Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nnnn0i | Structured version Visualization version GIF version |
Description: A positive integer is a nonnegative integer. (Contributed by NM, 20-Jun-2005.) |
Ref | Expression |
---|---|
nnnn0i.1 | ⊢ 𝑁 ∈ ℕ |
Ref | Expression |
---|---|
nnnn0i | ⊢ 𝑁 ∈ ℕ0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnnn0i.1 | . 2 ⊢ 𝑁 ∈ ℕ | |
2 | nnnn0 12240 | . 2 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝑁 ∈ ℕ0 |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2106 ℕcn 11973 ℕ0cn0 12233 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-v 3434 df-un 3892 df-in 3894 df-ss 3904 df-n0 12234 |
This theorem is referenced by: 1nn0 12249 2nn0 12250 3nn0 12251 4nn0 12252 5nn0 12253 6nn0 12254 7nn0 12255 8nn0 12256 9nn0 12257 numlt 12462 declei 12473 numlti 12474 faclbnd4lem1 14007 divalglem6 16107 pockthi 16608 dec5dvds2 16766 modxp1i 16771 mod2xnegi 16772 43prm 16823 83prm 16824 317prm 16827 log2ublem2 26097 rpdp2cl2 31157 ballotlemfmpn 32461 ballotth 32504 circlevma 32622 12gcd5e1 40011 60gcd6e6 40012 60gcd7e1 40013 420lcm8e840 40019 lcmineqlem 40060 tgblthelfgott 45267 tgoldbach 45269 |
Copyright terms: Public domain | W3C validator |