| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > drng0mxidl | Structured version Visualization version GIF version | ||
| Description: In a division ring, the zero ideal is a maximal ideal. (Contributed by Thierry Arnoux, 16-Mar-2025.) |
| Ref | Expression |
|---|---|
| drngmxidl.1 | ⊢ 0 = (0g‘𝑅) |
| Ref | Expression |
|---|---|
| drng0mxidl | ⊢ (𝑅 ∈ DivRing → { 0 } ∈ (MaxIdeal‘𝑅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | drngring 20649 | . 2 ⊢ (𝑅 ∈ DivRing → 𝑅 ∈ Ring) | |
| 2 | eqid 2731 | . . . 4 ⊢ (LIdeal‘𝑅) = (LIdeal‘𝑅) | |
| 3 | drngmxidl.1 | . . . 4 ⊢ 0 = (0g‘𝑅) | |
| 4 | 2, 3 | lidl0 21165 | . . 3 ⊢ (𝑅 ∈ Ring → { 0 } ∈ (LIdeal‘𝑅)) |
| 5 | 1, 4 | syl 17 | . 2 ⊢ (𝑅 ∈ DivRing → { 0 } ∈ (LIdeal‘𝑅)) |
| 6 | eqid 2731 | . . . . . 6 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 7 | eqid 2731 | . . . . . 6 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
| 8 | 6, 7 | ringidcl 20181 | . . . . 5 ⊢ (𝑅 ∈ Ring → (1r‘𝑅) ∈ (Base‘𝑅)) |
| 9 | 1, 8 | syl 17 | . . . 4 ⊢ (𝑅 ∈ DivRing → (1r‘𝑅) ∈ (Base‘𝑅)) |
| 10 | drngnzr 20661 | . . . . 5 ⊢ (𝑅 ∈ DivRing → 𝑅 ∈ NzRing) | |
| 11 | 7, 3 | nzrnz 20428 | . . . . 5 ⊢ (𝑅 ∈ NzRing → (1r‘𝑅) ≠ 0 ) |
| 12 | nelsn 4619 | . . . . 5 ⊢ ((1r‘𝑅) ≠ 0 → ¬ (1r‘𝑅) ∈ { 0 }) | |
| 13 | 10, 11, 12 | 3syl 18 | . . . 4 ⊢ (𝑅 ∈ DivRing → ¬ (1r‘𝑅) ∈ { 0 }) |
| 14 | nelne1 3025 | . . . 4 ⊢ (((1r‘𝑅) ∈ (Base‘𝑅) ∧ ¬ (1r‘𝑅) ∈ { 0 }) → (Base‘𝑅) ≠ { 0 }) | |
| 15 | 9, 13, 14 | syl2anc 584 | . . 3 ⊢ (𝑅 ∈ DivRing → (Base‘𝑅) ≠ { 0 }) |
| 16 | 15 | necomd 2983 | . 2 ⊢ (𝑅 ∈ DivRing → { 0 } ≠ (Base‘𝑅)) |
| 17 | 6, 3, 2 | drngnidl 21178 | . . . . . . 7 ⊢ (𝑅 ∈ DivRing → (LIdeal‘𝑅) = {{ 0 }, (Base‘𝑅)}) |
| 18 | 17 | eleq2d 2817 | . . . . . 6 ⊢ (𝑅 ∈ DivRing → (𝑗 ∈ (LIdeal‘𝑅) ↔ 𝑗 ∈ {{ 0 }, (Base‘𝑅)})) |
| 19 | 18 | biimpa 476 | . . . . 5 ⊢ ((𝑅 ∈ DivRing ∧ 𝑗 ∈ (LIdeal‘𝑅)) → 𝑗 ∈ {{ 0 }, (Base‘𝑅)}) |
| 20 | elpri 4600 | . . . . 5 ⊢ (𝑗 ∈ {{ 0 }, (Base‘𝑅)} → (𝑗 = { 0 } ∨ 𝑗 = (Base‘𝑅))) | |
| 21 | 19, 20 | syl 17 | . . . 4 ⊢ ((𝑅 ∈ DivRing ∧ 𝑗 ∈ (LIdeal‘𝑅)) → (𝑗 = { 0 } ∨ 𝑗 = (Base‘𝑅))) |
| 22 | 21 | a1d 25 | . . 3 ⊢ ((𝑅 ∈ DivRing ∧ 𝑗 ∈ (LIdeal‘𝑅)) → ({ 0 } ⊆ 𝑗 → (𝑗 = { 0 } ∨ 𝑗 = (Base‘𝑅)))) |
| 23 | 22 | ralrimiva 3124 | . 2 ⊢ (𝑅 ∈ DivRing → ∀𝑗 ∈ (LIdeal‘𝑅)({ 0 } ⊆ 𝑗 → (𝑗 = { 0 } ∨ 𝑗 = (Base‘𝑅)))) |
| 24 | 6 | ismxidl 33422 | . . 3 ⊢ (𝑅 ∈ Ring → ({ 0 } ∈ (MaxIdeal‘𝑅) ↔ ({ 0 } ∈ (LIdeal‘𝑅) ∧ { 0 } ≠ (Base‘𝑅) ∧ ∀𝑗 ∈ (LIdeal‘𝑅)({ 0 } ⊆ 𝑗 → (𝑗 = { 0 } ∨ 𝑗 = (Base‘𝑅)))))) |
| 25 | 24 | biimpar 477 | . 2 ⊢ ((𝑅 ∈ Ring ∧ ({ 0 } ∈ (LIdeal‘𝑅) ∧ { 0 } ≠ (Base‘𝑅) ∧ ∀𝑗 ∈ (LIdeal‘𝑅)({ 0 } ⊆ 𝑗 → (𝑗 = { 0 } ∨ 𝑗 = (Base‘𝑅))))) → { 0 } ∈ (MaxIdeal‘𝑅)) |
| 26 | 1, 5, 16, 23, 25 | syl13anc 1374 | 1 ⊢ (𝑅 ∈ DivRing → { 0 } ∈ (MaxIdeal‘𝑅)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∨ wo 847 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 ∀wral 3047 ⊆ wss 3902 {csn 4576 {cpr 4578 ‘cfv 6481 Basecbs 17117 0gc0g 17340 1rcur 20097 Ringcrg 20149 NzRingcnzr 20425 DivRingcdr 20642 LIdealclidl 21141 MaxIdealcmxidl 33419 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11059 ax-resscn 11060 ax-1cn 11061 ax-icn 11062 ax-addcl 11063 ax-addrcl 11064 ax-mulcl 11065 ax-mulrcl 11066 ax-mulcom 11067 ax-addass 11068 ax-mulass 11069 ax-distr 11070 ax-i2m1 11071 ax-1ne0 11072 ax-1rid 11073 ax-rnegex 11074 ax-rrecex 11075 ax-cnre 11076 ax-pre-lttri 11077 ax-pre-lttrn 11078 ax-pre-ltadd 11079 ax-pre-mulgt0 11080 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-tpos 8156 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11145 df-mnf 11146 df-xr 11147 df-ltxr 11148 df-le 11149 df-sub 11343 df-neg 11344 df-nn 12123 df-2 12185 df-3 12186 df-4 12187 df-5 12188 df-6 12189 df-7 12190 df-8 12191 df-sets 17072 df-slot 17090 df-ndx 17102 df-base 17118 df-ress 17139 df-plusg 17171 df-mulr 17172 df-sca 17174 df-vsca 17175 df-ip 17176 df-0g 17342 df-mgm 18545 df-sgrp 18624 df-mnd 18640 df-grp 18846 df-minusg 18847 df-sbg 18848 df-subg 19033 df-cmn 19692 df-abl 19693 df-mgp 20057 df-rng 20069 df-ur 20098 df-ring 20151 df-oppr 20253 df-dvdsr 20273 df-unit 20274 df-invr 20304 df-nzr 20426 df-subrg 20483 df-drng 20644 df-lmod 20793 df-lss 20863 df-sra 21105 df-rgmod 21106 df-lidl 21143 df-mxidl 33420 |
| This theorem is referenced by: drngmxidl 33437 |
| Copyright terms: Public domain | W3C validator |