| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > drng0mxidl | Structured version Visualization version GIF version | ||
| Description: In a division ring, the zero ideal is a maximal ideal. (Contributed by Thierry Arnoux, 16-Mar-2025.) |
| Ref | Expression |
|---|---|
| drngmxidl.1 | ⊢ 0 = (0g‘𝑅) |
| Ref | Expression |
|---|---|
| drng0mxidl | ⊢ (𝑅 ∈ DivRing → { 0 } ∈ (MaxIdeal‘𝑅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | drngring 20704 | . 2 ⊢ (𝑅 ∈ DivRing → 𝑅 ∈ Ring) | |
| 2 | eqid 2734 | . . . 4 ⊢ (LIdeal‘𝑅) = (LIdeal‘𝑅) | |
| 3 | drngmxidl.1 | . . . 4 ⊢ 0 = (0g‘𝑅) | |
| 4 | 2, 3 | lidl0 21202 | . . 3 ⊢ (𝑅 ∈ Ring → { 0 } ∈ (LIdeal‘𝑅)) |
| 5 | 1, 4 | syl 17 | . 2 ⊢ (𝑅 ∈ DivRing → { 0 } ∈ (LIdeal‘𝑅)) |
| 6 | eqid 2734 | . . . . . 6 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 7 | eqid 2734 | . . . . . 6 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
| 8 | 6, 7 | ringidcl 20230 | . . . . 5 ⊢ (𝑅 ∈ Ring → (1r‘𝑅) ∈ (Base‘𝑅)) |
| 9 | 1, 8 | syl 17 | . . . 4 ⊢ (𝑅 ∈ DivRing → (1r‘𝑅) ∈ (Base‘𝑅)) |
| 10 | drngnzr 20716 | . . . . 5 ⊢ (𝑅 ∈ DivRing → 𝑅 ∈ NzRing) | |
| 11 | 7, 3 | nzrnz 20483 | . . . . 5 ⊢ (𝑅 ∈ NzRing → (1r‘𝑅) ≠ 0 ) |
| 12 | nelsn 4646 | . . . . 5 ⊢ ((1r‘𝑅) ≠ 0 → ¬ (1r‘𝑅) ∈ { 0 }) | |
| 13 | 10, 11, 12 | 3syl 18 | . . . 4 ⊢ (𝑅 ∈ DivRing → ¬ (1r‘𝑅) ∈ { 0 }) |
| 14 | nelne1 3028 | . . . 4 ⊢ (((1r‘𝑅) ∈ (Base‘𝑅) ∧ ¬ (1r‘𝑅) ∈ { 0 }) → (Base‘𝑅) ≠ { 0 }) | |
| 15 | 9, 13, 14 | syl2anc 584 | . . 3 ⊢ (𝑅 ∈ DivRing → (Base‘𝑅) ≠ { 0 }) |
| 16 | 15 | necomd 2986 | . 2 ⊢ (𝑅 ∈ DivRing → { 0 } ≠ (Base‘𝑅)) |
| 17 | 6, 3, 2 | drngnidl 21215 | . . . . . . 7 ⊢ (𝑅 ∈ DivRing → (LIdeal‘𝑅) = {{ 0 }, (Base‘𝑅)}) |
| 18 | 17 | eleq2d 2819 | . . . . . 6 ⊢ (𝑅 ∈ DivRing → (𝑗 ∈ (LIdeal‘𝑅) ↔ 𝑗 ∈ {{ 0 }, (Base‘𝑅)})) |
| 19 | 18 | biimpa 476 | . . . . 5 ⊢ ((𝑅 ∈ DivRing ∧ 𝑗 ∈ (LIdeal‘𝑅)) → 𝑗 ∈ {{ 0 }, (Base‘𝑅)}) |
| 20 | elpri 4629 | . . . . 5 ⊢ (𝑗 ∈ {{ 0 }, (Base‘𝑅)} → (𝑗 = { 0 } ∨ 𝑗 = (Base‘𝑅))) | |
| 21 | 19, 20 | syl 17 | . . . 4 ⊢ ((𝑅 ∈ DivRing ∧ 𝑗 ∈ (LIdeal‘𝑅)) → (𝑗 = { 0 } ∨ 𝑗 = (Base‘𝑅))) |
| 22 | 21 | a1d 25 | . . 3 ⊢ ((𝑅 ∈ DivRing ∧ 𝑗 ∈ (LIdeal‘𝑅)) → ({ 0 } ⊆ 𝑗 → (𝑗 = { 0 } ∨ 𝑗 = (Base‘𝑅)))) |
| 23 | 22 | ralrimiva 3133 | . 2 ⊢ (𝑅 ∈ DivRing → ∀𝑗 ∈ (LIdeal‘𝑅)({ 0 } ⊆ 𝑗 → (𝑗 = { 0 } ∨ 𝑗 = (Base‘𝑅)))) |
| 24 | 6 | ismxidl 33425 | . . 3 ⊢ (𝑅 ∈ Ring → ({ 0 } ∈ (MaxIdeal‘𝑅) ↔ ({ 0 } ∈ (LIdeal‘𝑅) ∧ { 0 } ≠ (Base‘𝑅) ∧ ∀𝑗 ∈ (LIdeal‘𝑅)({ 0 } ⊆ 𝑗 → (𝑗 = { 0 } ∨ 𝑗 = (Base‘𝑅)))))) |
| 25 | 24 | biimpar 477 | . 2 ⊢ ((𝑅 ∈ Ring ∧ ({ 0 } ∈ (LIdeal‘𝑅) ∧ { 0 } ≠ (Base‘𝑅) ∧ ∀𝑗 ∈ (LIdeal‘𝑅)({ 0 } ⊆ 𝑗 → (𝑗 = { 0 } ∨ 𝑗 = (Base‘𝑅))))) → { 0 } ∈ (MaxIdeal‘𝑅)) |
| 26 | 1, 5, 16, 23, 25 | syl13anc 1373 | 1 ⊢ (𝑅 ∈ DivRing → { 0 } ∈ (MaxIdeal‘𝑅)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∨ wo 847 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 ≠ wne 2931 ∀wral 3050 ⊆ wss 3931 {csn 4606 {cpr 4608 ‘cfv 6541 Basecbs 17229 0gc0g 17455 1rcur 20146 Ringcrg 20198 NzRingcnzr 20480 DivRingcdr 20697 LIdealclidl 21178 MaxIdealcmxidl 33422 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 ax-cnex 11193 ax-resscn 11194 ax-1cn 11195 ax-icn 11196 ax-addcl 11197 ax-addrcl 11198 ax-mulcl 11199 ax-mulrcl 11200 ax-mulcom 11201 ax-addass 11202 ax-mulass 11203 ax-distr 11204 ax-i2m1 11205 ax-1ne0 11206 ax-1rid 11207 ax-rnegex 11208 ax-rrecex 11209 ax-cnre 11210 ax-pre-lttri 11211 ax-pre-lttrn 11212 ax-pre-ltadd 11213 ax-pre-mulgt0 11214 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-pred 6301 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-riota 7370 df-ov 7416 df-oprab 7417 df-mpo 7418 df-om 7870 df-1st 7996 df-2nd 7997 df-tpos 8233 df-frecs 8288 df-wrecs 8319 df-recs 8393 df-rdg 8432 df-er 8727 df-en 8968 df-dom 8969 df-sdom 8970 df-pnf 11279 df-mnf 11280 df-xr 11281 df-ltxr 11282 df-le 11283 df-sub 11476 df-neg 11477 df-nn 12249 df-2 12311 df-3 12312 df-4 12313 df-5 12314 df-6 12315 df-7 12316 df-8 12317 df-sets 17183 df-slot 17201 df-ndx 17213 df-base 17230 df-ress 17253 df-plusg 17286 df-mulr 17287 df-sca 17289 df-vsca 17290 df-ip 17291 df-0g 17457 df-mgm 18622 df-sgrp 18701 df-mnd 18717 df-grp 18923 df-minusg 18924 df-sbg 18925 df-subg 19110 df-cmn 19768 df-abl 19769 df-mgp 20106 df-rng 20118 df-ur 20147 df-ring 20200 df-oppr 20302 df-dvdsr 20325 df-unit 20326 df-invr 20356 df-nzr 20481 df-subrg 20538 df-drng 20699 df-lmod 20828 df-lss 20898 df-sra 21140 df-rgmod 21141 df-lidl 21180 df-mxidl 33423 |
| This theorem is referenced by: drngmxidl 33440 |
| Copyright terms: Public domain | W3C validator |