| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 7nn0 | Structured version Visualization version GIF version | ||
| Description: 7 is a nonnegative integer. (Contributed by Mario Carneiro, 19-Apr-2015.) |
| Ref | Expression |
|---|---|
| 7nn0 | ⊢ 7 ∈ ℕ0 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 7nn 12238 | . 2 ⊢ 7 ∈ ℕ | |
| 2 | 1 | nnnn0i 12410 | 1 ⊢ 7 ∈ ℕ0 |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 7c7 12206 ℕ0cn0 12402 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 ax-un 7675 ax-1cn 11086 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7356 df-om 7807 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-nn 12147 df-2 12209 df-3 12210 df-4 12211 df-5 12212 df-6 12213 df-7 12214 df-n0 12403 |
| This theorem is referenced by: 7p4e11 12685 7p5e12 12686 7p6e13 12687 7p7e14 12688 8p8e16 12695 9p8e17 12702 9p9e18 12703 7t3e21 12719 7t4e28 12720 7t5e35 12721 7t6e42 12722 7t7e49 12723 8t8e64 12730 9t3e27 12732 9t4e36 12733 9t8e72 12737 9t9e81 12738 s7f1o 14891 7prm 17040 17prm 17046 23prm 17048 prmlem2 17049 37prm 17050 83prm 17052 139prm 17053 163prm 17054 317prm 17055 631prm 17056 1259lem1 17060 1259lem2 17061 1259lem3 17062 1259lem4 17063 1259lem5 17064 1259prm 17065 2503lem1 17066 2503lem2 17067 2503lem3 17068 2503prm 17069 4001lem1 17070 4001lem2 17071 4001lem3 17072 4001lem4 17073 4001prm 17074 quartlem1 26783 quartlem2 26784 log2ublem1 26872 log2ublem3 26874 log2ub 26875 bclbnd 27207 bpos1 27210 slotslnbpsd 28405 ex-prmo 30421 hgt750lemd 34618 hgt750lem 34621 hgt750lem2 34622 hgt750leme 34628 tgoldbachgnn 34629 tgoldbachgtde 34630 tgoldbachgt 34633 60lcm7e420 41986 3exp7 42029 3lexlogpow5ineq1 42030 3lexlogpow5ineq2 42031 3lexlogpow2ineq1 42034 3lexlogpow5ineq5 42036 aks4d1p1 42052 235t711 42281 ex-decpmul 42282 3cubeslem3l 42662 3cubeslem3r 42663 expdiophlem2 42998 resqrtvalex 43621 imsqrtvalex 43622 fmtno5lem2 47542 fmtno5lem4 47544 fmtno5 47545 257prm 47549 fmtno4nprmfac193 47562 fmtno5faclem1 47567 fmtno5faclem2 47568 fmtno5fac 47570 fmtno5nprm 47571 139prmALT 47584 127prm 47587 m11nprm 47589 2exp340mod341 47721 tgoldbach 47805 ackval2012 48680 |
| Copyright terms: Public domain | W3C validator |