![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nnnn0i | Structured version Visualization version GIF version |
Description: A positive integer is a nonnegative integer. (Contributed by NM, 20-Jun-2005.) |
Ref | Expression |
---|---|
nnnn0i.1 | ⊢ 𝑁 ∈ ℕ |
Ref | Expression |
---|---|
nnnn0i | ⊢ 𝑁 ∈ ℕ0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnnn0i.1 | . 2 ⊢ 𝑁 ∈ ℕ | |
2 | nnnn0 11752 | . 2 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝑁 ∈ ℕ0 |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2081 ℕcn 11486 ℕ0cn0 11745 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1777 ax-4 1791 ax-5 1888 ax-6 1947 ax-7 1992 ax-8 2083 ax-9 2091 ax-10 2112 ax-11 2126 ax-12 2141 ax-ext 2769 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-tru 1525 df-ex 1762 df-nf 1766 df-sb 2043 df-clab 2776 df-cleq 2788 df-clel 2863 df-nfc 2935 df-v 3439 df-un 3864 df-in 3866 df-ss 3874 df-n0 11746 |
This theorem is referenced by: 1nn0 11761 2nn0 11762 3nn0 11763 4nn0 11764 5nn0 11765 6nn0 11766 7nn0 11767 8nn0 11768 9nn0 11769 numlt 11972 declei 11983 numlti 11984 faclbnd4lem1 13503 divalglem6 15582 pockthi 16072 dec5dvds2 16230 modxp1i 16235 mod2xnegi 16236 43prm 16284 83prm 16285 317prm 16288 log2ublem2 25207 rpdp2cl2 30243 ballotlemfmpn 31369 ballotth 31412 circlevma 31530 tgblthelfgott 43462 tgoldbach 43464 |
Copyright terms: Public domain | W3C validator |