![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > drng0mxidl | Structured version Visualization version GIF version |
Description: In a division ring, the zero ideal is a maximal ideal. (Contributed by Thierry Arnoux, 16-Mar-2025.) |
Ref | Expression |
---|---|
drngmxidl.1 | ⊢ 0 = (0g‘𝑅) |
Ref | Expression |
---|---|
drng0mxidl | ⊢ (𝑅 ∈ DivRing → { 0 } ∈ (MaxIdeal‘𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | drngring 20762 | . 2 ⊢ (𝑅 ∈ DivRing → 𝑅 ∈ Ring) | |
2 | eqid 2737 | . . . 4 ⊢ (LIdeal‘𝑅) = (LIdeal‘𝑅) | |
3 | drngmxidl.1 | . . . 4 ⊢ 0 = (0g‘𝑅) | |
4 | 2, 3 | lidl0 21267 | . . 3 ⊢ (𝑅 ∈ Ring → { 0 } ∈ (LIdeal‘𝑅)) |
5 | 1, 4 | syl 17 | . 2 ⊢ (𝑅 ∈ DivRing → { 0 } ∈ (LIdeal‘𝑅)) |
6 | eqid 2737 | . . . . . 6 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
7 | eqid 2737 | . . . . . 6 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
8 | 6, 7 | ringidcl 20289 | . . . . 5 ⊢ (𝑅 ∈ Ring → (1r‘𝑅) ∈ (Base‘𝑅)) |
9 | 1, 8 | syl 17 | . . . 4 ⊢ (𝑅 ∈ DivRing → (1r‘𝑅) ∈ (Base‘𝑅)) |
10 | drngnzr 20774 | . . . . 5 ⊢ (𝑅 ∈ DivRing → 𝑅 ∈ NzRing) | |
11 | 7, 3 | nzrnz 20541 | . . . . 5 ⊢ (𝑅 ∈ NzRing → (1r‘𝑅) ≠ 0 ) |
12 | nelsn 4674 | . . . . 5 ⊢ ((1r‘𝑅) ≠ 0 → ¬ (1r‘𝑅) ∈ { 0 }) | |
13 | 10, 11, 12 | 3syl 18 | . . . 4 ⊢ (𝑅 ∈ DivRing → ¬ (1r‘𝑅) ∈ { 0 }) |
14 | nelne1 3039 | . . . 4 ⊢ (((1r‘𝑅) ∈ (Base‘𝑅) ∧ ¬ (1r‘𝑅) ∈ { 0 }) → (Base‘𝑅) ≠ { 0 }) | |
15 | 9, 13, 14 | syl2anc 584 | . . 3 ⊢ (𝑅 ∈ DivRing → (Base‘𝑅) ≠ { 0 }) |
16 | 15 | necomd 2996 | . 2 ⊢ (𝑅 ∈ DivRing → { 0 } ≠ (Base‘𝑅)) |
17 | 6, 3, 2 | drngnidl 21280 | . . . . . . 7 ⊢ (𝑅 ∈ DivRing → (LIdeal‘𝑅) = {{ 0 }, (Base‘𝑅)}) |
18 | 17 | eleq2d 2827 | . . . . . 6 ⊢ (𝑅 ∈ DivRing → (𝑗 ∈ (LIdeal‘𝑅) ↔ 𝑗 ∈ {{ 0 }, (Base‘𝑅)})) |
19 | 18 | biimpa 476 | . . . . 5 ⊢ ((𝑅 ∈ DivRing ∧ 𝑗 ∈ (LIdeal‘𝑅)) → 𝑗 ∈ {{ 0 }, (Base‘𝑅)}) |
20 | elpri 4657 | . . . . 5 ⊢ (𝑗 ∈ {{ 0 }, (Base‘𝑅)} → (𝑗 = { 0 } ∨ 𝑗 = (Base‘𝑅))) | |
21 | 19, 20 | syl 17 | . . . 4 ⊢ ((𝑅 ∈ DivRing ∧ 𝑗 ∈ (LIdeal‘𝑅)) → (𝑗 = { 0 } ∨ 𝑗 = (Base‘𝑅))) |
22 | 21 | a1d 25 | . . 3 ⊢ ((𝑅 ∈ DivRing ∧ 𝑗 ∈ (LIdeal‘𝑅)) → ({ 0 } ⊆ 𝑗 → (𝑗 = { 0 } ∨ 𝑗 = (Base‘𝑅)))) |
23 | 22 | ralrimiva 3146 | . 2 ⊢ (𝑅 ∈ DivRing → ∀𝑗 ∈ (LIdeal‘𝑅)({ 0 } ⊆ 𝑗 → (𝑗 = { 0 } ∨ 𝑗 = (Base‘𝑅)))) |
24 | 6 | ismxidl 33502 | . . 3 ⊢ (𝑅 ∈ Ring → ({ 0 } ∈ (MaxIdeal‘𝑅) ↔ ({ 0 } ∈ (LIdeal‘𝑅) ∧ { 0 } ≠ (Base‘𝑅) ∧ ∀𝑗 ∈ (LIdeal‘𝑅)({ 0 } ⊆ 𝑗 → (𝑗 = { 0 } ∨ 𝑗 = (Base‘𝑅)))))) |
25 | 24 | biimpar 477 | . 2 ⊢ ((𝑅 ∈ Ring ∧ ({ 0 } ∈ (LIdeal‘𝑅) ∧ { 0 } ≠ (Base‘𝑅) ∧ ∀𝑗 ∈ (LIdeal‘𝑅)({ 0 } ⊆ 𝑗 → (𝑗 = { 0 } ∨ 𝑗 = (Base‘𝑅))))) → { 0 } ∈ (MaxIdeal‘𝑅)) |
26 | 1, 5, 16, 23, 25 | syl13anc 1373 | 1 ⊢ (𝑅 ∈ DivRing → { 0 } ∈ (MaxIdeal‘𝑅)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∨ wo 848 ∧ w3a 1087 = wceq 1539 ∈ wcel 2108 ≠ wne 2940 ∀wral 3061 ⊆ wss 3966 {csn 4634 {cpr 4636 ‘cfv 6569 Basecbs 17254 0gc0g 17495 1rcur 20208 Ringcrg 20260 NzRingcnzr 20538 DivRingcdr 20755 LIdealclidl 21243 MaxIdealcmxidl 33499 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5288 ax-sep 5305 ax-nul 5315 ax-pow 5374 ax-pr 5441 ax-un 7761 ax-cnex 11218 ax-resscn 11219 ax-1cn 11220 ax-icn 11221 ax-addcl 11222 ax-addrcl 11223 ax-mulcl 11224 ax-mulrcl 11225 ax-mulcom 11226 ax-addass 11227 ax-mulass 11228 ax-distr 11229 ax-i2m1 11230 ax-1ne0 11231 ax-1rid 11232 ax-rnegex 11233 ax-rrecex 11234 ax-cnre 11235 ax-pre-lttri 11236 ax-pre-lttrn 11237 ax-pre-ltadd 11238 ax-pre-mulgt0 11239 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3483 df-sbc 3795 df-csb 3912 df-dif 3969 df-un 3971 df-in 3973 df-ss 3983 df-pss 3986 df-nul 4343 df-if 4535 df-pw 4610 df-sn 4635 df-pr 4637 df-op 4641 df-uni 4916 df-iun 5001 df-br 5152 df-opab 5214 df-mpt 5235 df-tr 5269 df-id 5587 df-eprel 5593 df-po 5601 df-so 5602 df-fr 5645 df-we 5647 df-xp 5699 df-rel 5700 df-cnv 5701 df-co 5702 df-dm 5703 df-rn 5704 df-res 5705 df-ima 5706 df-pred 6329 df-ord 6395 df-on 6396 df-lim 6397 df-suc 6398 df-iota 6522 df-fun 6571 df-fn 6572 df-f 6573 df-f1 6574 df-fo 6575 df-f1o 6576 df-fv 6577 df-riota 7395 df-ov 7441 df-oprab 7442 df-mpo 7443 df-om 7895 df-1st 8022 df-2nd 8023 df-tpos 8259 df-frecs 8314 df-wrecs 8345 df-recs 8419 df-rdg 8458 df-er 8753 df-en 8994 df-dom 8995 df-sdom 8996 df-pnf 11304 df-mnf 11305 df-xr 11306 df-ltxr 11307 df-le 11308 df-sub 11501 df-neg 11502 df-nn 12274 df-2 12336 df-3 12337 df-4 12338 df-5 12339 df-6 12340 df-7 12341 df-8 12342 df-sets 17207 df-slot 17225 df-ndx 17237 df-base 17255 df-ress 17284 df-plusg 17320 df-mulr 17321 df-sca 17323 df-vsca 17324 df-ip 17325 df-0g 17497 df-mgm 18675 df-sgrp 18754 df-mnd 18770 df-grp 18976 df-minusg 18977 df-sbg 18978 df-subg 19163 df-cmn 19824 df-abl 19825 df-mgp 20162 df-rng 20180 df-ur 20209 df-ring 20262 df-oppr 20360 df-dvdsr 20383 df-unit 20384 df-invr 20414 df-nzr 20539 df-subrg 20596 df-drng 20757 df-lmod 20886 df-lss 20957 df-sra 21199 df-rgmod 21200 df-lidl 21245 df-mxidl 33500 |
This theorem is referenced by: drngmxidl 33517 |
Copyright terms: Public domain | W3C validator |