Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rpnnen3lem Structured version   Visualization version   GIF version

Theorem rpnnen3lem 43134
Description: Lemma for rpnnen3 43135. (Contributed by Stefan O'Rear, 18-Jan-2015.)
Assertion
Ref Expression
rpnnen3lem (((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ 𝑎 < 𝑏) → {𝑐 ∈ ℚ ∣ 𝑐 < 𝑎} ≠ {𝑐 ∈ ℚ ∣ 𝑐 < 𝑏})
Distinct variable group:   𝑎,𝑏,𝑐

Proof of Theorem rpnnen3lem
Dummy variable 𝑑 is distinct from all other variables.
StepHypRef Expression
1 qbtwnre 13098 . . 3 ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑎 < 𝑏) → ∃𝑑 ∈ ℚ (𝑎 < 𝑑𝑑 < 𝑏))
2 simp2 1137 . . . . . . 7 (((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑎 < 𝑏) ∧ 𝑑 ∈ ℚ ∧ (𝑎 < 𝑑𝑑 < 𝑏)) → 𝑑 ∈ ℚ)
3 simp3r 1203 . . . . . . 7 (((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑎 < 𝑏) ∧ 𝑑 ∈ ℚ ∧ (𝑎 < 𝑑𝑑 < 𝑏)) → 𝑑 < 𝑏)
4 breq1 5092 . . . . . . . 8 (𝑐 = 𝑑 → (𝑐 < 𝑏𝑑 < 𝑏))
54elrab 3642 . . . . . . 7 (𝑑 ∈ {𝑐 ∈ ℚ ∣ 𝑐 < 𝑏} ↔ (𝑑 ∈ ℚ ∧ 𝑑 < 𝑏))
62, 3, 5sylanbrc 583 . . . . . 6 (((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑎 < 𝑏) ∧ 𝑑 ∈ ℚ ∧ (𝑎 < 𝑑𝑑 < 𝑏)) → 𝑑 ∈ {𝑐 ∈ ℚ ∣ 𝑐 < 𝑏})
7 simp11 1204 . . . . . . . . 9 (((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑎 < 𝑏) ∧ 𝑑 ∈ ℚ ∧ (𝑎 < 𝑑𝑑 < 𝑏)) → 𝑎 ∈ ℝ)
8 qre 12851 . . . . . . . . . 10 (𝑑 ∈ ℚ → 𝑑 ∈ ℝ)
983ad2ant2 1134 . . . . . . . . 9 (((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑎 < 𝑏) ∧ 𝑑 ∈ ℚ ∧ (𝑎 < 𝑑𝑑 < 𝑏)) → 𝑑 ∈ ℝ)
10 simp3l 1202 . . . . . . . . 9 (((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑎 < 𝑏) ∧ 𝑑 ∈ ℚ ∧ (𝑎 < 𝑑𝑑 < 𝑏)) → 𝑎 < 𝑑)
117, 9, 10ltnsymd 11262 . . . . . . . 8 (((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑎 < 𝑏) ∧ 𝑑 ∈ ℚ ∧ (𝑎 < 𝑑𝑑 < 𝑏)) → ¬ 𝑑 < 𝑎)
1211intnand 488 . . . . . . 7 (((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑎 < 𝑏) ∧ 𝑑 ∈ ℚ ∧ (𝑎 < 𝑑𝑑 < 𝑏)) → ¬ (𝑑 ∈ ℚ ∧ 𝑑 < 𝑎))
13 breq1 5092 . . . . . . . 8 (𝑐 = 𝑑 → (𝑐 < 𝑎𝑑 < 𝑎))
1413elrab 3642 . . . . . . 7 (𝑑 ∈ {𝑐 ∈ ℚ ∣ 𝑐 < 𝑎} ↔ (𝑑 ∈ ℚ ∧ 𝑑 < 𝑎))
1512, 14sylnibr 329 . . . . . 6 (((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑎 < 𝑏) ∧ 𝑑 ∈ ℚ ∧ (𝑎 < 𝑑𝑑 < 𝑏)) → ¬ 𝑑 ∈ {𝑐 ∈ ℚ ∣ 𝑐 < 𝑎})
16 nelne1 3025 . . . . . 6 ((𝑑 ∈ {𝑐 ∈ ℚ ∣ 𝑐 < 𝑏} ∧ ¬ 𝑑 ∈ {𝑐 ∈ ℚ ∣ 𝑐 < 𝑎}) → {𝑐 ∈ ℚ ∣ 𝑐 < 𝑏} ≠ {𝑐 ∈ ℚ ∣ 𝑐 < 𝑎})
176, 15, 16syl2anc 584 . . . . 5 (((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑎 < 𝑏) ∧ 𝑑 ∈ ℚ ∧ (𝑎 < 𝑑𝑑 < 𝑏)) → {𝑐 ∈ ℚ ∣ 𝑐 < 𝑏} ≠ {𝑐 ∈ ℚ ∣ 𝑐 < 𝑎})
1817necomd 2983 . . . 4 (((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑎 < 𝑏) ∧ 𝑑 ∈ ℚ ∧ (𝑎 < 𝑑𝑑 < 𝑏)) → {𝑐 ∈ ℚ ∣ 𝑐 < 𝑎} ≠ {𝑐 ∈ ℚ ∣ 𝑐 < 𝑏})
1918rexlimdv3a 3137 . . 3 ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑎 < 𝑏) → (∃𝑑 ∈ ℚ (𝑎 < 𝑑𝑑 < 𝑏) → {𝑐 ∈ ℚ ∣ 𝑐 < 𝑎} ≠ {𝑐 ∈ ℚ ∣ 𝑐 < 𝑏}))
201, 19mpd 15 . 2 ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑎 < 𝑏) → {𝑐 ∈ ℚ ∣ 𝑐 < 𝑎} ≠ {𝑐 ∈ ℚ ∣ 𝑐 < 𝑏})
21203expa 1118 1 (((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ 𝑎 < 𝑏) → {𝑐 ∈ ℚ ∣ 𝑐 < 𝑎} ≠ {𝑐 ∈ ℚ ∣ 𝑐 < 𝑏})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086  wcel 2111  wne 2928  wrex 3056  {crab 3395   class class class wbr 5089  cr 11005   < clt 11146  cq 12846
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-sup 9326  df-inf 9327  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-n0 12382  df-z 12469  df-uz 12733  df-q 12847
This theorem is referenced by:  rpnnen3  43135
  Copyright terms: Public domain W3C validator