| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nnnn0i | Structured version Visualization version GIF version | ||
| Description: A positive integer is a nonnegative integer. (Contributed by NM, 20-Jun-2005.) |
| Ref | Expression |
|---|---|
| nnnn0i.1 | ⊢ 𝑁 ∈ ℕ |
| Ref | Expression |
|---|---|
| nnnn0i | ⊢ 𝑁 ∈ ℕ0 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnnn0i.1 | . 2 ⊢ 𝑁 ∈ ℕ | |
| 2 | nnnn0 12506 | . 2 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝑁 ∈ ℕ0 |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2108 ℕcn 12238 ℕ0cn0 12499 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-v 3461 df-un 3931 df-ss 3943 df-n0 12500 |
| This theorem is referenced by: 1nn0 12515 2nn0 12516 3nn0 12517 4nn0 12518 5nn0 12519 6nn0 12520 7nn0 12521 8nn0 12522 9nn0 12523 numlt 12731 declei 12742 numlti 12743 faclbnd4lem1 14309 divalglem6 16415 pockthi 16925 dec5dvds2 17083 modxp1i 17088 mod2xnegi 17089 43prm 17139 83prm 17140 317prm 17143 log2ublem2 26907 rpdp2cl2 32803 ballotlemfmpn 34473 ballotth 34516 circlevma 34620 12gcd5e1 41962 60gcd6e6 41963 60gcd7e1 41964 420lcm8e840 41970 lcmineqlem 42011 tgblthelfgott 47777 tgoldbach 47779 |
| Copyright terms: Public domain | W3C validator |