| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > pexmidlem7N | Structured version Visualization version GIF version | ||
| Description: Lemma for pexmidN 39993. Contradict pexmidlem6N 39999. (Contributed by NM, 3-Feb-2012.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| pexmidlem.l | ⊢ ≤ = (le‘𝐾) |
| pexmidlem.j | ⊢ ∨ = (join‘𝐾) |
| pexmidlem.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| pexmidlem.p | ⊢ + = (+𝑃‘𝐾) |
| pexmidlem.o | ⊢ ⊥ = (⊥𝑃‘𝐾) |
| pexmidlem.m | ⊢ 𝑀 = (𝑋 + {𝑝}) |
| Ref | Expression |
|---|---|
| pexmidlem7N | ⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑝 ∈ 𝐴) ∧ (( ⊥ ‘( ⊥ ‘𝑋)) = 𝑋 ∧ 𝑋 ≠ ∅ ∧ ¬ 𝑝 ∈ (𝑋 + ( ⊥ ‘𝑋)))) → 𝑀 ≠ 𝑋) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl1 1192 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑝 ∈ 𝐴) ∧ (( ⊥ ‘( ⊥ ‘𝑋)) = 𝑋 ∧ 𝑋 ≠ ∅ ∧ ¬ 𝑝 ∈ (𝑋 + ( ⊥ ‘𝑋)))) → 𝐾 ∈ HL) | |
| 2 | simpl3 1194 | . . . . . 6 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑝 ∈ 𝐴) ∧ (( ⊥ ‘( ⊥ ‘𝑋)) = 𝑋 ∧ 𝑋 ≠ ∅ ∧ ¬ 𝑝 ∈ (𝑋 + ( ⊥ ‘𝑋)))) → 𝑝 ∈ 𝐴) | |
| 3 | 2 | snssd 4790 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑝 ∈ 𝐴) ∧ (( ⊥ ‘( ⊥ ‘𝑋)) = 𝑋 ∧ 𝑋 ≠ ∅ ∧ ¬ 𝑝 ∈ (𝑋 + ( ⊥ ‘𝑋)))) → {𝑝} ⊆ 𝐴) |
| 4 | simpl2 1193 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑝 ∈ 𝐴) ∧ (( ⊥ ‘( ⊥ ‘𝑋)) = 𝑋 ∧ 𝑋 ≠ ∅ ∧ ¬ 𝑝 ∈ (𝑋 + ( ⊥ ‘𝑋)))) → 𝑋 ⊆ 𝐴) | |
| 5 | pexmidlem.a | . . . . . 6 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 6 | pexmidlem.p | . . . . . 6 ⊢ + = (+𝑃‘𝐾) | |
| 7 | 5, 6 | sspadd2 39840 | . . . . 5 ⊢ ((𝐾 ∈ HL ∧ {𝑝} ⊆ 𝐴 ∧ 𝑋 ⊆ 𝐴) → {𝑝} ⊆ (𝑋 + {𝑝})) |
| 8 | 1, 3, 4, 7 | syl3anc 1373 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑝 ∈ 𝐴) ∧ (( ⊥ ‘( ⊥ ‘𝑋)) = 𝑋 ∧ 𝑋 ≠ ∅ ∧ ¬ 𝑝 ∈ (𝑋 + ( ⊥ ‘𝑋)))) → {𝑝} ⊆ (𝑋 + {𝑝})) |
| 9 | vex 3468 | . . . . 5 ⊢ 𝑝 ∈ V | |
| 10 | 9 | snss 4766 | . . . 4 ⊢ (𝑝 ∈ (𝑋 + {𝑝}) ↔ {𝑝} ⊆ (𝑋 + {𝑝})) |
| 11 | 8, 10 | sylibr 234 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑝 ∈ 𝐴) ∧ (( ⊥ ‘( ⊥ ‘𝑋)) = 𝑋 ∧ 𝑋 ≠ ∅ ∧ ¬ 𝑝 ∈ (𝑋 + ( ⊥ ‘𝑋)))) → 𝑝 ∈ (𝑋 + {𝑝})) |
| 12 | pexmidlem.m | . . 3 ⊢ 𝑀 = (𝑋 + {𝑝}) | |
| 13 | 11, 12 | eleqtrrdi 2846 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑝 ∈ 𝐴) ∧ (( ⊥ ‘( ⊥ ‘𝑋)) = 𝑋 ∧ 𝑋 ≠ ∅ ∧ ¬ 𝑝 ∈ (𝑋 + ( ⊥ ‘𝑋)))) → 𝑝 ∈ 𝑀) |
| 14 | pexmidlem.o | . . . . . 6 ⊢ ⊥ = (⊥𝑃‘𝐾) | |
| 15 | 5, 14 | polssatN 39932 | . . . . 5 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) → ( ⊥ ‘𝑋) ⊆ 𝐴) |
| 16 | 1, 4, 15 | syl2anc 584 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑝 ∈ 𝐴) ∧ (( ⊥ ‘( ⊥ ‘𝑋)) = 𝑋 ∧ 𝑋 ≠ ∅ ∧ ¬ 𝑝 ∈ (𝑋 + ( ⊥ ‘𝑋)))) → ( ⊥ ‘𝑋) ⊆ 𝐴) |
| 17 | 5, 6 | sspadd1 39839 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ ( ⊥ ‘𝑋) ⊆ 𝐴) → 𝑋 ⊆ (𝑋 + ( ⊥ ‘𝑋))) |
| 18 | 1, 4, 16, 17 | syl3anc 1373 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑝 ∈ 𝐴) ∧ (( ⊥ ‘( ⊥ ‘𝑋)) = 𝑋 ∧ 𝑋 ≠ ∅ ∧ ¬ 𝑝 ∈ (𝑋 + ( ⊥ ‘𝑋)))) → 𝑋 ⊆ (𝑋 + ( ⊥ ‘𝑋))) |
| 19 | simpr3 1197 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑝 ∈ 𝐴) ∧ (( ⊥ ‘( ⊥ ‘𝑋)) = 𝑋 ∧ 𝑋 ≠ ∅ ∧ ¬ 𝑝 ∈ (𝑋 + ( ⊥ ‘𝑋)))) → ¬ 𝑝 ∈ (𝑋 + ( ⊥ ‘𝑋))) | |
| 20 | 18, 19 | ssneldd 3966 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑝 ∈ 𝐴) ∧ (( ⊥ ‘( ⊥ ‘𝑋)) = 𝑋 ∧ 𝑋 ≠ ∅ ∧ ¬ 𝑝 ∈ (𝑋 + ( ⊥ ‘𝑋)))) → ¬ 𝑝 ∈ 𝑋) |
| 21 | nelne1 3030 | . 2 ⊢ ((𝑝 ∈ 𝑀 ∧ ¬ 𝑝 ∈ 𝑋) → 𝑀 ≠ 𝑋) | |
| 22 | 13, 20, 21 | syl2anc 584 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑝 ∈ 𝐴) ∧ (( ⊥ ‘( ⊥ ‘𝑋)) = 𝑋 ∧ 𝑋 ≠ ∅ ∧ ¬ 𝑝 ∈ (𝑋 + ( ⊥ ‘𝑋)))) → 𝑀 ≠ 𝑋) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2933 ⊆ wss 3931 ∅c0 4313 {csn 4606 ‘cfv 6536 (class class class)co 7410 lecple 17283 joincjn 18328 Atomscatm 39286 HLchlt 39373 +𝑃cpadd 39819 ⊥𝑃cpolN 39926 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-iin 4975 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-1st 7993 df-2nd 7994 df-proset 18311 df-poset 18330 df-lub 18361 df-glb 18362 df-join 18363 df-meet 18364 df-p1 18441 df-lat 18447 df-clat 18514 df-oposet 39199 df-ol 39201 df-oml 39202 df-ats 39290 df-atl 39321 df-cvlat 39345 df-hlat 39374 df-psubsp 39527 df-pmap 39528 df-padd 39820 df-polarityN 39927 |
| This theorem is referenced by: pexmidlem8N 40001 |
| Copyright terms: Public domain | W3C validator |