| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nnnn0i | Structured version Visualization version GIF version | ||
| Description: A positive integer is a nonnegative integer. (Contributed by NM, 20-Jun-2005.) |
| Ref | Expression |
|---|---|
| nnnn0i.1 | ⊢ 𝑁 ∈ ℕ |
| Ref | Expression |
|---|---|
| nnnn0i | ⊢ 𝑁 ∈ ℕ0 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnnn0i.1 | . 2 ⊢ 𝑁 ∈ ℕ | |
| 2 | nnnn0 12388 | . 2 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝑁 ∈ ℕ0 |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2111 ℕcn 12125 ℕ0cn0 12381 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 df-un 3902 df-ss 3914 df-n0 12382 |
| This theorem is referenced by: 1nn0 12397 2nn0 12398 3nn0 12399 4nn0 12400 5nn0 12401 6nn0 12402 7nn0 12403 8nn0 12404 9nn0 12405 numlt 12613 declei 12624 numlti 12625 faclbnd4lem1 14200 divalglem6 16309 pockthi 16819 dec5dvds2 16977 modxp1i 16982 mod2xnegi 16983 43prm 17033 83prm 17034 317prm 17037 log2ublem2 26884 rpdp2cl2 32863 ballotlemfmpn 34508 ballotth 34551 circlevma 34655 12gcd5e1 42106 60gcd6e6 42107 60gcd7e1 42108 420lcm8e840 42114 lcmineqlem 42155 tgblthelfgott 47925 tgoldbach 47927 |
| Copyright terms: Public domain | W3C validator |