| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 7nn0 | Structured version Visualization version GIF version | ||
| Description: 7 is a nonnegative integer. (Contributed by Mario Carneiro, 19-Apr-2015.) |
| Ref | Expression |
|---|---|
| 7nn0 | ⊢ 7 ∈ ℕ0 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 7nn 12228 | . 2 ⊢ 7 ∈ ℕ | |
| 2 | 1 | nnnn0i 12400 | 1 ⊢ 7 ∈ ℕ0 |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2113 7c7 12196 ℕ0cn0 12392 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pr 5374 ax-un 7677 ax-1cn 11075 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-ov 7358 df-om 7806 df-2nd 7931 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-nn 12137 df-2 12199 df-3 12200 df-4 12201 df-5 12202 df-6 12203 df-7 12204 df-n0 12393 |
| This theorem is referenced by: 7p4e11 12674 7p5e12 12675 7p6e13 12676 7p7e14 12677 8p8e16 12684 9p8e17 12691 9p9e18 12692 7t3e21 12708 7t4e28 12709 7t5e35 12710 7t6e42 12711 7t7e49 12712 8t8e64 12719 9t3e27 12721 9t4e36 12722 9t8e72 12726 9t9e81 12727 s7f1o 14880 7prm 17029 17prm 17035 23prm 17037 prmlem2 17038 37prm 17039 83prm 17041 139prm 17042 163prm 17043 317prm 17044 631prm 17045 1259lem1 17049 1259lem2 17050 1259lem3 17051 1259lem4 17052 1259lem5 17053 1259prm 17054 2503lem1 17055 2503lem2 17056 2503lem3 17057 2503prm 17058 4001lem1 17059 4001lem2 17060 4001lem3 17061 4001lem4 17062 4001prm 17063 quartlem1 26814 quartlem2 26815 log2ublem1 26903 log2ublem3 26905 log2ub 26906 bclbnd 27238 bpos1 27241 slotslnbpsd 28440 ex-prmo 30460 hgt750lemd 34733 hgt750lem 34736 hgt750lem2 34737 hgt750leme 34743 tgoldbachgnn 34744 tgoldbachgtde 34745 tgoldbachgt 34748 60lcm7e420 42176 3exp7 42219 3lexlogpow5ineq1 42220 3lexlogpow5ineq2 42221 3lexlogpow2ineq1 42224 3lexlogpow5ineq5 42226 aks4d1p1 42242 235t711 42475 ex-decpmul 42476 3cubeslem3l 42843 3cubeslem3r 42844 expdiophlem2 43179 resqrtvalex 43802 imsqrtvalex 43803 fmtno5lem2 47716 fmtno5lem4 47718 fmtno5 47719 257prm 47723 fmtno4nprmfac193 47736 fmtno5faclem1 47741 fmtno5faclem2 47742 fmtno5fac 47744 fmtno5nprm 47745 139prmALT 47758 127prm 47761 m11nprm 47763 2exp340mod341 47895 tgoldbach 47979 ackval2012 48853 |
| Copyright terms: Public domain | W3C validator |