| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nnnn0i | Structured version Visualization version GIF version | ||
| Description: A positive integer is a nonnegative integer. (Contributed by NM, 20-Jun-2005.) |
| Ref | Expression |
|---|---|
| nnnn0i.1 | ⊢ 𝑁 ∈ ℕ |
| Ref | Expression |
|---|---|
| nnnn0i | ⊢ 𝑁 ∈ ℕ0 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnnn0i.1 | . 2 ⊢ 𝑁 ∈ ℕ | |
| 2 | nnnn0 12456 | . 2 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝑁 ∈ ℕ0 |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 ℕcn 12193 ℕ0cn0 12449 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-v 3452 df-un 3922 df-ss 3934 df-n0 12450 |
| This theorem is referenced by: 1nn0 12465 2nn0 12466 3nn0 12467 4nn0 12468 5nn0 12469 6nn0 12470 7nn0 12471 8nn0 12472 9nn0 12473 numlt 12681 declei 12692 numlti 12693 faclbnd4lem1 14265 divalglem6 16375 pockthi 16885 dec5dvds2 17043 modxp1i 17048 mod2xnegi 17049 43prm 17099 83prm 17100 317prm 17103 log2ublem2 26864 rpdp2cl2 32810 ballotlemfmpn 34493 ballotth 34536 circlevma 34640 12gcd5e1 41998 60gcd6e6 41999 60gcd7e1 42000 420lcm8e840 42006 lcmineqlem 42047 tgblthelfgott 47820 tgoldbach 47822 |
| Copyright terms: Public domain | W3C validator |