| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nnnn0i | Structured version Visualization version GIF version | ||
| Description: A positive integer is a nonnegative integer. (Contributed by NM, 20-Jun-2005.) |
| Ref | Expression |
|---|---|
| nnnn0i.1 | ⊢ 𝑁 ∈ ℕ |
| Ref | Expression |
|---|---|
| nnnn0i | ⊢ 𝑁 ∈ ℕ0 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnnn0i.1 | . 2 ⊢ 𝑁 ∈ ℕ | |
| 2 | nnnn0 12425 | . 2 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝑁 ∈ ℕ0 |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 ℕcn 12162 ℕ0cn0 12418 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3446 df-un 3916 df-ss 3928 df-n0 12419 |
| This theorem is referenced by: 1nn0 12434 2nn0 12435 3nn0 12436 4nn0 12437 5nn0 12438 6nn0 12439 7nn0 12440 8nn0 12441 9nn0 12442 numlt 12650 declei 12661 numlti 12662 faclbnd4lem1 14234 divalglem6 16344 pockthi 16854 dec5dvds2 17012 modxp1i 17017 mod2xnegi 17018 43prm 17068 83prm 17069 317prm 17072 log2ublem2 26890 rpdp2cl2 32853 ballotlemfmpn 34479 ballotth 34522 circlevma 34626 12gcd5e1 41984 60gcd6e6 41985 60gcd7e1 41986 420lcm8e840 41992 lcmineqlem 42033 tgblthelfgott 47809 tgoldbach 47811 |
| Copyright terms: Public domain | W3C validator |