| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > drng0mxidl | Structured version Visualization version GIF version | ||
| Description: In a division ring, the zero ideal is a maximal ideal. (Contributed by Thierry Arnoux, 16-Mar-2025.) |
| Ref | Expression |
|---|---|
| drngmxidl.1 | ⊢ 0 = (0g‘𝑅) |
| Ref | Expression |
|---|---|
| drng0mxidl | ⊢ (𝑅 ∈ DivRing → { 0 } ∈ (MaxIdeal‘𝑅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | drngring 20651 | . 2 ⊢ (𝑅 ∈ DivRing → 𝑅 ∈ Ring) | |
| 2 | eqid 2730 | . . . 4 ⊢ (LIdeal‘𝑅) = (LIdeal‘𝑅) | |
| 3 | drngmxidl.1 | . . . 4 ⊢ 0 = (0g‘𝑅) | |
| 4 | 2, 3 | lidl0 21146 | . . 3 ⊢ (𝑅 ∈ Ring → { 0 } ∈ (LIdeal‘𝑅)) |
| 5 | 1, 4 | syl 17 | . 2 ⊢ (𝑅 ∈ DivRing → { 0 } ∈ (LIdeal‘𝑅)) |
| 6 | eqid 2730 | . . . . . 6 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 7 | eqid 2730 | . . . . . 6 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
| 8 | 6, 7 | ringidcl 20180 | . . . . 5 ⊢ (𝑅 ∈ Ring → (1r‘𝑅) ∈ (Base‘𝑅)) |
| 9 | 1, 8 | syl 17 | . . . 4 ⊢ (𝑅 ∈ DivRing → (1r‘𝑅) ∈ (Base‘𝑅)) |
| 10 | drngnzr 20663 | . . . . 5 ⊢ (𝑅 ∈ DivRing → 𝑅 ∈ NzRing) | |
| 11 | 7, 3 | nzrnz 20430 | . . . . 5 ⊢ (𝑅 ∈ NzRing → (1r‘𝑅) ≠ 0 ) |
| 12 | nelsn 4632 | . . . . 5 ⊢ ((1r‘𝑅) ≠ 0 → ¬ (1r‘𝑅) ∈ { 0 }) | |
| 13 | 10, 11, 12 | 3syl 18 | . . . 4 ⊢ (𝑅 ∈ DivRing → ¬ (1r‘𝑅) ∈ { 0 }) |
| 14 | nelne1 3023 | . . . 4 ⊢ (((1r‘𝑅) ∈ (Base‘𝑅) ∧ ¬ (1r‘𝑅) ∈ { 0 }) → (Base‘𝑅) ≠ { 0 }) | |
| 15 | 9, 13, 14 | syl2anc 584 | . . 3 ⊢ (𝑅 ∈ DivRing → (Base‘𝑅) ≠ { 0 }) |
| 16 | 15 | necomd 2981 | . 2 ⊢ (𝑅 ∈ DivRing → { 0 } ≠ (Base‘𝑅)) |
| 17 | 6, 3, 2 | drngnidl 21159 | . . . . . . 7 ⊢ (𝑅 ∈ DivRing → (LIdeal‘𝑅) = {{ 0 }, (Base‘𝑅)}) |
| 18 | 17 | eleq2d 2815 | . . . . . 6 ⊢ (𝑅 ∈ DivRing → (𝑗 ∈ (LIdeal‘𝑅) ↔ 𝑗 ∈ {{ 0 }, (Base‘𝑅)})) |
| 19 | 18 | biimpa 476 | . . . . 5 ⊢ ((𝑅 ∈ DivRing ∧ 𝑗 ∈ (LIdeal‘𝑅)) → 𝑗 ∈ {{ 0 }, (Base‘𝑅)}) |
| 20 | elpri 4615 | . . . . 5 ⊢ (𝑗 ∈ {{ 0 }, (Base‘𝑅)} → (𝑗 = { 0 } ∨ 𝑗 = (Base‘𝑅))) | |
| 21 | 19, 20 | syl 17 | . . . 4 ⊢ ((𝑅 ∈ DivRing ∧ 𝑗 ∈ (LIdeal‘𝑅)) → (𝑗 = { 0 } ∨ 𝑗 = (Base‘𝑅))) |
| 22 | 21 | a1d 25 | . . 3 ⊢ ((𝑅 ∈ DivRing ∧ 𝑗 ∈ (LIdeal‘𝑅)) → ({ 0 } ⊆ 𝑗 → (𝑗 = { 0 } ∨ 𝑗 = (Base‘𝑅)))) |
| 23 | 22 | ralrimiva 3126 | . 2 ⊢ (𝑅 ∈ DivRing → ∀𝑗 ∈ (LIdeal‘𝑅)({ 0 } ⊆ 𝑗 → (𝑗 = { 0 } ∨ 𝑗 = (Base‘𝑅)))) |
| 24 | 6 | ismxidl 33439 | . . 3 ⊢ (𝑅 ∈ Ring → ({ 0 } ∈ (MaxIdeal‘𝑅) ↔ ({ 0 } ∈ (LIdeal‘𝑅) ∧ { 0 } ≠ (Base‘𝑅) ∧ ∀𝑗 ∈ (LIdeal‘𝑅)({ 0 } ⊆ 𝑗 → (𝑗 = { 0 } ∨ 𝑗 = (Base‘𝑅)))))) |
| 25 | 24 | biimpar 477 | . 2 ⊢ ((𝑅 ∈ Ring ∧ ({ 0 } ∈ (LIdeal‘𝑅) ∧ { 0 } ≠ (Base‘𝑅) ∧ ∀𝑗 ∈ (LIdeal‘𝑅)({ 0 } ⊆ 𝑗 → (𝑗 = { 0 } ∨ 𝑗 = (Base‘𝑅))))) → { 0 } ∈ (MaxIdeal‘𝑅)) |
| 26 | 1, 5, 16, 23, 25 | syl13anc 1374 | 1 ⊢ (𝑅 ∈ DivRing → { 0 } ∈ (MaxIdeal‘𝑅)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∨ wo 847 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2926 ∀wral 3045 ⊆ wss 3916 {csn 4591 {cpr 4593 ‘cfv 6513 Basecbs 17185 0gc0g 17408 1rcur 20096 Ringcrg 20148 NzRingcnzr 20427 DivRingcdr 20644 LIdealclidl 21122 MaxIdealcmxidl 33436 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5236 ax-sep 5253 ax-nul 5263 ax-pow 5322 ax-pr 5389 ax-un 7713 ax-cnex 11130 ax-resscn 11131 ax-1cn 11132 ax-icn 11133 ax-addcl 11134 ax-addrcl 11135 ax-mulcl 11136 ax-mulrcl 11137 ax-mulcom 11138 ax-addass 11139 ax-mulass 11140 ax-distr 11141 ax-i2m1 11142 ax-1ne0 11143 ax-1rid 11144 ax-rnegex 11145 ax-rrecex 11146 ax-cnre 11147 ax-pre-lttri 11148 ax-pre-lttrn 11149 ax-pre-ltadd 11150 ax-pre-mulgt0 11151 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-pss 3936 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-iun 4959 df-br 5110 df-opab 5172 df-mpt 5191 df-tr 5217 df-id 5535 df-eprel 5540 df-po 5548 df-so 5549 df-fr 5593 df-we 5595 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-pred 6276 df-ord 6337 df-on 6338 df-lim 6339 df-suc 6340 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-f1 6518 df-fo 6519 df-f1o 6520 df-fv 6521 df-riota 7346 df-ov 7392 df-oprab 7393 df-mpo 7394 df-om 7845 df-1st 7970 df-2nd 7971 df-tpos 8207 df-frecs 8262 df-wrecs 8293 df-recs 8342 df-rdg 8380 df-er 8673 df-en 8921 df-dom 8922 df-sdom 8923 df-pnf 11216 df-mnf 11217 df-xr 11218 df-ltxr 11219 df-le 11220 df-sub 11413 df-neg 11414 df-nn 12188 df-2 12250 df-3 12251 df-4 12252 df-5 12253 df-6 12254 df-7 12255 df-8 12256 df-sets 17140 df-slot 17158 df-ndx 17170 df-base 17186 df-ress 17207 df-plusg 17239 df-mulr 17240 df-sca 17242 df-vsca 17243 df-ip 17244 df-0g 17410 df-mgm 18573 df-sgrp 18652 df-mnd 18668 df-grp 18874 df-minusg 18875 df-sbg 18876 df-subg 19061 df-cmn 19718 df-abl 19719 df-mgp 20056 df-rng 20068 df-ur 20097 df-ring 20150 df-oppr 20252 df-dvdsr 20272 df-unit 20273 df-invr 20303 df-nzr 20428 df-subrg 20485 df-drng 20646 df-lmod 20774 df-lss 20844 df-sra 21086 df-rgmod 21087 df-lidl 21124 df-mxidl 33437 |
| This theorem is referenced by: drngmxidl 33454 |
| Copyright terms: Public domain | W3C validator |