![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 7nn0 | Structured version Visualization version GIF version |
Description: 7 is a nonnegative integer. (Contributed by Mario Carneiro, 19-Apr-2015.) |
Ref | Expression |
---|---|
7nn0 | ⊢ 7 ∈ ℕ0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 7nn 12385 | . 2 ⊢ 7 ∈ ℕ | |
2 | 1 | nnnn0i 12561 | 1 ⊢ 7 ∈ ℕ0 |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2108 7c7 12353 ℕ0cn0 12553 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-un 7770 ax-1cn 11242 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-om 7904 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-nn 12294 df-2 12356 df-3 12357 df-4 12358 df-5 12359 df-6 12360 df-7 12361 df-n0 12554 |
This theorem is referenced by: 7p4e11 12834 7p5e12 12835 7p6e13 12836 7p7e14 12837 8p8e16 12844 9p8e17 12851 9p9e18 12852 7t3e21 12868 7t4e28 12869 7t5e35 12870 7t6e42 12871 7t7e49 12872 8t8e64 12879 9t3e27 12881 9t4e36 12882 9t8e72 12886 9t9e81 12887 s7f1o 15015 7prm 17158 17prm 17164 23prm 17166 prmlem2 17167 37prm 17168 83prm 17170 139prm 17171 163prm 17172 317prm 17173 631prm 17174 1259lem1 17178 1259lem2 17179 1259lem3 17180 1259lem4 17181 1259lem5 17182 1259prm 17183 2503lem1 17184 2503lem2 17185 2503lem3 17186 2503prm 17187 4001lem1 17188 4001lem2 17189 4001lem3 17190 4001lem4 17191 4001prm 17192 quartlem1 26918 quartlem2 26919 log2ublem1 27007 log2ublem3 27009 log2ub 27010 bclbnd 27342 bpos1 27345 slotslnbpsd 28468 ex-prmo 30491 hgt750lemd 34625 hgt750lem 34628 hgt750lem2 34629 hgt750leme 34635 tgoldbachgnn 34636 tgoldbachgtde 34637 tgoldbachgt 34640 60lcm7e420 41967 3exp7 42010 3lexlogpow5ineq1 42011 3lexlogpow5ineq2 42012 3lexlogpow2ineq1 42015 3lexlogpow5ineq5 42017 aks4d1p1 42033 235t711 42293 ex-decpmul 42294 3cubeslem3l 42642 3cubeslem3r 42643 expdiophlem2 42979 resqrtvalex 43607 imsqrtvalex 43608 fmtno5lem2 47428 fmtno5lem4 47430 fmtno5 47431 257prm 47435 fmtno4nprmfac193 47448 fmtno5faclem1 47453 fmtno5faclem2 47454 fmtno5fac 47456 fmtno5nprm 47457 139prmALT 47470 127prm 47473 m11nprm 47475 2exp340mod341 47607 tgoldbach 47691 ackval2012 48425 |
Copyright terms: Public domain | W3C validator |