Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  drng0mxidl Structured version   Visualization version   GIF version

Theorem drng0mxidl 33516
Description: In a division ring, the zero ideal is a maximal ideal. (Contributed by Thierry Arnoux, 16-Mar-2025.)
Hypothesis
Ref Expression
drngmxidl.1 0 = (0g𝑅)
Assertion
Ref Expression
drng0mxidl (𝑅 ∈ DivRing → { 0 } ∈ (MaxIdeal‘𝑅))

Proof of Theorem drng0mxidl
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 drngring 20762 . 2 (𝑅 ∈ DivRing → 𝑅 ∈ Ring)
2 eqid 2737 . . . 4 (LIdeal‘𝑅) = (LIdeal‘𝑅)
3 drngmxidl.1 . . . 4 0 = (0g𝑅)
42, 3lidl0 21267 . . 3 (𝑅 ∈ Ring → { 0 } ∈ (LIdeal‘𝑅))
51, 4syl 17 . 2 (𝑅 ∈ DivRing → { 0 } ∈ (LIdeal‘𝑅))
6 eqid 2737 . . . . . 6 (Base‘𝑅) = (Base‘𝑅)
7 eqid 2737 . . . . . 6 (1r𝑅) = (1r𝑅)
86, 7ringidcl 20289 . . . . 5 (𝑅 ∈ Ring → (1r𝑅) ∈ (Base‘𝑅))
91, 8syl 17 . . . 4 (𝑅 ∈ DivRing → (1r𝑅) ∈ (Base‘𝑅))
10 drngnzr 20774 . . . . 5 (𝑅 ∈ DivRing → 𝑅 ∈ NzRing)
117, 3nzrnz 20541 . . . . 5 (𝑅 ∈ NzRing → (1r𝑅) ≠ 0 )
12 nelsn 4674 . . . . 5 ((1r𝑅) ≠ 0 → ¬ (1r𝑅) ∈ { 0 })
1310, 11, 123syl 18 . . . 4 (𝑅 ∈ DivRing → ¬ (1r𝑅) ∈ { 0 })
14 nelne1 3039 . . . 4 (((1r𝑅) ∈ (Base‘𝑅) ∧ ¬ (1r𝑅) ∈ { 0 }) → (Base‘𝑅) ≠ { 0 })
159, 13, 14syl2anc 584 . . 3 (𝑅 ∈ DivRing → (Base‘𝑅) ≠ { 0 })
1615necomd 2996 . 2 (𝑅 ∈ DivRing → { 0 } ≠ (Base‘𝑅))
176, 3, 2drngnidl 21280 . . . . . . 7 (𝑅 ∈ DivRing → (LIdeal‘𝑅) = {{ 0 }, (Base‘𝑅)})
1817eleq2d 2827 . . . . . 6 (𝑅 ∈ DivRing → (𝑗 ∈ (LIdeal‘𝑅) ↔ 𝑗 ∈ {{ 0 }, (Base‘𝑅)}))
1918biimpa 476 . . . . 5 ((𝑅 ∈ DivRing ∧ 𝑗 ∈ (LIdeal‘𝑅)) → 𝑗 ∈ {{ 0 }, (Base‘𝑅)})
20 elpri 4657 . . . . 5 (𝑗 ∈ {{ 0 }, (Base‘𝑅)} → (𝑗 = { 0 } ∨ 𝑗 = (Base‘𝑅)))
2119, 20syl 17 . . . 4 ((𝑅 ∈ DivRing ∧ 𝑗 ∈ (LIdeal‘𝑅)) → (𝑗 = { 0 } ∨ 𝑗 = (Base‘𝑅)))
2221a1d 25 . . 3 ((𝑅 ∈ DivRing ∧ 𝑗 ∈ (LIdeal‘𝑅)) → ({ 0 } ⊆ 𝑗 → (𝑗 = { 0 } ∨ 𝑗 = (Base‘𝑅))))
2322ralrimiva 3146 . 2 (𝑅 ∈ DivRing → ∀𝑗 ∈ (LIdeal‘𝑅)({ 0 } ⊆ 𝑗 → (𝑗 = { 0 } ∨ 𝑗 = (Base‘𝑅))))
246ismxidl 33502 . . 3 (𝑅 ∈ Ring → ({ 0 } ∈ (MaxIdeal‘𝑅) ↔ ({ 0 } ∈ (LIdeal‘𝑅) ∧ { 0 } ≠ (Base‘𝑅) ∧ ∀𝑗 ∈ (LIdeal‘𝑅)({ 0 } ⊆ 𝑗 → (𝑗 = { 0 } ∨ 𝑗 = (Base‘𝑅))))))
2524biimpar 477 . 2 ((𝑅 ∈ Ring ∧ ({ 0 } ∈ (LIdeal‘𝑅) ∧ { 0 } ≠ (Base‘𝑅) ∧ ∀𝑗 ∈ (LIdeal‘𝑅)({ 0 } ⊆ 𝑗 → (𝑗 = { 0 } ∨ 𝑗 = (Base‘𝑅))))) → { 0 } ∈ (MaxIdeal‘𝑅))
261, 5, 16, 23, 25syl13anc 1373 1 (𝑅 ∈ DivRing → { 0 } ∈ (MaxIdeal‘𝑅))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 848  w3a 1087   = wceq 1539  wcel 2108  wne 2940  wral 3061  wss 3966  {csn 4634  {cpr 4636  cfv 6569  Basecbs 17254  0gc0g 17495  1rcur 20208  Ringcrg 20260  NzRingcnzr 20538  DivRingcdr 20755  LIdealclidl 21243  MaxIdealcmxidl 33499
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5288  ax-sep 5305  ax-nul 5315  ax-pow 5374  ax-pr 5441  ax-un 7761  ax-cnex 11218  ax-resscn 11219  ax-1cn 11220  ax-icn 11221  ax-addcl 11222  ax-addrcl 11223  ax-mulcl 11224  ax-mulrcl 11225  ax-mulcom 11226  ax-addass 11227  ax-mulass 11228  ax-distr 11229  ax-i2m1 11230  ax-1ne0 11231  ax-1rid 11232  ax-rnegex 11233  ax-rrecex 11234  ax-cnre 11235  ax-pre-lttri 11236  ax-pre-lttrn 11237  ax-pre-ltadd 11238  ax-pre-mulgt0 11239
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3483  df-sbc 3795  df-csb 3912  df-dif 3969  df-un 3971  df-in 3973  df-ss 3983  df-pss 3986  df-nul 4343  df-if 4535  df-pw 4610  df-sn 4635  df-pr 4637  df-op 4641  df-uni 4916  df-iun 5001  df-br 5152  df-opab 5214  df-mpt 5235  df-tr 5269  df-id 5587  df-eprel 5593  df-po 5601  df-so 5602  df-fr 5645  df-we 5647  df-xp 5699  df-rel 5700  df-cnv 5701  df-co 5702  df-dm 5703  df-rn 5704  df-res 5705  df-ima 5706  df-pred 6329  df-ord 6395  df-on 6396  df-lim 6397  df-suc 6398  df-iota 6522  df-fun 6571  df-fn 6572  df-f 6573  df-f1 6574  df-fo 6575  df-f1o 6576  df-fv 6577  df-riota 7395  df-ov 7441  df-oprab 7442  df-mpo 7443  df-om 7895  df-1st 8022  df-2nd 8023  df-tpos 8259  df-frecs 8314  df-wrecs 8345  df-recs 8419  df-rdg 8458  df-er 8753  df-en 8994  df-dom 8995  df-sdom 8996  df-pnf 11304  df-mnf 11305  df-xr 11306  df-ltxr 11307  df-le 11308  df-sub 11501  df-neg 11502  df-nn 12274  df-2 12336  df-3 12337  df-4 12338  df-5 12339  df-6 12340  df-7 12341  df-8 12342  df-sets 17207  df-slot 17225  df-ndx 17237  df-base 17255  df-ress 17284  df-plusg 17320  df-mulr 17321  df-sca 17323  df-vsca 17324  df-ip 17325  df-0g 17497  df-mgm 18675  df-sgrp 18754  df-mnd 18770  df-grp 18976  df-minusg 18977  df-sbg 18978  df-subg 19163  df-cmn 19824  df-abl 19825  df-mgp 20162  df-rng 20180  df-ur 20209  df-ring 20262  df-oppr 20360  df-dvdsr 20383  df-unit 20384  df-invr 20414  df-nzr 20539  df-subrg 20596  df-drng 20757  df-lmod 20886  df-lss 20957  df-sra 21199  df-rgmod 21200  df-lidl 21245  df-mxidl 33500
This theorem is referenced by:  drngmxidl  33517
  Copyright terms: Public domain W3C validator