MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nnnn0i Structured version   Visualization version   GIF version

Theorem nnnn0i 12426
Description: A positive integer is a nonnegative integer. (Contributed by NM, 20-Jun-2005.)
Hypothesis
Ref Expression
nnnn0i.1 𝑁 ∈ ℕ
Assertion
Ref Expression
nnnn0i 𝑁 ∈ ℕ0

Proof of Theorem nnnn0i
StepHypRef Expression
1 nnnn0i.1 . 2 𝑁 ∈ ℕ
2 nnnn0 12425 . 2 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
31, 2ax-mp 5 1 𝑁 ∈ ℕ0
Colors of variables: wff setvar class
Syntax hints:  wcel 2109  cn 12162  0cn0 12418
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-v 3446  df-un 3916  df-ss 3928  df-n0 12419
This theorem is referenced by:  1nn0  12434  2nn0  12435  3nn0  12436  4nn0  12437  5nn0  12438  6nn0  12439  7nn0  12440  8nn0  12441  9nn0  12442  numlt  12650  declei  12661  numlti  12662  faclbnd4lem1  14234  divalglem6  16344  pockthi  16854  dec5dvds2  17012  modxp1i  17017  mod2xnegi  17018  43prm  17068  83prm  17069  317prm  17072  log2ublem2  26833  rpdp2cl2  32776  ballotlemfmpn  34459  ballotth  34502  circlevma  34606  12gcd5e1  41964  60gcd6e6  41965  60gcd7e1  41966  420lcm8e840  41972  lcmineqlem  42013  tgblthelfgott  47789  tgoldbach  47791
  Copyright terms: Public domain W3C validator