𝑃‘𝐾) | |
| 15 | 5, 14 | polssatN 40017 | . . . . 5 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) → ( ⊥ ‘𝑋) ⊆ 𝐴) |
| 16 | 1, 4, 15 | syl2anc 584 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑝 ∈ 𝐴) ∧ (( ⊥ ‘( ⊥ ‘𝑋)) = 𝑋 ∧ 𝑋 ≠ ∅ ∧ ¬ 𝑝 ∈ (𝑋 + ( ⊥ ‘𝑋)))) → ( ⊥ ‘𝑋) ⊆ 𝐴) |
| 17 | 5, 6 | sspadd1 39924 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ ( ⊥ ‘𝑋) ⊆ 𝐴) → 𝑋 ⊆ (𝑋 + ( ⊥ ‘𝑋))) |
| 18 | 1, 4, 16, 17 | syl3anc 1373 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑝 ∈ 𝐴) ∧ (( ⊥ ‘( ⊥ ‘𝑋)) = 𝑋 ∧ 𝑋 ≠ ∅ ∧ ¬ 𝑝 ∈ (𝑋 + ( ⊥ ‘𝑋)))) → 𝑋 ⊆ (𝑋 + ( ⊥ ‘𝑋))) |
| 19 | simpr3 1197 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑝 ∈ 𝐴) ∧ (( ⊥ ‘( ⊥ ‘𝑋)) = 𝑋 ∧ 𝑋 ≠ ∅ ∧ ¬ 𝑝 ∈ (𝑋 + ( ⊥ ‘𝑋)))) → ¬ 𝑝 ∈ (𝑋 + ( ⊥ ‘𝑋))) | |
| 20 | 18, 19 | ssneldd 3932 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑝 ∈ 𝐴) ∧ (( ⊥ ‘( ⊥ ‘𝑋)) = 𝑋 ∧ 𝑋 ≠ ∅ ∧ ¬ 𝑝 ∈ (𝑋 + ( ⊥ ‘𝑋)))) → ¬ 𝑝 ∈ 𝑋) |
| 21 | nelne1 3025 | . 2 ⊢ ((𝑝 ∈ 𝑀 ∧ ¬ 𝑝 ∈ 𝑋) → 𝑀 ≠ 𝑋) | |
| 22 | 13, 20, 21 | syl2anc 584 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑝 ∈ 𝐴) ∧ (( ⊥ ‘( ⊥ ‘𝑋)) = 𝑋 ∧ 𝑋 ≠ ∅ ∧ ¬ 𝑝 ∈ (𝑋 + ( ⊥ ‘𝑋)))) → 𝑀 ≠ 𝑋) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 ⊆ wss 3897 ∅c0 4280 {csn 4573 ‘cfv 6481 (class class class)co 7346 lecple 17168 joincjn 18217 Atomscatm 39372 HLchlt 39459 +𝑃cpadd 39904 ⊥𝑃cpolN 40011 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-iin 4942 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-1st 7921 df-2nd 7922 df-proset 18200 df-poset 18219 df-lub 18250 df-glb 18251 df-join 18252 df-meet 18253 df-p1 18330 df-lat 18338 df-clat 18405 df-oposet 39285 df-ol 39287 df-oml 39288 df-ats 39376 df-atl 39407 df-cvlat 39431 df-hlat 39460 df-psubsp 39612 df-pmap 39613 df-padd 39905 df-polarityN 40012 |
| This theorem is referenced by: pexmidlem8N 40086 |
| Copyright terms: Public domain | W3C validator |