Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  drng0mxidl Structured version   Visualization version   GIF version

Theorem drng0mxidl 33447
Description: In a division ring, the zero ideal is a maximal ideal. (Contributed by Thierry Arnoux, 16-Mar-2025.)
Hypothesis
Ref Expression
drngmxidl.1 0 = (0g𝑅)
Assertion
Ref Expression
drng0mxidl (𝑅 ∈ DivRing → { 0 } ∈ (MaxIdeal‘𝑅))

Proof of Theorem drng0mxidl
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 drngring 20645 . 2 (𝑅 ∈ DivRing → 𝑅 ∈ Ring)
2 eqid 2729 . . . 4 (LIdeal‘𝑅) = (LIdeal‘𝑅)
3 drngmxidl.1 . . . 4 0 = (0g𝑅)
42, 3lidl0 21140 . . 3 (𝑅 ∈ Ring → { 0 } ∈ (LIdeal‘𝑅))
51, 4syl 17 . 2 (𝑅 ∈ DivRing → { 0 } ∈ (LIdeal‘𝑅))
6 eqid 2729 . . . . . 6 (Base‘𝑅) = (Base‘𝑅)
7 eqid 2729 . . . . . 6 (1r𝑅) = (1r𝑅)
86, 7ringidcl 20174 . . . . 5 (𝑅 ∈ Ring → (1r𝑅) ∈ (Base‘𝑅))
91, 8syl 17 . . . 4 (𝑅 ∈ DivRing → (1r𝑅) ∈ (Base‘𝑅))
10 drngnzr 20657 . . . . 5 (𝑅 ∈ DivRing → 𝑅 ∈ NzRing)
117, 3nzrnz 20424 . . . . 5 (𝑅 ∈ NzRing → (1r𝑅) ≠ 0 )
12 nelsn 4630 . . . . 5 ((1r𝑅) ≠ 0 → ¬ (1r𝑅) ∈ { 0 })
1310, 11, 123syl 18 . . . 4 (𝑅 ∈ DivRing → ¬ (1r𝑅) ∈ { 0 })
14 nelne1 3022 . . . 4 (((1r𝑅) ∈ (Base‘𝑅) ∧ ¬ (1r𝑅) ∈ { 0 }) → (Base‘𝑅) ≠ { 0 })
159, 13, 14syl2anc 584 . . 3 (𝑅 ∈ DivRing → (Base‘𝑅) ≠ { 0 })
1615necomd 2980 . 2 (𝑅 ∈ DivRing → { 0 } ≠ (Base‘𝑅))
176, 3, 2drngnidl 21153 . . . . . . 7 (𝑅 ∈ DivRing → (LIdeal‘𝑅) = {{ 0 }, (Base‘𝑅)})
1817eleq2d 2814 . . . . . 6 (𝑅 ∈ DivRing → (𝑗 ∈ (LIdeal‘𝑅) ↔ 𝑗 ∈ {{ 0 }, (Base‘𝑅)}))
1918biimpa 476 . . . . 5 ((𝑅 ∈ DivRing ∧ 𝑗 ∈ (LIdeal‘𝑅)) → 𝑗 ∈ {{ 0 }, (Base‘𝑅)})
20 elpri 4613 . . . . 5 (𝑗 ∈ {{ 0 }, (Base‘𝑅)} → (𝑗 = { 0 } ∨ 𝑗 = (Base‘𝑅)))
2119, 20syl 17 . . . 4 ((𝑅 ∈ DivRing ∧ 𝑗 ∈ (LIdeal‘𝑅)) → (𝑗 = { 0 } ∨ 𝑗 = (Base‘𝑅)))
2221a1d 25 . . 3 ((𝑅 ∈ DivRing ∧ 𝑗 ∈ (LIdeal‘𝑅)) → ({ 0 } ⊆ 𝑗 → (𝑗 = { 0 } ∨ 𝑗 = (Base‘𝑅))))
2322ralrimiva 3125 . 2 (𝑅 ∈ DivRing → ∀𝑗 ∈ (LIdeal‘𝑅)({ 0 } ⊆ 𝑗 → (𝑗 = { 0 } ∨ 𝑗 = (Base‘𝑅))))
246ismxidl 33433 . . 3 (𝑅 ∈ Ring → ({ 0 } ∈ (MaxIdeal‘𝑅) ↔ ({ 0 } ∈ (LIdeal‘𝑅) ∧ { 0 } ≠ (Base‘𝑅) ∧ ∀𝑗 ∈ (LIdeal‘𝑅)({ 0 } ⊆ 𝑗 → (𝑗 = { 0 } ∨ 𝑗 = (Base‘𝑅))))))
2524biimpar 477 . 2 ((𝑅 ∈ Ring ∧ ({ 0 } ∈ (LIdeal‘𝑅) ∧ { 0 } ≠ (Base‘𝑅) ∧ ∀𝑗 ∈ (LIdeal‘𝑅)({ 0 } ⊆ 𝑗 → (𝑗 = { 0 } ∨ 𝑗 = (Base‘𝑅))))) → { 0 } ∈ (MaxIdeal‘𝑅))
261, 5, 16, 23, 25syl13anc 1374 1 (𝑅 ∈ DivRing → { 0 } ∈ (MaxIdeal‘𝑅))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wral 3044  wss 3914  {csn 4589  {cpr 4591  cfv 6511  Basecbs 17179  0gc0g 17402  1rcur 20090  Ringcrg 20142  NzRingcnzr 20421  DivRingcdr 20638  LIdealclidl 21116  MaxIdealcmxidl 33430
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-tpos 8205  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-sca 17236  df-vsca 17237  df-ip 17238  df-0g 17404  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-grp 18868  df-minusg 18869  df-sbg 18870  df-subg 19055  df-cmn 19712  df-abl 19713  df-mgp 20050  df-rng 20062  df-ur 20091  df-ring 20144  df-oppr 20246  df-dvdsr 20266  df-unit 20267  df-invr 20297  df-nzr 20422  df-subrg 20479  df-drng 20640  df-lmod 20768  df-lss 20838  df-sra 21080  df-rgmod 21081  df-lidl 21118  df-mxidl 33431
This theorem is referenced by:  drngmxidl  33448
  Copyright terms: Public domain W3C validator