![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nnnn0i | Structured version Visualization version GIF version |
Description: A positive integer is a nonnegative integer. (Contributed by NM, 20-Jun-2005.) |
Ref | Expression |
---|---|
nnnn0i.1 | ⊢ 𝑁 ∈ ℕ |
Ref | Expression |
---|---|
nnnn0i | ⊢ 𝑁 ∈ ℕ0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnnn0i.1 | . 2 ⊢ 𝑁 ∈ ℕ | |
2 | nnnn0 12560 | . 2 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝑁 ∈ ℕ0 |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2108 ℕcn 12293 ℕ0cn0 12553 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-v 3490 df-un 3981 df-ss 3993 df-n0 12554 |
This theorem is referenced by: 1nn0 12569 2nn0 12570 3nn0 12571 4nn0 12572 5nn0 12573 6nn0 12574 7nn0 12575 8nn0 12576 9nn0 12577 numlt 12783 declei 12794 numlti 12795 faclbnd4lem1 14342 divalglem6 16446 pockthi 16954 dec5dvds2 17112 modxp1i 17117 mod2xnegi 17118 43prm 17169 83prm 17170 317prm 17173 log2ublem2 27008 rpdp2cl2 32847 ballotlemfmpn 34459 ballotth 34502 circlevma 34619 12gcd5e1 41960 60gcd6e6 41961 60gcd7e1 41962 420lcm8e840 41968 lcmineqlem 42009 tgblthelfgott 47689 tgoldbach 47691 |
Copyright terms: Public domain | W3C validator |