Step | Hyp | Ref
| Expression |
1 | | fvex 6769 |
. . . 4
⊢
(card‘(∪ 𝐴 ∖ 𝐵)) ∈ V |
2 | 1 | sucid 6330 |
. . 3
⊢
(card‘(∪ 𝐴 ∖ 𝐵)) ∈ suc (card‘(∪ 𝐴
∖ 𝐵)) |
3 | | ttukeylem.1 |
. . . 4
⊢ (𝜑 → 𝐹:(card‘(∪
𝐴 ∖ 𝐵))–1-1-onto→(∪ 𝐴 ∖ 𝐵)) |
4 | | ttukeylem.2 |
. . . 4
⊢ (𝜑 → 𝐵 ∈ 𝐴) |
5 | | ttukeylem.3 |
. . . 4
⊢ (𝜑 → ∀𝑥(𝑥 ∈ 𝐴 ↔ (𝒫 𝑥 ∩ Fin) ⊆ 𝐴)) |
6 | | ttukeylem.4 |
. . . 4
⊢ 𝐺 = recs((𝑧 ∈ V ↦ if(dom 𝑧 = ∪ dom 𝑧, if(dom 𝑧 = ∅, 𝐵, ∪ ran 𝑧), ((𝑧‘∪ dom 𝑧) ∪ if(((𝑧‘∪ dom 𝑧) ∪ {(𝐹‘∪ dom
𝑧)}) ∈ 𝐴, {(𝐹‘∪ dom
𝑧)},
∅))))) |
7 | 3, 4, 5, 6 | ttukeylem6 10201 |
. . 3
⊢ ((𝜑 ∧ (card‘(∪ 𝐴
∖ 𝐵)) ∈ suc
(card‘(∪ 𝐴 ∖ 𝐵))) → (𝐺‘(card‘(∪ 𝐴
∖ 𝐵))) ∈ 𝐴) |
8 | 2, 7 | mpan2 687 |
. 2
⊢ (𝜑 → (𝐺‘(card‘(∪ 𝐴
∖ 𝐵))) ∈ 𝐴) |
9 | 3, 4, 5, 6 | ttukeylem4 10199 |
. . 3
⊢ (𝜑 → (𝐺‘∅) = 𝐵) |
10 | | 0elon 6304 |
. . . . 5
⊢ ∅
∈ On |
11 | | cardon 9633 |
. . . . 5
⊢
(card‘(∪ 𝐴 ∖ 𝐵)) ∈ On |
12 | | 0ss 4327 |
. . . . 5
⊢ ∅
⊆ (card‘(∪ 𝐴 ∖ 𝐵)) |
13 | 10, 11, 12 | 3pm3.2i 1337 |
. . . 4
⊢ (∅
∈ On ∧ (card‘(∪ 𝐴 ∖ 𝐵)) ∈ On ∧ ∅ ⊆
(card‘(∪ 𝐴 ∖ 𝐵))) |
14 | 3, 4, 5, 6 | ttukeylem5 10200 |
. . . 4
⊢ ((𝜑 ∧ (∅ ∈ On ∧
(card‘(∪ 𝐴 ∖ 𝐵)) ∈ On ∧ ∅ ⊆
(card‘(∪ 𝐴 ∖ 𝐵)))) → (𝐺‘∅) ⊆ (𝐺‘(card‘(∪ 𝐴
∖ 𝐵)))) |
15 | 13, 14 | mpan2 687 |
. . 3
⊢ (𝜑 → (𝐺‘∅) ⊆ (𝐺‘(card‘(∪ 𝐴
∖ 𝐵)))) |
16 | 9, 15 | eqsstrrd 3956 |
. 2
⊢ (𝜑 → 𝐵 ⊆ (𝐺‘(card‘(∪ 𝐴
∖ 𝐵)))) |
17 | | simprr 769 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐴 ∧ (𝐺‘(card‘(∪ 𝐴
∖ 𝐵))) ⊆ 𝑦)) → (𝐺‘(card‘(∪ 𝐴
∖ 𝐵))) ⊆ 𝑦) |
18 | | ssun1 4102 |
. . . . . . . 8
⊢ 𝑦 ⊆ (𝑦 ∪ 𝐵) |
19 | | undif1 4406 |
. . . . . . . 8
⊢ ((𝑦 ∖ 𝐵) ∪ 𝐵) = (𝑦 ∪ 𝐵) |
20 | 18, 19 | sseqtrri 3954 |
. . . . . . 7
⊢ 𝑦 ⊆ ((𝑦 ∖ 𝐵) ∪ 𝐵) |
21 | | simpl 482 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ ((𝑦 ∈ 𝐴 ∧ (𝐺‘(card‘(∪ 𝐴
∖ 𝐵))) ⊆ 𝑦) ∧ 𝑎 ∈ (𝑦 ∖ 𝐵))) → 𝜑) |
22 | | f1ocnv 6712 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐹:(card‘(∪ 𝐴
∖ 𝐵))–1-1-onto→(∪ 𝐴 ∖ 𝐵) → ◡𝐹:(∪ 𝐴 ∖ 𝐵)–1-1-onto→(card‘(∪
𝐴 ∖ 𝐵))) |
23 | | f1of 6700 |
. . . . . . . . . . . . . . . . 17
⊢ (◡𝐹:(∪ 𝐴 ∖ 𝐵)–1-1-onto→(card‘(∪
𝐴 ∖ 𝐵)) → ◡𝐹:(∪ 𝐴 ∖ 𝐵)⟶(card‘(∪ 𝐴
∖ 𝐵))) |
24 | 3, 22, 23 | 3syl 18 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → ◡𝐹:(∪ 𝐴 ∖ 𝐵)⟶(card‘(∪ 𝐴
∖ 𝐵))) |
25 | 24 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ ((𝑦 ∈ 𝐴 ∧ (𝐺‘(card‘(∪ 𝐴
∖ 𝐵))) ⊆ 𝑦) ∧ 𝑎 ∈ (𝑦 ∖ 𝐵))) → ◡𝐹:(∪ 𝐴 ∖ 𝐵)⟶(card‘(∪ 𝐴
∖ 𝐵))) |
26 | | eldifi 4057 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑎 ∈ (𝑦 ∖ 𝐵) → 𝑎 ∈ 𝑦) |
27 | 26 | ad2antll 725 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ ((𝑦 ∈ 𝐴 ∧ (𝐺‘(card‘(∪ 𝐴
∖ 𝐵))) ⊆ 𝑦) ∧ 𝑎 ∈ (𝑦 ∖ 𝐵))) → 𝑎 ∈ 𝑦) |
28 | | simprll 775 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ ((𝑦 ∈ 𝐴 ∧ (𝐺‘(card‘(∪ 𝐴
∖ 𝐵))) ⊆ 𝑦) ∧ 𝑎 ∈ (𝑦 ∖ 𝐵))) → 𝑦 ∈ 𝐴) |
29 | | elunii 4841 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑎 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴) → 𝑎 ∈ ∪ 𝐴) |
30 | 27, 28, 29 | syl2anc 583 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ ((𝑦 ∈ 𝐴 ∧ (𝐺‘(card‘(∪ 𝐴
∖ 𝐵))) ⊆ 𝑦) ∧ 𝑎 ∈ (𝑦 ∖ 𝐵))) → 𝑎 ∈ ∪ 𝐴) |
31 | | eldifn 4058 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑎 ∈ (𝑦 ∖ 𝐵) → ¬ 𝑎 ∈ 𝐵) |
32 | 31 | ad2antll 725 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ ((𝑦 ∈ 𝐴 ∧ (𝐺‘(card‘(∪ 𝐴
∖ 𝐵))) ⊆ 𝑦) ∧ 𝑎 ∈ (𝑦 ∖ 𝐵))) → ¬ 𝑎 ∈ 𝐵) |
33 | 30, 32 | eldifd 3894 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ ((𝑦 ∈ 𝐴 ∧ (𝐺‘(card‘(∪ 𝐴
∖ 𝐵))) ⊆ 𝑦) ∧ 𝑎 ∈ (𝑦 ∖ 𝐵))) → 𝑎 ∈ (∪ 𝐴 ∖ 𝐵)) |
34 | 25, 33 | ffvelrnd 6944 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ ((𝑦 ∈ 𝐴 ∧ (𝐺‘(card‘(∪ 𝐴
∖ 𝐵))) ⊆ 𝑦) ∧ 𝑎 ∈ (𝑦 ∖ 𝐵))) → (◡𝐹‘𝑎) ∈ (card‘(∪ 𝐴
∖ 𝐵))) |
35 | | onelon 6276 |
. . . . . . . . . . . . . 14
⊢
(((card‘(∪ 𝐴 ∖ 𝐵)) ∈ On ∧ (◡𝐹‘𝑎) ∈ (card‘(∪ 𝐴
∖ 𝐵))) → (◡𝐹‘𝑎) ∈ On) |
36 | 11, 34, 35 | sylancr 586 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ ((𝑦 ∈ 𝐴 ∧ (𝐺‘(card‘(∪ 𝐴
∖ 𝐵))) ⊆ 𝑦) ∧ 𝑎 ∈ (𝑦 ∖ 𝐵))) → (◡𝐹‘𝑎) ∈ On) |
37 | | suceloni 7635 |
. . . . . . . . . . . . 13
⊢ ((◡𝐹‘𝑎) ∈ On → suc (◡𝐹‘𝑎) ∈ On) |
38 | 36, 37 | syl 17 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ ((𝑦 ∈ 𝐴 ∧ (𝐺‘(card‘(∪ 𝐴
∖ 𝐵))) ⊆ 𝑦) ∧ 𝑎 ∈ (𝑦 ∖ 𝐵))) → suc (◡𝐹‘𝑎) ∈ On) |
39 | 11 | a1i 11 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ ((𝑦 ∈ 𝐴 ∧ (𝐺‘(card‘(∪ 𝐴
∖ 𝐵))) ⊆ 𝑦) ∧ 𝑎 ∈ (𝑦 ∖ 𝐵))) → (card‘(∪ 𝐴
∖ 𝐵)) ∈
On) |
40 | 11 | onordi 6356 |
. . . . . . . . . . . . 13
⊢ Ord
(card‘(∪ 𝐴 ∖ 𝐵)) |
41 | | ordsucss 7640 |
. . . . . . . . . . . . 13
⊢ (Ord
(card‘(∪ 𝐴 ∖ 𝐵)) → ((◡𝐹‘𝑎) ∈ (card‘(∪ 𝐴
∖ 𝐵)) → suc
(◡𝐹‘𝑎) ⊆ (card‘(∪ 𝐴
∖ 𝐵)))) |
42 | 40, 34, 41 | mpsyl 68 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ ((𝑦 ∈ 𝐴 ∧ (𝐺‘(card‘(∪ 𝐴
∖ 𝐵))) ⊆ 𝑦) ∧ 𝑎 ∈ (𝑦 ∖ 𝐵))) → suc (◡𝐹‘𝑎) ⊆ (card‘(∪ 𝐴
∖ 𝐵))) |
43 | 3, 4, 5, 6 | ttukeylem5 10200 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (suc (◡𝐹‘𝑎) ∈ On ∧ (card‘(∪ 𝐴
∖ 𝐵)) ∈ On ∧
suc (◡𝐹‘𝑎) ⊆ (card‘(∪ 𝐴
∖ 𝐵)))) → (𝐺‘suc (◡𝐹‘𝑎)) ⊆ (𝐺‘(card‘(∪ 𝐴
∖ 𝐵)))) |
44 | 21, 38, 39, 42, 43 | syl13anc 1370 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ ((𝑦 ∈ 𝐴 ∧ (𝐺‘(card‘(∪ 𝐴
∖ 𝐵))) ⊆ 𝑦) ∧ 𝑎 ∈ (𝑦 ∖ 𝐵))) → (𝐺‘suc (◡𝐹‘𝑎)) ⊆ (𝐺‘(card‘(∪ 𝐴
∖ 𝐵)))) |
45 | | ssun2 4103 |
. . . . . . . . . . . . 13
⊢
if(((𝐺‘∪ suc (◡𝐹‘𝑎)) ∪ {(𝐹‘∪ suc
(◡𝐹‘𝑎))}) ∈ 𝐴, {(𝐹‘∪ suc
(◡𝐹‘𝑎))}, ∅) ⊆ ((𝐺‘∪ suc
(◡𝐹‘𝑎)) ∪ if(((𝐺‘∪ suc
(◡𝐹‘𝑎)) ∪ {(𝐹‘∪ suc
(◡𝐹‘𝑎))}) ∈ 𝐴, {(𝐹‘∪ suc
(◡𝐹‘𝑎))}, ∅)) |
46 | | eloni 6261 |
. . . . . . . . . . . . . . . . . 18
⊢ ((◡𝐹‘𝑎) ∈ On → Ord (◡𝐹‘𝑎)) |
47 | | ordunisuc 7654 |
. . . . . . . . . . . . . . . . . 18
⊢ (Ord
(◡𝐹‘𝑎) → ∪ suc
(◡𝐹‘𝑎) = (◡𝐹‘𝑎)) |
48 | 36, 46, 47 | 3syl 18 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ ((𝑦 ∈ 𝐴 ∧ (𝐺‘(card‘(∪ 𝐴
∖ 𝐵))) ⊆ 𝑦) ∧ 𝑎 ∈ (𝑦 ∖ 𝐵))) → ∪ suc
(◡𝐹‘𝑎) = (◡𝐹‘𝑎)) |
49 | 48 | fveq2d 6760 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ ((𝑦 ∈ 𝐴 ∧ (𝐺‘(card‘(∪ 𝐴
∖ 𝐵))) ⊆ 𝑦) ∧ 𝑎 ∈ (𝑦 ∖ 𝐵))) → (𝐹‘∪ suc
(◡𝐹‘𝑎)) = (𝐹‘(◡𝐹‘𝑎))) |
50 | 3 | adantr 480 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ ((𝑦 ∈ 𝐴 ∧ (𝐺‘(card‘(∪ 𝐴
∖ 𝐵))) ⊆ 𝑦) ∧ 𝑎 ∈ (𝑦 ∖ 𝐵))) → 𝐹:(card‘(∪
𝐴 ∖ 𝐵))–1-1-onto→(∪ 𝐴 ∖ 𝐵)) |
51 | | f1ocnvfv2 7130 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐹:(card‘(∪ 𝐴
∖ 𝐵))–1-1-onto→(∪ 𝐴 ∖ 𝐵) ∧ 𝑎 ∈ (∪ 𝐴 ∖ 𝐵)) → (𝐹‘(◡𝐹‘𝑎)) = 𝑎) |
52 | 50, 33, 51 | syl2anc 583 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ ((𝑦 ∈ 𝐴 ∧ (𝐺‘(card‘(∪ 𝐴
∖ 𝐵))) ⊆ 𝑦) ∧ 𝑎 ∈ (𝑦 ∖ 𝐵))) → (𝐹‘(◡𝐹‘𝑎)) = 𝑎) |
53 | 49, 52 | eqtr2d 2779 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ ((𝑦 ∈ 𝐴 ∧ (𝐺‘(card‘(∪ 𝐴
∖ 𝐵))) ⊆ 𝑦) ∧ 𝑎 ∈ (𝑦 ∖ 𝐵))) → 𝑎 = (𝐹‘∪ suc
(◡𝐹‘𝑎))) |
54 | | velsn 4574 |
. . . . . . . . . . . . . . 15
⊢ (𝑎 ∈ {(𝐹‘∪ suc
(◡𝐹‘𝑎))} ↔ 𝑎 = (𝐹‘∪ suc
(◡𝐹‘𝑎))) |
55 | 53, 54 | sylibr 233 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ ((𝑦 ∈ 𝐴 ∧ (𝐺‘(card‘(∪ 𝐴
∖ 𝐵))) ⊆ 𝑦) ∧ 𝑎 ∈ (𝑦 ∖ 𝐵))) → 𝑎 ∈ {(𝐹‘∪ suc
(◡𝐹‘𝑎))}) |
56 | 48 | fveq2d 6760 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ ((𝑦 ∈ 𝐴 ∧ (𝐺‘(card‘(∪ 𝐴
∖ 𝐵))) ⊆ 𝑦) ∧ 𝑎 ∈ (𝑦 ∖ 𝐵))) → (𝐺‘∪ suc
(◡𝐹‘𝑎)) = (𝐺‘(◡𝐹‘𝑎))) |
57 | | ordelss 6267 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((Ord
(card‘(∪ 𝐴 ∖ 𝐵)) ∧ (◡𝐹‘𝑎) ∈ (card‘(∪ 𝐴
∖ 𝐵))) → (◡𝐹‘𝑎) ⊆ (card‘(∪ 𝐴
∖ 𝐵))) |
58 | 40, 34, 57 | sylancr 586 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ ((𝑦 ∈ 𝐴 ∧ (𝐺‘(card‘(∪ 𝐴
∖ 𝐵))) ⊆ 𝑦) ∧ 𝑎 ∈ (𝑦 ∖ 𝐵))) → (◡𝐹‘𝑎) ⊆ (card‘(∪ 𝐴
∖ 𝐵))) |
59 | 3, 4, 5, 6 | ttukeylem5 10200 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ ((◡𝐹‘𝑎) ∈ On ∧ (card‘(∪ 𝐴
∖ 𝐵)) ∈ On ∧
(◡𝐹‘𝑎) ⊆ (card‘(∪ 𝐴
∖ 𝐵)))) → (𝐺‘(◡𝐹‘𝑎)) ⊆ (𝐺‘(card‘(∪ 𝐴
∖ 𝐵)))) |
60 | 21, 36, 39, 58, 59 | syl13anc 1370 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ ((𝑦 ∈ 𝐴 ∧ (𝐺‘(card‘(∪ 𝐴
∖ 𝐵))) ⊆ 𝑦) ∧ 𝑎 ∈ (𝑦 ∖ 𝐵))) → (𝐺‘(◡𝐹‘𝑎)) ⊆ (𝐺‘(card‘(∪ 𝐴
∖ 𝐵)))) |
61 | 56, 60 | eqsstrd 3955 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ ((𝑦 ∈ 𝐴 ∧ (𝐺‘(card‘(∪ 𝐴
∖ 𝐵))) ⊆ 𝑦) ∧ 𝑎 ∈ (𝑦 ∖ 𝐵))) → (𝐺‘∪ suc
(◡𝐹‘𝑎)) ⊆ (𝐺‘(card‘(∪ 𝐴
∖ 𝐵)))) |
62 | | simprlr 776 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ ((𝑦 ∈ 𝐴 ∧ (𝐺‘(card‘(∪ 𝐴
∖ 𝐵))) ⊆ 𝑦) ∧ 𝑎 ∈ (𝑦 ∖ 𝐵))) → (𝐺‘(card‘(∪ 𝐴
∖ 𝐵))) ⊆ 𝑦) |
63 | 61, 62 | sstrd 3927 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ ((𝑦 ∈ 𝐴 ∧ (𝐺‘(card‘(∪ 𝐴
∖ 𝐵))) ⊆ 𝑦) ∧ 𝑎 ∈ (𝑦 ∖ 𝐵))) → (𝐺‘∪ suc
(◡𝐹‘𝑎)) ⊆ 𝑦) |
64 | 53, 27 | eqeltrrd 2840 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ ((𝑦 ∈ 𝐴 ∧ (𝐺‘(card‘(∪ 𝐴
∖ 𝐵))) ⊆ 𝑦) ∧ 𝑎 ∈ (𝑦 ∖ 𝐵))) → (𝐹‘∪ suc
(◡𝐹‘𝑎)) ∈ 𝑦) |
65 | 64 | snssd 4739 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ ((𝑦 ∈ 𝐴 ∧ (𝐺‘(card‘(∪ 𝐴
∖ 𝐵))) ⊆ 𝑦) ∧ 𝑎 ∈ (𝑦 ∖ 𝐵))) → {(𝐹‘∪ suc
(◡𝐹‘𝑎))} ⊆ 𝑦) |
66 | 63, 65 | unssd 4116 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ ((𝑦 ∈ 𝐴 ∧ (𝐺‘(card‘(∪ 𝐴
∖ 𝐵))) ⊆ 𝑦) ∧ 𝑎 ∈ (𝑦 ∖ 𝐵))) → ((𝐺‘∪ suc
(◡𝐹‘𝑎)) ∪ {(𝐹‘∪ suc
(◡𝐹‘𝑎))}) ⊆ 𝑦) |
67 | 3, 4, 5 | ttukeylem2 10197 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐴 ∧ ((𝐺‘∪ suc
(◡𝐹‘𝑎)) ∪ {(𝐹‘∪ suc
(◡𝐹‘𝑎))}) ⊆ 𝑦)) → ((𝐺‘∪ suc
(◡𝐹‘𝑎)) ∪ {(𝐹‘∪ suc
(◡𝐹‘𝑎))}) ∈ 𝐴) |
68 | 21, 28, 66, 67 | syl12anc 833 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ ((𝑦 ∈ 𝐴 ∧ (𝐺‘(card‘(∪ 𝐴
∖ 𝐵))) ⊆ 𝑦) ∧ 𝑎 ∈ (𝑦 ∖ 𝐵))) → ((𝐺‘∪ suc
(◡𝐹‘𝑎)) ∪ {(𝐹‘∪ suc
(◡𝐹‘𝑎))}) ∈ 𝐴) |
69 | 68 | iftrued 4464 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ ((𝑦 ∈ 𝐴 ∧ (𝐺‘(card‘(∪ 𝐴
∖ 𝐵))) ⊆ 𝑦) ∧ 𝑎 ∈ (𝑦 ∖ 𝐵))) → if(((𝐺‘∪ suc
(◡𝐹‘𝑎)) ∪ {(𝐹‘∪ suc
(◡𝐹‘𝑎))}) ∈ 𝐴, {(𝐹‘∪ suc
(◡𝐹‘𝑎))}, ∅) = {(𝐹‘∪ suc
(◡𝐹‘𝑎))}) |
70 | 55, 69 | eleqtrrd 2842 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ ((𝑦 ∈ 𝐴 ∧ (𝐺‘(card‘(∪ 𝐴
∖ 𝐵))) ⊆ 𝑦) ∧ 𝑎 ∈ (𝑦 ∖ 𝐵))) → 𝑎 ∈ if(((𝐺‘∪ suc
(◡𝐹‘𝑎)) ∪ {(𝐹‘∪ suc
(◡𝐹‘𝑎))}) ∈ 𝐴, {(𝐹‘∪ suc
(◡𝐹‘𝑎))}, ∅)) |
71 | 45, 70 | sselid 3915 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ ((𝑦 ∈ 𝐴 ∧ (𝐺‘(card‘(∪ 𝐴
∖ 𝐵))) ⊆ 𝑦) ∧ 𝑎 ∈ (𝑦 ∖ 𝐵))) → 𝑎 ∈ ((𝐺‘∪ suc
(◡𝐹‘𝑎)) ∪ if(((𝐺‘∪ suc
(◡𝐹‘𝑎)) ∪ {(𝐹‘∪ suc
(◡𝐹‘𝑎))}) ∈ 𝐴, {(𝐹‘∪ suc
(◡𝐹‘𝑎))}, ∅))) |
72 | 3, 4, 5, 6 | ttukeylem3 10198 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ suc (◡𝐹‘𝑎) ∈ On) → (𝐺‘suc (◡𝐹‘𝑎)) = if(suc (◡𝐹‘𝑎) = ∪ suc (◡𝐹‘𝑎), if(suc (◡𝐹‘𝑎) = ∅, 𝐵, ∪ (𝐺 “ suc (◡𝐹‘𝑎))), ((𝐺‘∪ suc
(◡𝐹‘𝑎)) ∪ if(((𝐺‘∪ suc
(◡𝐹‘𝑎)) ∪ {(𝐹‘∪ suc
(◡𝐹‘𝑎))}) ∈ 𝐴, {(𝐹‘∪ suc
(◡𝐹‘𝑎))}, ∅)))) |
73 | 38, 72 | syldan 590 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ ((𝑦 ∈ 𝐴 ∧ (𝐺‘(card‘(∪ 𝐴
∖ 𝐵))) ⊆ 𝑦) ∧ 𝑎 ∈ (𝑦 ∖ 𝐵))) → (𝐺‘suc (◡𝐹‘𝑎)) = if(suc (◡𝐹‘𝑎) = ∪ suc (◡𝐹‘𝑎), if(suc (◡𝐹‘𝑎) = ∅, 𝐵, ∪ (𝐺 “ suc (◡𝐹‘𝑎))), ((𝐺‘∪ suc
(◡𝐹‘𝑎)) ∪ if(((𝐺‘∪ suc
(◡𝐹‘𝑎)) ∪ {(𝐹‘∪ suc
(◡𝐹‘𝑎))}) ∈ 𝐴, {(𝐹‘∪ suc
(◡𝐹‘𝑎))}, ∅)))) |
74 | | sucidg 6329 |
. . . . . . . . . . . . . . . . . 18
⊢ ((◡𝐹‘𝑎) ∈ (card‘(∪ 𝐴
∖ 𝐵)) → (◡𝐹‘𝑎) ∈ suc (◡𝐹‘𝑎)) |
75 | 34, 74 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ ((𝑦 ∈ 𝐴 ∧ (𝐺‘(card‘(∪ 𝐴
∖ 𝐵))) ⊆ 𝑦) ∧ 𝑎 ∈ (𝑦 ∖ 𝐵))) → (◡𝐹‘𝑎) ∈ suc (◡𝐹‘𝑎)) |
76 | | ordirr 6269 |
. . . . . . . . . . . . . . . . . 18
⊢ (Ord
(◡𝐹‘𝑎) → ¬ (◡𝐹‘𝑎) ∈ (◡𝐹‘𝑎)) |
77 | 36, 46, 76 | 3syl 18 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ ((𝑦 ∈ 𝐴 ∧ (𝐺‘(card‘(∪ 𝐴
∖ 𝐵))) ⊆ 𝑦) ∧ 𝑎 ∈ (𝑦 ∖ 𝐵))) → ¬ (◡𝐹‘𝑎) ∈ (◡𝐹‘𝑎)) |
78 | | nelne1 3040 |
. . . . . . . . . . . . . . . . 17
⊢ (((◡𝐹‘𝑎) ∈ suc (◡𝐹‘𝑎) ∧ ¬ (◡𝐹‘𝑎) ∈ (◡𝐹‘𝑎)) → suc (◡𝐹‘𝑎) ≠ (◡𝐹‘𝑎)) |
79 | 75, 77, 78 | syl2anc 583 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ ((𝑦 ∈ 𝐴 ∧ (𝐺‘(card‘(∪ 𝐴
∖ 𝐵))) ⊆ 𝑦) ∧ 𝑎 ∈ (𝑦 ∖ 𝐵))) → suc (◡𝐹‘𝑎) ≠ (◡𝐹‘𝑎)) |
80 | 79, 48 | neeqtrrd 3017 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ ((𝑦 ∈ 𝐴 ∧ (𝐺‘(card‘(∪ 𝐴
∖ 𝐵))) ⊆ 𝑦) ∧ 𝑎 ∈ (𝑦 ∖ 𝐵))) → suc (◡𝐹‘𝑎) ≠ ∪ suc
(◡𝐹‘𝑎)) |
81 | 80 | neneqd 2947 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ ((𝑦 ∈ 𝐴 ∧ (𝐺‘(card‘(∪ 𝐴
∖ 𝐵))) ⊆ 𝑦) ∧ 𝑎 ∈ (𝑦 ∖ 𝐵))) → ¬ suc (◡𝐹‘𝑎) = ∪ suc (◡𝐹‘𝑎)) |
82 | 81 | iffalsed 4467 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ ((𝑦 ∈ 𝐴 ∧ (𝐺‘(card‘(∪ 𝐴
∖ 𝐵))) ⊆ 𝑦) ∧ 𝑎 ∈ (𝑦 ∖ 𝐵))) → if(suc (◡𝐹‘𝑎) = ∪ suc (◡𝐹‘𝑎), if(suc (◡𝐹‘𝑎) = ∅, 𝐵, ∪ (𝐺 “ suc (◡𝐹‘𝑎))), ((𝐺‘∪ suc
(◡𝐹‘𝑎)) ∪ if(((𝐺‘∪ suc
(◡𝐹‘𝑎)) ∪ {(𝐹‘∪ suc
(◡𝐹‘𝑎))}) ∈ 𝐴, {(𝐹‘∪ suc
(◡𝐹‘𝑎))}, ∅))) = ((𝐺‘∪ suc
(◡𝐹‘𝑎)) ∪ if(((𝐺‘∪ suc
(◡𝐹‘𝑎)) ∪ {(𝐹‘∪ suc
(◡𝐹‘𝑎))}) ∈ 𝐴, {(𝐹‘∪ suc
(◡𝐹‘𝑎))}, ∅))) |
83 | 73, 82 | eqtrd 2778 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ ((𝑦 ∈ 𝐴 ∧ (𝐺‘(card‘(∪ 𝐴
∖ 𝐵))) ⊆ 𝑦) ∧ 𝑎 ∈ (𝑦 ∖ 𝐵))) → (𝐺‘suc (◡𝐹‘𝑎)) = ((𝐺‘∪ suc
(◡𝐹‘𝑎)) ∪ if(((𝐺‘∪ suc
(◡𝐹‘𝑎)) ∪ {(𝐹‘∪ suc
(◡𝐹‘𝑎))}) ∈ 𝐴, {(𝐹‘∪ suc
(◡𝐹‘𝑎))}, ∅))) |
84 | 71, 83 | eleqtrrd 2842 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ ((𝑦 ∈ 𝐴 ∧ (𝐺‘(card‘(∪ 𝐴
∖ 𝐵))) ⊆ 𝑦) ∧ 𝑎 ∈ (𝑦 ∖ 𝐵))) → 𝑎 ∈ (𝐺‘suc (◡𝐹‘𝑎))) |
85 | 44, 84 | sseldd 3918 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ((𝑦 ∈ 𝐴 ∧ (𝐺‘(card‘(∪ 𝐴
∖ 𝐵))) ⊆ 𝑦) ∧ 𝑎 ∈ (𝑦 ∖ 𝐵))) → 𝑎 ∈ (𝐺‘(card‘(∪ 𝐴
∖ 𝐵)))) |
86 | 85 | expr 456 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐴 ∧ (𝐺‘(card‘(∪ 𝐴
∖ 𝐵))) ⊆ 𝑦)) → (𝑎 ∈ (𝑦 ∖ 𝐵) → 𝑎 ∈ (𝐺‘(card‘(∪ 𝐴
∖ 𝐵))))) |
87 | 86 | ssrdv 3923 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐴 ∧ (𝐺‘(card‘(∪ 𝐴
∖ 𝐵))) ⊆ 𝑦)) → (𝑦 ∖ 𝐵) ⊆ (𝐺‘(card‘(∪ 𝐴
∖ 𝐵)))) |
88 | 16 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐴 ∧ (𝐺‘(card‘(∪ 𝐴
∖ 𝐵))) ⊆ 𝑦)) → 𝐵 ⊆ (𝐺‘(card‘(∪ 𝐴
∖ 𝐵)))) |
89 | 87, 88 | unssd 4116 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐴 ∧ (𝐺‘(card‘(∪ 𝐴
∖ 𝐵))) ⊆ 𝑦)) → ((𝑦 ∖ 𝐵) ∪ 𝐵) ⊆ (𝐺‘(card‘(∪ 𝐴
∖ 𝐵)))) |
90 | 20, 89 | sstrid 3928 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐴 ∧ (𝐺‘(card‘(∪ 𝐴
∖ 𝐵))) ⊆ 𝑦)) → 𝑦 ⊆ (𝐺‘(card‘(∪ 𝐴
∖ 𝐵)))) |
91 | 17, 90 | eqssd 3934 |
. . . . 5
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐴 ∧ (𝐺‘(card‘(∪ 𝐴
∖ 𝐵))) ⊆ 𝑦)) → (𝐺‘(card‘(∪ 𝐴
∖ 𝐵))) = 𝑦) |
92 | 91 | expr 456 |
. . . 4
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → ((𝐺‘(card‘(∪ 𝐴
∖ 𝐵))) ⊆ 𝑦 → (𝐺‘(card‘(∪ 𝐴
∖ 𝐵))) = 𝑦)) |
93 | | npss 4041 |
. . . 4
⊢ (¬
(𝐺‘(card‘(∪ 𝐴
∖ 𝐵))) ⊊ 𝑦 ↔ ((𝐺‘(card‘(∪ 𝐴
∖ 𝐵))) ⊆ 𝑦 → (𝐺‘(card‘(∪ 𝐴
∖ 𝐵))) = 𝑦)) |
94 | 92, 93 | sylibr 233 |
. . 3
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → ¬ (𝐺‘(card‘(∪ 𝐴
∖ 𝐵))) ⊊ 𝑦) |
95 | 94 | ralrimiva 3107 |
. 2
⊢ (𝜑 → ∀𝑦 ∈ 𝐴 ¬ (𝐺‘(card‘(∪ 𝐴
∖ 𝐵))) ⊊ 𝑦) |
96 | | sseq2 3943 |
. . . 4
⊢ (𝑥 = (𝐺‘(card‘(∪ 𝐴
∖ 𝐵))) → (𝐵 ⊆ 𝑥 ↔ 𝐵 ⊆ (𝐺‘(card‘(∪ 𝐴
∖ 𝐵))))) |
97 | | psseq1 4018 |
. . . . . 6
⊢ (𝑥 = (𝐺‘(card‘(∪ 𝐴
∖ 𝐵))) → (𝑥 ⊊ 𝑦 ↔ (𝐺‘(card‘(∪ 𝐴
∖ 𝐵))) ⊊ 𝑦)) |
98 | 97 | notbid 317 |
. . . . 5
⊢ (𝑥 = (𝐺‘(card‘(∪ 𝐴
∖ 𝐵))) → (¬
𝑥 ⊊ 𝑦 ↔ ¬ (𝐺‘(card‘(∪ 𝐴
∖ 𝐵))) ⊊ 𝑦)) |
99 | 98 | ralbidv 3120 |
. . . 4
⊢ (𝑥 = (𝐺‘(card‘(∪ 𝐴
∖ 𝐵))) →
(∀𝑦 ∈ 𝐴 ¬ 𝑥 ⊊ 𝑦 ↔ ∀𝑦 ∈ 𝐴 ¬ (𝐺‘(card‘(∪ 𝐴
∖ 𝐵))) ⊊ 𝑦)) |
100 | 96, 99 | anbi12d 630 |
. . 3
⊢ (𝑥 = (𝐺‘(card‘(∪ 𝐴
∖ 𝐵))) → ((𝐵 ⊆ 𝑥 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑥 ⊊ 𝑦) ↔ (𝐵 ⊆ (𝐺‘(card‘(∪ 𝐴
∖ 𝐵))) ∧
∀𝑦 ∈ 𝐴 ¬ (𝐺‘(card‘(∪ 𝐴
∖ 𝐵))) ⊊ 𝑦))) |
101 | 100 | rspcev 3552 |
. 2
⊢ (((𝐺‘(card‘(∪ 𝐴
∖ 𝐵))) ∈ 𝐴 ∧ (𝐵 ⊆ (𝐺‘(card‘(∪ 𝐴
∖ 𝐵))) ∧
∀𝑦 ∈ 𝐴 ¬ (𝐺‘(card‘(∪ 𝐴
∖ 𝐵))) ⊊ 𝑦)) → ∃𝑥 ∈ 𝐴 (𝐵 ⊆ 𝑥 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑥 ⊊ 𝑦)) |
102 | 8, 16, 95, 101 | syl12anc 833 |
1
⊢ (𝜑 → ∃𝑥 ∈ 𝐴 (𝐵 ⊆ 𝑥 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑥 ⊊ 𝑦)) |