Step | Hyp | Ref
| Expression |
1 | | simpl1 1191 |
. . . . 5
β’ (((πΎ β HL β§ π β π΄ β§ π β π΄) β§ (( β₯ β( β₯
βπ)) = π β§ π β β
β§ Β¬ π β (π + ( β₯ βπ)))) β πΎ β HL) |
2 | | simpl3 1193 |
. . . . . 6
β’ (((πΎ β HL β§ π β π΄ β§ π β π΄) β§ (( β₯ β( β₯
βπ)) = π β§ π β β
β§ Β¬ π β (π + ( β₯ βπ)))) β π β π΄) |
3 | 2 | snssd 4812 |
. . . . 5
β’ (((πΎ β HL β§ π β π΄ β§ π β π΄) β§ (( β₯ β( β₯
βπ)) = π β§ π β β
β§ Β¬ π β (π + ( β₯ βπ)))) β {π} β π΄) |
4 | | simpl2 1192 |
. . . . 5
β’ (((πΎ β HL β§ π β π΄ β§ π β π΄) β§ (( β₯ β( β₯
βπ)) = π β§ π β β
β§ Β¬ π β (π + ( β₯ βπ)))) β π β π΄) |
5 | | pexmidlem.a |
. . . . . 6
β’ π΄ = (AtomsβπΎ) |
6 | | pexmidlem.p |
. . . . . 6
β’ + =
(+πβπΎ) |
7 | 5, 6 | sspadd2 38779 |
. . . . 5
β’ ((πΎ β HL β§ {π} β π΄ β§ π β π΄) β {π} β (π + {π})) |
8 | 1, 3, 4, 7 | syl3anc 1371 |
. . . 4
β’ (((πΎ β HL β§ π β π΄ β§ π β π΄) β§ (( β₯ β( β₯
βπ)) = π β§ π β β
β§ Β¬ π β (π + ( β₯ βπ)))) β {π} β (π + {π})) |
9 | | vex 3478 |
. . . . 5
β’ π β V |
10 | 9 | snss 4789 |
. . . 4
β’ (π β (π + {π}) β {π} β (π + {π})) |
11 | 8, 10 | sylibr 233 |
. . 3
β’ (((πΎ β HL β§ π β π΄ β§ π β π΄) β§ (( β₯ β( β₯
βπ)) = π β§ π β β
β§ Β¬ π β (π + ( β₯ βπ)))) β π β (π + {π})) |
12 | | pexmidlem.m |
. . 3
β’ π = (π + {π}) |
13 | 11, 12 | eleqtrrdi 2844 |
. 2
β’ (((πΎ β HL β§ π β π΄ β§ π β π΄) β§ (( β₯ β( β₯
βπ)) = π β§ π β β
β§ Β¬ π β (π + ( β₯ βπ)))) β π β π) |
14 | | pexmidlem.o |
. . . . . 6
β’ β₯ =
(β₯πβπΎ) |
15 | 5, 14 | polssatN 38871 |
. . . . 5
β’ ((πΎ β HL β§ π β π΄) β ( β₯ βπ) β π΄) |
16 | 1, 4, 15 | syl2anc 584 |
. . . 4
β’ (((πΎ β HL β§ π β π΄ β§ π β π΄) β§ (( β₯ β( β₯
βπ)) = π β§ π β β
β§ Β¬ π β (π + ( β₯ βπ)))) β ( β₯ βπ) β π΄) |
17 | 5, 6 | sspadd1 38778 |
. . . 4
β’ ((πΎ β HL β§ π β π΄ β§ ( β₯ βπ) β π΄) β π β (π + ( β₯ βπ))) |
18 | 1, 4, 16, 17 | syl3anc 1371 |
. . 3
β’ (((πΎ β HL β§ π β π΄ β§ π β π΄) β§ (( β₯ β( β₯
βπ)) = π β§ π β β
β§ Β¬ π β (π + ( β₯ βπ)))) β π β (π + ( β₯ βπ))) |
19 | | simpr3 1196 |
. . 3
β’ (((πΎ β HL β§ π β π΄ β§ π β π΄) β§ (( β₯ β( β₯
βπ)) = π β§ π β β
β§ Β¬ π β (π + ( β₯ βπ)))) β Β¬ π β (π + ( β₯ βπ))) |
20 | 18, 19 | ssneldd 3985 |
. 2
β’ (((πΎ β HL β§ π β π΄ β§ π β π΄) β§ (( β₯ β( β₯
βπ)) = π β§ π β β
β§ Β¬ π β (π + ( β₯ βπ)))) β Β¬ π β π) |
21 | | nelne1 3039 |
. 2
β’ ((π β π β§ Β¬ π β π) β π β π) |
22 | 13, 20, 21 | syl2anc 584 |
1
β’ (((πΎ β HL β§ π β π΄ β§ π β π΄) β§ (( β₯ β( β₯
βπ)) = π β§ π β β
β§ Β¬ π β (π + ( β₯ βπ)))) β π β π) |