| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nnnn0i | Structured version Visualization version GIF version | ||
| Description: A positive integer is a nonnegative integer. (Contributed by NM, 20-Jun-2005.) |
| Ref | Expression |
|---|---|
| nnnn0i.1 | ⊢ 𝑁 ∈ ℕ |
| Ref | Expression |
|---|---|
| nnnn0i | ⊢ 𝑁 ∈ ℕ0 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnnn0i.1 | . 2 ⊢ 𝑁 ∈ ℕ | |
| 2 | nnnn0 12449 | . 2 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝑁 ∈ ℕ0 |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 ℕcn 12186 ℕ0cn0 12442 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3449 df-un 3919 df-ss 3931 df-n0 12443 |
| This theorem is referenced by: 1nn0 12458 2nn0 12459 3nn0 12460 4nn0 12461 5nn0 12462 6nn0 12463 7nn0 12464 8nn0 12465 9nn0 12466 numlt 12674 declei 12685 numlti 12686 faclbnd4lem1 14258 divalglem6 16368 pockthi 16878 dec5dvds2 17036 modxp1i 17041 mod2xnegi 17042 43prm 17092 83prm 17093 317prm 17096 log2ublem2 26857 rpdp2cl2 32803 ballotlemfmpn 34486 ballotth 34529 circlevma 34633 12gcd5e1 41991 60gcd6e6 41992 60gcd7e1 41993 420lcm8e840 41999 lcmineqlem 42040 tgblthelfgott 47816 tgoldbach 47818 |
| Copyright terms: Public domain | W3C validator |