MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ttukeylem7 Structured version   Visualization version   GIF version

Theorem ttukeylem7 10584
Description: Lemma for ttukey 10587. (Contributed by Mario Carneiro, 15-May-2015.)
Hypotheses
Ref Expression
ttukeylem.1 (𝜑𝐹:(card‘( 𝐴𝐵))–1-1-onto→( 𝐴𝐵))
ttukeylem.2 (𝜑𝐵𝐴)
ttukeylem.3 (𝜑 → ∀𝑥(𝑥𝐴 ↔ (𝒫 𝑥 ∩ Fin) ⊆ 𝐴))
ttukeylem.4 𝐺 = recs((𝑧 ∈ V ↦ if(dom 𝑧 = dom 𝑧, if(dom 𝑧 = ∅, 𝐵, ran 𝑧), ((𝑧 dom 𝑧) ∪ if(((𝑧 dom 𝑧) ∪ {(𝐹 dom 𝑧)}) ∈ 𝐴, {(𝐹 dom 𝑧)}, ∅)))))
Assertion
Ref Expression
ttukeylem7 (𝜑 → ∃𝑥𝐴 (𝐵𝑥 ∧ ∀𝑦𝐴 ¬ 𝑥𝑦))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐺   𝜑,𝑦,𝑧   𝑥,𝐴,𝑦,𝑧   𝑥,𝐵,𝑦,𝑧   𝑥,𝐹,𝑧
Allowed substitution hints:   𝜑(𝑥)   𝐹(𝑦)

Proof of Theorem ttukeylem7
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 fvex 6933 . . . 4 (card‘( 𝐴𝐵)) ∈ V
21sucid 6477 . . 3 (card‘( 𝐴𝐵)) ∈ suc (card‘( 𝐴𝐵))
3 ttukeylem.1 . . . 4 (𝜑𝐹:(card‘( 𝐴𝐵))–1-1-onto→( 𝐴𝐵))
4 ttukeylem.2 . . . 4 (𝜑𝐵𝐴)
5 ttukeylem.3 . . . 4 (𝜑 → ∀𝑥(𝑥𝐴 ↔ (𝒫 𝑥 ∩ Fin) ⊆ 𝐴))
6 ttukeylem.4 . . . 4 𝐺 = recs((𝑧 ∈ V ↦ if(dom 𝑧 = dom 𝑧, if(dom 𝑧 = ∅, 𝐵, ran 𝑧), ((𝑧 dom 𝑧) ∪ if(((𝑧 dom 𝑧) ∪ {(𝐹 dom 𝑧)}) ∈ 𝐴, {(𝐹 dom 𝑧)}, ∅)))))
73, 4, 5, 6ttukeylem6 10583 . . 3 ((𝜑 ∧ (card‘( 𝐴𝐵)) ∈ suc (card‘( 𝐴𝐵))) → (𝐺‘(card‘( 𝐴𝐵))) ∈ 𝐴)
82, 7mpan2 690 . 2 (𝜑 → (𝐺‘(card‘( 𝐴𝐵))) ∈ 𝐴)
93, 4, 5, 6ttukeylem4 10581 . . 3 (𝜑 → (𝐺‘∅) = 𝐵)
10 0elon 6449 . . . . 5 ∅ ∈ On
11 cardon 10013 . . . . 5 (card‘( 𝐴𝐵)) ∈ On
12 0ss 4423 . . . . 5 ∅ ⊆ (card‘( 𝐴𝐵))
1310, 11, 123pm3.2i 1339 . . . 4 (∅ ∈ On ∧ (card‘( 𝐴𝐵)) ∈ On ∧ ∅ ⊆ (card‘( 𝐴𝐵)))
143, 4, 5, 6ttukeylem5 10582 . . . 4 ((𝜑 ∧ (∅ ∈ On ∧ (card‘( 𝐴𝐵)) ∈ On ∧ ∅ ⊆ (card‘( 𝐴𝐵)))) → (𝐺‘∅) ⊆ (𝐺‘(card‘( 𝐴𝐵))))
1513, 14mpan2 690 . . 3 (𝜑 → (𝐺‘∅) ⊆ (𝐺‘(card‘( 𝐴𝐵))))
169, 15eqsstrrd 4048 . 2 (𝜑𝐵 ⊆ (𝐺‘(card‘( 𝐴𝐵))))
17 simprr 772 . . . . . 6 ((𝜑 ∧ (𝑦𝐴 ∧ (𝐺‘(card‘( 𝐴𝐵))) ⊆ 𝑦)) → (𝐺‘(card‘( 𝐴𝐵))) ⊆ 𝑦)
18 ssun1 4201 . . . . . . . 8 𝑦 ⊆ (𝑦𝐵)
19 undif1 4499 . . . . . . . 8 ((𝑦𝐵) ∪ 𝐵) = (𝑦𝐵)
2018, 19sseqtrri 4046 . . . . . . 7 𝑦 ⊆ ((𝑦𝐵) ∪ 𝐵)
21 simpl 482 . . . . . . . . . . . 12 ((𝜑 ∧ ((𝑦𝐴 ∧ (𝐺‘(card‘( 𝐴𝐵))) ⊆ 𝑦) ∧ 𝑎 ∈ (𝑦𝐵))) → 𝜑)
22 f1ocnv 6874 . . . . . . . . . . . . . . . . 17 (𝐹:(card‘( 𝐴𝐵))–1-1-onto→( 𝐴𝐵) → 𝐹:( 𝐴𝐵)–1-1-onto→(card‘( 𝐴𝐵)))
23 f1of 6862 . . . . . . . . . . . . . . . . 17 (𝐹:( 𝐴𝐵)–1-1-onto→(card‘( 𝐴𝐵)) → 𝐹:( 𝐴𝐵)⟶(card‘( 𝐴𝐵)))
243, 22, 233syl 18 . . . . . . . . . . . . . . . 16 (𝜑𝐹:( 𝐴𝐵)⟶(card‘( 𝐴𝐵)))
2524adantr 480 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ((𝑦𝐴 ∧ (𝐺‘(card‘( 𝐴𝐵))) ⊆ 𝑦) ∧ 𝑎 ∈ (𝑦𝐵))) → 𝐹:( 𝐴𝐵)⟶(card‘( 𝐴𝐵)))
26 eldifi 4154 . . . . . . . . . . . . . . . . . 18 (𝑎 ∈ (𝑦𝐵) → 𝑎𝑦)
2726ad2antll 728 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ ((𝑦𝐴 ∧ (𝐺‘(card‘( 𝐴𝐵))) ⊆ 𝑦) ∧ 𝑎 ∈ (𝑦𝐵))) → 𝑎𝑦)
28 simprll 778 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ ((𝑦𝐴 ∧ (𝐺‘(card‘( 𝐴𝐵))) ⊆ 𝑦) ∧ 𝑎 ∈ (𝑦𝐵))) → 𝑦𝐴)
29 elunii 4936 . . . . . . . . . . . . . . . . 17 ((𝑎𝑦𝑦𝐴) → 𝑎 𝐴)
3027, 28, 29syl2anc 583 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ ((𝑦𝐴 ∧ (𝐺‘(card‘( 𝐴𝐵))) ⊆ 𝑦) ∧ 𝑎 ∈ (𝑦𝐵))) → 𝑎 𝐴)
31 eldifn 4155 . . . . . . . . . . . . . . . . 17 (𝑎 ∈ (𝑦𝐵) → ¬ 𝑎𝐵)
3231ad2antll 728 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ ((𝑦𝐴 ∧ (𝐺‘(card‘( 𝐴𝐵))) ⊆ 𝑦) ∧ 𝑎 ∈ (𝑦𝐵))) → ¬ 𝑎𝐵)
3330, 32eldifd 3987 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ((𝑦𝐴 ∧ (𝐺‘(card‘( 𝐴𝐵))) ⊆ 𝑦) ∧ 𝑎 ∈ (𝑦𝐵))) → 𝑎 ∈ ( 𝐴𝐵))
3425, 33ffvelcdmd 7119 . . . . . . . . . . . . . 14 ((𝜑 ∧ ((𝑦𝐴 ∧ (𝐺‘(card‘( 𝐴𝐵))) ⊆ 𝑦) ∧ 𝑎 ∈ (𝑦𝐵))) → (𝐹𝑎) ∈ (card‘( 𝐴𝐵)))
35 onelon 6420 . . . . . . . . . . . . . 14 (((card‘( 𝐴𝐵)) ∈ On ∧ (𝐹𝑎) ∈ (card‘( 𝐴𝐵))) → (𝐹𝑎) ∈ On)
3611, 34, 35sylancr 586 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝑦𝐴 ∧ (𝐺‘(card‘( 𝐴𝐵))) ⊆ 𝑦) ∧ 𝑎 ∈ (𝑦𝐵))) → (𝐹𝑎) ∈ On)
37 onsuc 7847 . . . . . . . . . . . . 13 ((𝐹𝑎) ∈ On → suc (𝐹𝑎) ∈ On)
3836, 37syl 17 . . . . . . . . . . . 12 ((𝜑 ∧ ((𝑦𝐴 ∧ (𝐺‘(card‘( 𝐴𝐵))) ⊆ 𝑦) ∧ 𝑎 ∈ (𝑦𝐵))) → suc (𝐹𝑎) ∈ On)
3911a1i 11 . . . . . . . . . . . 12 ((𝜑 ∧ ((𝑦𝐴 ∧ (𝐺‘(card‘( 𝐴𝐵))) ⊆ 𝑦) ∧ 𝑎 ∈ (𝑦𝐵))) → (card‘( 𝐴𝐵)) ∈ On)
4011onordi 6506 . . . . . . . . . . . . 13 Ord (card‘( 𝐴𝐵))
41 ordsucss 7854 . . . . . . . . . . . . 13 (Ord (card‘( 𝐴𝐵)) → ((𝐹𝑎) ∈ (card‘( 𝐴𝐵)) → suc (𝐹𝑎) ⊆ (card‘( 𝐴𝐵))))
4240, 34, 41mpsyl 68 . . . . . . . . . . . 12 ((𝜑 ∧ ((𝑦𝐴 ∧ (𝐺‘(card‘( 𝐴𝐵))) ⊆ 𝑦) ∧ 𝑎 ∈ (𝑦𝐵))) → suc (𝐹𝑎) ⊆ (card‘( 𝐴𝐵)))
433, 4, 5, 6ttukeylem5 10582 . . . . . . . . . . . 12 ((𝜑 ∧ (suc (𝐹𝑎) ∈ On ∧ (card‘( 𝐴𝐵)) ∈ On ∧ suc (𝐹𝑎) ⊆ (card‘( 𝐴𝐵)))) → (𝐺‘suc (𝐹𝑎)) ⊆ (𝐺‘(card‘( 𝐴𝐵))))
4421, 38, 39, 42, 43syl13anc 1372 . . . . . . . . . . 11 ((𝜑 ∧ ((𝑦𝐴 ∧ (𝐺‘(card‘( 𝐴𝐵))) ⊆ 𝑦) ∧ 𝑎 ∈ (𝑦𝐵))) → (𝐺‘suc (𝐹𝑎)) ⊆ (𝐺‘(card‘( 𝐴𝐵))))
45 ssun2 4202 . . . . . . . . . . . . 13 if(((𝐺 suc (𝐹𝑎)) ∪ {(𝐹 suc (𝐹𝑎))}) ∈ 𝐴, {(𝐹 suc (𝐹𝑎))}, ∅) ⊆ ((𝐺 suc (𝐹𝑎)) ∪ if(((𝐺 suc (𝐹𝑎)) ∪ {(𝐹 suc (𝐹𝑎))}) ∈ 𝐴, {(𝐹 suc (𝐹𝑎))}, ∅))
46 eloni 6405 . . . . . . . . . . . . . . . . . 18 ((𝐹𝑎) ∈ On → Ord (𝐹𝑎))
47 ordunisuc 7868 . . . . . . . . . . . . . . . . . 18 (Ord (𝐹𝑎) → suc (𝐹𝑎) = (𝐹𝑎))
4836, 46, 473syl 18 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ ((𝑦𝐴 ∧ (𝐺‘(card‘( 𝐴𝐵))) ⊆ 𝑦) ∧ 𝑎 ∈ (𝑦𝐵))) → suc (𝐹𝑎) = (𝐹𝑎))
4948fveq2d 6924 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ ((𝑦𝐴 ∧ (𝐺‘(card‘( 𝐴𝐵))) ⊆ 𝑦) ∧ 𝑎 ∈ (𝑦𝐵))) → (𝐹 suc (𝐹𝑎)) = (𝐹‘(𝐹𝑎)))
503adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ ((𝑦𝐴 ∧ (𝐺‘(card‘( 𝐴𝐵))) ⊆ 𝑦) ∧ 𝑎 ∈ (𝑦𝐵))) → 𝐹:(card‘( 𝐴𝐵))–1-1-onto→( 𝐴𝐵))
51 f1ocnvfv2 7313 . . . . . . . . . . . . . . . . 17 ((𝐹:(card‘( 𝐴𝐵))–1-1-onto→( 𝐴𝐵) ∧ 𝑎 ∈ ( 𝐴𝐵)) → (𝐹‘(𝐹𝑎)) = 𝑎)
5250, 33, 51syl2anc 583 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ ((𝑦𝐴 ∧ (𝐺‘(card‘( 𝐴𝐵))) ⊆ 𝑦) ∧ 𝑎 ∈ (𝑦𝐵))) → (𝐹‘(𝐹𝑎)) = 𝑎)
5349, 52eqtr2d 2781 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ((𝑦𝐴 ∧ (𝐺‘(card‘( 𝐴𝐵))) ⊆ 𝑦) ∧ 𝑎 ∈ (𝑦𝐵))) → 𝑎 = (𝐹 suc (𝐹𝑎)))
54 velsn 4664 . . . . . . . . . . . . . . 15 (𝑎 ∈ {(𝐹 suc (𝐹𝑎))} ↔ 𝑎 = (𝐹 suc (𝐹𝑎)))
5553, 54sylibr 234 . . . . . . . . . . . . . 14 ((𝜑 ∧ ((𝑦𝐴 ∧ (𝐺‘(card‘( 𝐴𝐵))) ⊆ 𝑦) ∧ 𝑎 ∈ (𝑦𝐵))) → 𝑎 ∈ {(𝐹 suc (𝐹𝑎))})
5648fveq2d 6924 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ ((𝑦𝐴 ∧ (𝐺‘(card‘( 𝐴𝐵))) ⊆ 𝑦) ∧ 𝑎 ∈ (𝑦𝐵))) → (𝐺 suc (𝐹𝑎)) = (𝐺‘(𝐹𝑎)))
57 ordelss 6411 . . . . . . . . . . . . . . . . . . . . 21 ((Ord (card‘( 𝐴𝐵)) ∧ (𝐹𝑎) ∈ (card‘( 𝐴𝐵))) → (𝐹𝑎) ⊆ (card‘( 𝐴𝐵)))
5840, 34, 57sylancr 586 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ ((𝑦𝐴 ∧ (𝐺‘(card‘( 𝐴𝐵))) ⊆ 𝑦) ∧ 𝑎 ∈ (𝑦𝐵))) → (𝐹𝑎) ⊆ (card‘( 𝐴𝐵)))
593, 4, 5, 6ttukeylem5 10582 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ ((𝐹𝑎) ∈ On ∧ (card‘( 𝐴𝐵)) ∈ On ∧ (𝐹𝑎) ⊆ (card‘( 𝐴𝐵)))) → (𝐺‘(𝐹𝑎)) ⊆ (𝐺‘(card‘( 𝐴𝐵))))
6021, 36, 39, 58, 59syl13anc 1372 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ ((𝑦𝐴 ∧ (𝐺‘(card‘( 𝐴𝐵))) ⊆ 𝑦) ∧ 𝑎 ∈ (𝑦𝐵))) → (𝐺‘(𝐹𝑎)) ⊆ (𝐺‘(card‘( 𝐴𝐵))))
6156, 60eqsstrd 4047 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ ((𝑦𝐴 ∧ (𝐺‘(card‘( 𝐴𝐵))) ⊆ 𝑦) ∧ 𝑎 ∈ (𝑦𝐵))) → (𝐺 suc (𝐹𝑎)) ⊆ (𝐺‘(card‘( 𝐴𝐵))))
62 simprlr 779 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ ((𝑦𝐴 ∧ (𝐺‘(card‘( 𝐴𝐵))) ⊆ 𝑦) ∧ 𝑎 ∈ (𝑦𝐵))) → (𝐺‘(card‘( 𝐴𝐵))) ⊆ 𝑦)
6361, 62sstrd 4019 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ ((𝑦𝐴 ∧ (𝐺‘(card‘( 𝐴𝐵))) ⊆ 𝑦) ∧ 𝑎 ∈ (𝑦𝐵))) → (𝐺 suc (𝐹𝑎)) ⊆ 𝑦)
6453, 27eqeltrrd 2845 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ ((𝑦𝐴 ∧ (𝐺‘(card‘( 𝐴𝐵))) ⊆ 𝑦) ∧ 𝑎 ∈ (𝑦𝐵))) → (𝐹 suc (𝐹𝑎)) ∈ 𝑦)
6564snssd 4834 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ ((𝑦𝐴 ∧ (𝐺‘(card‘( 𝐴𝐵))) ⊆ 𝑦) ∧ 𝑎 ∈ (𝑦𝐵))) → {(𝐹 suc (𝐹𝑎))} ⊆ 𝑦)
6663, 65unssd 4215 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ ((𝑦𝐴 ∧ (𝐺‘(card‘( 𝐴𝐵))) ⊆ 𝑦) ∧ 𝑎 ∈ (𝑦𝐵))) → ((𝐺 suc (𝐹𝑎)) ∪ {(𝐹 suc (𝐹𝑎))}) ⊆ 𝑦)
673, 4, 5ttukeylem2 10579 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑦𝐴 ∧ ((𝐺 suc (𝐹𝑎)) ∪ {(𝐹 suc (𝐹𝑎))}) ⊆ 𝑦)) → ((𝐺 suc (𝐹𝑎)) ∪ {(𝐹 suc (𝐹𝑎))}) ∈ 𝐴)
6821, 28, 66, 67syl12anc 836 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ((𝑦𝐴 ∧ (𝐺‘(card‘( 𝐴𝐵))) ⊆ 𝑦) ∧ 𝑎 ∈ (𝑦𝐵))) → ((𝐺 suc (𝐹𝑎)) ∪ {(𝐹 suc (𝐹𝑎))}) ∈ 𝐴)
6968iftrued 4556 . . . . . . . . . . . . . 14 ((𝜑 ∧ ((𝑦𝐴 ∧ (𝐺‘(card‘( 𝐴𝐵))) ⊆ 𝑦) ∧ 𝑎 ∈ (𝑦𝐵))) → if(((𝐺 suc (𝐹𝑎)) ∪ {(𝐹 suc (𝐹𝑎))}) ∈ 𝐴, {(𝐹 suc (𝐹𝑎))}, ∅) = {(𝐹 suc (𝐹𝑎))})
7055, 69eleqtrrd 2847 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝑦𝐴 ∧ (𝐺‘(card‘( 𝐴𝐵))) ⊆ 𝑦) ∧ 𝑎 ∈ (𝑦𝐵))) → 𝑎 ∈ if(((𝐺 suc (𝐹𝑎)) ∪ {(𝐹 suc (𝐹𝑎))}) ∈ 𝐴, {(𝐹 suc (𝐹𝑎))}, ∅))
7145, 70sselid 4006 . . . . . . . . . . . 12 ((𝜑 ∧ ((𝑦𝐴 ∧ (𝐺‘(card‘( 𝐴𝐵))) ⊆ 𝑦) ∧ 𝑎 ∈ (𝑦𝐵))) → 𝑎 ∈ ((𝐺 suc (𝐹𝑎)) ∪ if(((𝐺 suc (𝐹𝑎)) ∪ {(𝐹 suc (𝐹𝑎))}) ∈ 𝐴, {(𝐹 suc (𝐹𝑎))}, ∅)))
723, 4, 5, 6ttukeylem3 10580 . . . . . . . . . . . . . 14 ((𝜑 ∧ suc (𝐹𝑎) ∈ On) → (𝐺‘suc (𝐹𝑎)) = if(suc (𝐹𝑎) = suc (𝐹𝑎), if(suc (𝐹𝑎) = ∅, 𝐵, (𝐺 “ suc (𝐹𝑎))), ((𝐺 suc (𝐹𝑎)) ∪ if(((𝐺 suc (𝐹𝑎)) ∪ {(𝐹 suc (𝐹𝑎))}) ∈ 𝐴, {(𝐹 suc (𝐹𝑎))}, ∅))))
7338, 72syldan 590 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝑦𝐴 ∧ (𝐺‘(card‘( 𝐴𝐵))) ⊆ 𝑦) ∧ 𝑎 ∈ (𝑦𝐵))) → (𝐺‘suc (𝐹𝑎)) = if(suc (𝐹𝑎) = suc (𝐹𝑎), if(suc (𝐹𝑎) = ∅, 𝐵, (𝐺 “ suc (𝐹𝑎))), ((𝐺 suc (𝐹𝑎)) ∪ if(((𝐺 suc (𝐹𝑎)) ∪ {(𝐹 suc (𝐹𝑎))}) ∈ 𝐴, {(𝐹 suc (𝐹𝑎))}, ∅))))
74 sucidg 6476 . . . . . . . . . . . . . . . . . 18 ((𝐹𝑎) ∈ (card‘( 𝐴𝐵)) → (𝐹𝑎) ∈ suc (𝐹𝑎))
7534, 74syl 17 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ ((𝑦𝐴 ∧ (𝐺‘(card‘( 𝐴𝐵))) ⊆ 𝑦) ∧ 𝑎 ∈ (𝑦𝐵))) → (𝐹𝑎) ∈ suc (𝐹𝑎))
76 ordirr 6413 . . . . . . . . . . . . . . . . . 18 (Ord (𝐹𝑎) → ¬ (𝐹𝑎) ∈ (𝐹𝑎))
7736, 46, 763syl 18 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ ((𝑦𝐴 ∧ (𝐺‘(card‘( 𝐴𝐵))) ⊆ 𝑦) ∧ 𝑎 ∈ (𝑦𝐵))) → ¬ (𝐹𝑎) ∈ (𝐹𝑎))
78 nelne1 3045 . . . . . . . . . . . . . . . . 17 (((𝐹𝑎) ∈ suc (𝐹𝑎) ∧ ¬ (𝐹𝑎) ∈ (𝐹𝑎)) → suc (𝐹𝑎) ≠ (𝐹𝑎))
7975, 77, 78syl2anc 583 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ ((𝑦𝐴 ∧ (𝐺‘(card‘( 𝐴𝐵))) ⊆ 𝑦) ∧ 𝑎 ∈ (𝑦𝐵))) → suc (𝐹𝑎) ≠ (𝐹𝑎))
8079, 48neeqtrrd 3021 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ((𝑦𝐴 ∧ (𝐺‘(card‘( 𝐴𝐵))) ⊆ 𝑦) ∧ 𝑎 ∈ (𝑦𝐵))) → suc (𝐹𝑎) ≠ suc (𝐹𝑎))
8180neneqd 2951 . . . . . . . . . . . . . 14 ((𝜑 ∧ ((𝑦𝐴 ∧ (𝐺‘(card‘( 𝐴𝐵))) ⊆ 𝑦) ∧ 𝑎 ∈ (𝑦𝐵))) → ¬ suc (𝐹𝑎) = suc (𝐹𝑎))
8281iffalsed 4559 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝑦𝐴 ∧ (𝐺‘(card‘( 𝐴𝐵))) ⊆ 𝑦) ∧ 𝑎 ∈ (𝑦𝐵))) → if(suc (𝐹𝑎) = suc (𝐹𝑎), if(suc (𝐹𝑎) = ∅, 𝐵, (𝐺 “ suc (𝐹𝑎))), ((𝐺 suc (𝐹𝑎)) ∪ if(((𝐺 suc (𝐹𝑎)) ∪ {(𝐹 suc (𝐹𝑎))}) ∈ 𝐴, {(𝐹 suc (𝐹𝑎))}, ∅))) = ((𝐺 suc (𝐹𝑎)) ∪ if(((𝐺 suc (𝐹𝑎)) ∪ {(𝐹 suc (𝐹𝑎))}) ∈ 𝐴, {(𝐹 suc (𝐹𝑎))}, ∅)))
8373, 82eqtrd 2780 . . . . . . . . . . . 12 ((𝜑 ∧ ((𝑦𝐴 ∧ (𝐺‘(card‘( 𝐴𝐵))) ⊆ 𝑦) ∧ 𝑎 ∈ (𝑦𝐵))) → (𝐺‘suc (𝐹𝑎)) = ((𝐺 suc (𝐹𝑎)) ∪ if(((𝐺 suc (𝐹𝑎)) ∪ {(𝐹 suc (𝐹𝑎))}) ∈ 𝐴, {(𝐹 suc (𝐹𝑎))}, ∅)))
8471, 83eleqtrrd 2847 . . . . . . . . . . 11 ((𝜑 ∧ ((𝑦𝐴 ∧ (𝐺‘(card‘( 𝐴𝐵))) ⊆ 𝑦) ∧ 𝑎 ∈ (𝑦𝐵))) → 𝑎 ∈ (𝐺‘suc (𝐹𝑎)))
8544, 84sseldd 4009 . . . . . . . . . 10 ((𝜑 ∧ ((𝑦𝐴 ∧ (𝐺‘(card‘( 𝐴𝐵))) ⊆ 𝑦) ∧ 𝑎 ∈ (𝑦𝐵))) → 𝑎 ∈ (𝐺‘(card‘( 𝐴𝐵))))
8685expr 456 . . . . . . . . 9 ((𝜑 ∧ (𝑦𝐴 ∧ (𝐺‘(card‘( 𝐴𝐵))) ⊆ 𝑦)) → (𝑎 ∈ (𝑦𝐵) → 𝑎 ∈ (𝐺‘(card‘( 𝐴𝐵)))))
8786ssrdv 4014 . . . . . . . 8 ((𝜑 ∧ (𝑦𝐴 ∧ (𝐺‘(card‘( 𝐴𝐵))) ⊆ 𝑦)) → (𝑦𝐵) ⊆ (𝐺‘(card‘( 𝐴𝐵))))
8816adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑦𝐴 ∧ (𝐺‘(card‘( 𝐴𝐵))) ⊆ 𝑦)) → 𝐵 ⊆ (𝐺‘(card‘( 𝐴𝐵))))
8987, 88unssd 4215 . . . . . . 7 ((𝜑 ∧ (𝑦𝐴 ∧ (𝐺‘(card‘( 𝐴𝐵))) ⊆ 𝑦)) → ((𝑦𝐵) ∪ 𝐵) ⊆ (𝐺‘(card‘( 𝐴𝐵))))
9020, 89sstrid 4020 . . . . . 6 ((𝜑 ∧ (𝑦𝐴 ∧ (𝐺‘(card‘( 𝐴𝐵))) ⊆ 𝑦)) → 𝑦 ⊆ (𝐺‘(card‘( 𝐴𝐵))))
9117, 90eqssd 4026 . . . . 5 ((𝜑 ∧ (𝑦𝐴 ∧ (𝐺‘(card‘( 𝐴𝐵))) ⊆ 𝑦)) → (𝐺‘(card‘( 𝐴𝐵))) = 𝑦)
9291expr 456 . . . 4 ((𝜑𝑦𝐴) → ((𝐺‘(card‘( 𝐴𝐵))) ⊆ 𝑦 → (𝐺‘(card‘( 𝐴𝐵))) = 𝑦))
93 npss 4136 . . . 4 (¬ (𝐺‘(card‘( 𝐴𝐵))) ⊊ 𝑦 ↔ ((𝐺‘(card‘( 𝐴𝐵))) ⊆ 𝑦 → (𝐺‘(card‘( 𝐴𝐵))) = 𝑦))
9492, 93sylibr 234 . . 3 ((𝜑𝑦𝐴) → ¬ (𝐺‘(card‘( 𝐴𝐵))) ⊊ 𝑦)
9594ralrimiva 3152 . 2 (𝜑 → ∀𝑦𝐴 ¬ (𝐺‘(card‘( 𝐴𝐵))) ⊊ 𝑦)
96 sseq2 4035 . . . 4 (𝑥 = (𝐺‘(card‘( 𝐴𝐵))) → (𝐵𝑥𝐵 ⊆ (𝐺‘(card‘( 𝐴𝐵)))))
97 psseq1 4113 . . . . . 6 (𝑥 = (𝐺‘(card‘( 𝐴𝐵))) → (𝑥𝑦 ↔ (𝐺‘(card‘( 𝐴𝐵))) ⊊ 𝑦))
9897notbid 318 . . . . 5 (𝑥 = (𝐺‘(card‘( 𝐴𝐵))) → (¬ 𝑥𝑦 ↔ ¬ (𝐺‘(card‘( 𝐴𝐵))) ⊊ 𝑦))
9998ralbidv 3184 . . . 4 (𝑥 = (𝐺‘(card‘( 𝐴𝐵))) → (∀𝑦𝐴 ¬ 𝑥𝑦 ↔ ∀𝑦𝐴 ¬ (𝐺‘(card‘( 𝐴𝐵))) ⊊ 𝑦))
10096, 99anbi12d 631 . . 3 (𝑥 = (𝐺‘(card‘( 𝐴𝐵))) → ((𝐵𝑥 ∧ ∀𝑦𝐴 ¬ 𝑥𝑦) ↔ (𝐵 ⊆ (𝐺‘(card‘( 𝐴𝐵))) ∧ ∀𝑦𝐴 ¬ (𝐺‘(card‘( 𝐴𝐵))) ⊊ 𝑦)))
101100rspcev 3635 . 2 (((𝐺‘(card‘( 𝐴𝐵))) ∈ 𝐴 ∧ (𝐵 ⊆ (𝐺‘(card‘( 𝐴𝐵))) ∧ ∀𝑦𝐴 ¬ (𝐺‘(card‘( 𝐴𝐵))) ⊊ 𝑦)) → ∃𝑥𝐴 (𝐵𝑥 ∧ ∀𝑦𝐴 ¬ 𝑥𝑦))
1028, 16, 95, 101syl12anc 836 1 (𝜑 → ∃𝑥𝐴 (𝐵𝑥 ∧ ∀𝑦𝐴 ¬ 𝑥𝑦))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1087  wal 1535   = wceq 1537  wcel 2108  wne 2946  wral 3067  wrex 3076  Vcvv 3488  cdif 3973  cun 3974  cin 3975  wss 3976  wpss 3977  c0 4352  ifcif 4548  𝒫 cpw 4622  {csn 4648   cuni 4931  cmpt 5249  ccnv 5699  dom cdm 5700  ran crn 5701  cima 5703  Ord word 6394  Oncon0 6395  suc csuc 6397  wf 6569  1-1-ontowf1o 6572  cfv 6573  recscrecs 8426  Fincfn 9003  cardccrd 10004
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-om 7904  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-1o 8522  df-en 9004  df-dom 9005  df-fin 9007  df-card 10008
This theorem is referenced by:  ttukey2g  10585
  Copyright terms: Public domain W3C validator