Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nnnn0i | Structured version Visualization version GIF version |
Description: A positive integer is a nonnegative integer. (Contributed by NM, 20-Jun-2005.) |
Ref | Expression |
---|---|
nnnn0i.1 | ⊢ 𝑁 ∈ ℕ |
Ref | Expression |
---|---|
nnnn0i | ⊢ 𝑁 ∈ ℕ0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnnn0i.1 | . 2 ⊢ 𝑁 ∈ ℕ | |
2 | nnnn0 12170 | . 2 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝑁 ∈ ℕ0 |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2108 ℕcn 11903 ℕ0cn0 12163 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-un 3888 df-in 3890 df-ss 3900 df-n0 12164 |
This theorem is referenced by: 1nn0 12179 2nn0 12180 3nn0 12181 4nn0 12182 5nn0 12183 6nn0 12184 7nn0 12185 8nn0 12186 9nn0 12187 numlt 12391 declei 12402 numlti 12403 faclbnd4lem1 13935 divalglem6 16035 pockthi 16536 dec5dvds2 16694 modxp1i 16699 mod2xnegi 16700 43prm 16751 83prm 16752 317prm 16755 log2ublem2 26002 rpdp2cl2 31059 ballotlemfmpn 32361 ballotth 32404 circlevma 32522 12gcd5e1 39939 60gcd6e6 39940 60gcd7e1 39941 420lcm8e840 39947 lcmineqlem 39988 tgblthelfgott 45155 tgoldbach 45157 |
Copyright terms: Public domain | W3C validator |