Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pexmidlem7N Structured version   Visualization version   GIF version

Theorem pexmidlem7N 39943
Description: Lemma for pexmidN 39936. Contradict pexmidlem6N 39942. (Contributed by NM, 3-Feb-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
pexmidlem.l = (le‘𝐾)
pexmidlem.j = (join‘𝐾)
pexmidlem.a 𝐴 = (Atoms‘𝐾)
pexmidlem.p + = (+𝑃𝐾)
pexmidlem.o = (⊥𝑃𝐾)
pexmidlem.m 𝑀 = (𝑋 + {𝑝})
Assertion
Ref Expression
pexmidlem7N (((𝐾 ∈ HL ∧ 𝑋𝐴𝑝𝐴) ∧ (( ‘( 𝑋)) = 𝑋𝑋 ≠ ∅ ∧ ¬ 𝑝 ∈ (𝑋 + ( 𝑋)))) → 𝑀𝑋)

Proof of Theorem pexmidlem7N
StepHypRef Expression
1 simpl1 1192 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑝𝐴) ∧ (( ‘( 𝑋)) = 𝑋𝑋 ≠ ∅ ∧ ¬ 𝑝 ∈ (𝑋 + ( 𝑋)))) → 𝐾 ∈ HL)
2 simpl3 1194 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑝𝐴) ∧ (( ‘( 𝑋)) = 𝑋𝑋 ≠ ∅ ∧ ¬ 𝑝 ∈ (𝑋 + ( 𝑋)))) → 𝑝𝐴)
32snssd 4769 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑝𝐴) ∧ (( ‘( 𝑋)) = 𝑋𝑋 ≠ ∅ ∧ ¬ 𝑝 ∈ (𝑋 + ( 𝑋)))) → {𝑝} ⊆ 𝐴)
4 simpl2 1193 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑝𝐴) ∧ (( ‘( 𝑋)) = 𝑋𝑋 ≠ ∅ ∧ ¬ 𝑝 ∈ (𝑋 + ( 𝑋)))) → 𝑋𝐴)
5 pexmidlem.a . . . . . 6 𝐴 = (Atoms‘𝐾)
6 pexmidlem.p . . . . . 6 + = (+𝑃𝐾)
75, 6sspadd2 39783 . . . . 5 ((𝐾 ∈ HL ∧ {𝑝} ⊆ 𝐴𝑋𝐴) → {𝑝} ⊆ (𝑋 + {𝑝}))
81, 3, 4, 7syl3anc 1373 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑝𝐴) ∧ (( ‘( 𝑋)) = 𝑋𝑋 ≠ ∅ ∧ ¬ 𝑝 ∈ (𝑋 + ( 𝑋)))) → {𝑝} ⊆ (𝑋 + {𝑝}))
9 vex 3448 . . . . 5 𝑝 ∈ V
109snss 4745 . . . 4 (𝑝 ∈ (𝑋 + {𝑝}) ↔ {𝑝} ⊆ (𝑋 + {𝑝}))
118, 10sylibr 234 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑝𝐴) ∧ (( ‘( 𝑋)) = 𝑋𝑋 ≠ ∅ ∧ ¬ 𝑝 ∈ (𝑋 + ( 𝑋)))) → 𝑝 ∈ (𝑋 + {𝑝}))
12 pexmidlem.m . . 3 𝑀 = (𝑋 + {𝑝})
1311, 12eleqtrrdi 2839 . 2 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑝𝐴) ∧ (( ‘( 𝑋)) = 𝑋𝑋 ≠ ∅ ∧ ¬ 𝑝 ∈ (𝑋 + ( 𝑋)))) → 𝑝𝑀)
14 pexmidlem.o . . . . . 6 = (⊥𝑃𝐾)
155, 14polssatN 39875 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋𝐴) → ( 𝑋) ⊆ 𝐴)
161, 4, 15syl2anc 584 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑝𝐴) ∧ (( ‘( 𝑋)) = 𝑋𝑋 ≠ ∅ ∧ ¬ 𝑝 ∈ (𝑋 + ( 𝑋)))) → ( 𝑋) ⊆ 𝐴)
175, 6sspadd1 39782 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐴 ∧ ( 𝑋) ⊆ 𝐴) → 𝑋 ⊆ (𝑋 + ( 𝑋)))
181, 4, 16, 17syl3anc 1373 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑝𝐴) ∧ (( ‘( 𝑋)) = 𝑋𝑋 ≠ ∅ ∧ ¬ 𝑝 ∈ (𝑋 + ( 𝑋)))) → 𝑋 ⊆ (𝑋 + ( 𝑋)))
19 simpr3 1197 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑝𝐴) ∧ (( ‘( 𝑋)) = 𝑋𝑋 ≠ ∅ ∧ ¬ 𝑝 ∈ (𝑋 + ( 𝑋)))) → ¬ 𝑝 ∈ (𝑋 + ( 𝑋)))
2018, 19ssneldd 3946 . 2 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑝𝐴) ∧ (( ‘( 𝑋)) = 𝑋𝑋 ≠ ∅ ∧ ¬ 𝑝 ∈ (𝑋 + ( 𝑋)))) → ¬ 𝑝𝑋)
21 nelne1 3022 . 2 ((𝑝𝑀 ∧ ¬ 𝑝𝑋) → 𝑀𝑋)
2213, 20, 21syl2anc 584 1 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑝𝐴) ∧ (( ‘( 𝑋)) = 𝑋𝑋 ≠ ∅ ∧ ¬ 𝑝 ∈ (𝑋 + ( 𝑋)))) → 𝑀𝑋)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wss 3911  c0 4292  {csn 4585  cfv 6499  (class class class)co 7369  lecple 17203  joincjn 18248  Atomscatm 39229  HLchlt 39316  +𝑃cpadd 39762  𝑃cpolN 39869
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-iin 4954  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-1st 7947  df-2nd 7948  df-proset 18231  df-poset 18250  df-lub 18281  df-glb 18282  df-join 18283  df-meet 18284  df-p1 18361  df-lat 18367  df-clat 18434  df-oposet 39142  df-ol 39144  df-oml 39145  df-ats 39233  df-atl 39264  df-cvlat 39288  df-hlat 39317  df-psubsp 39470  df-pmap 39471  df-padd 39763  df-polarityN 39870
This theorem is referenced by:  pexmidlem8N  39944
  Copyright terms: Public domain W3C validator