| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 7nn0 | Structured version Visualization version GIF version | ||
| Description: 7 is a nonnegative integer. (Contributed by Mario Carneiro, 19-Apr-2015.) |
| Ref | Expression |
|---|---|
| 7nn0 | ⊢ 7 ∈ ℕ0 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 7nn 12212 | . 2 ⊢ 7 ∈ ℕ | |
| 2 | 1 | nnnn0i 12384 | 1 ⊢ 7 ∈ ℕ0 |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2111 7c7 12180 ℕ0cn0 12376 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pr 5365 ax-un 7663 ax-1cn 11059 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-ov 7344 df-om 7792 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-nn 12121 df-2 12183 df-3 12184 df-4 12185 df-5 12186 df-6 12187 df-7 12188 df-n0 12377 |
| This theorem is referenced by: 7p4e11 12659 7p5e12 12660 7p6e13 12661 7p7e14 12662 8p8e16 12669 9p8e17 12676 9p9e18 12677 7t3e21 12693 7t4e28 12694 7t5e35 12695 7t6e42 12696 7t7e49 12697 8t8e64 12704 9t3e27 12706 9t4e36 12707 9t8e72 12711 9t9e81 12712 s7f1o 14868 7prm 17017 17prm 17023 23prm 17025 prmlem2 17026 37prm 17027 83prm 17029 139prm 17030 163prm 17031 317prm 17032 631prm 17033 1259lem1 17037 1259lem2 17038 1259lem3 17039 1259lem4 17040 1259lem5 17041 1259prm 17042 2503lem1 17043 2503lem2 17044 2503lem3 17045 2503prm 17046 4001lem1 17047 4001lem2 17048 4001lem3 17049 4001lem4 17050 4001prm 17051 quartlem1 26789 quartlem2 26790 log2ublem1 26878 log2ublem3 26880 log2ub 26881 bclbnd 27213 bpos1 27216 slotslnbpsd 28415 ex-prmo 30431 hgt750lemd 34653 hgt750lem 34656 hgt750lem2 34657 hgt750leme 34663 tgoldbachgnn 34664 tgoldbachgtde 34665 tgoldbachgt 34668 60lcm7e420 42043 3exp7 42086 3lexlogpow5ineq1 42087 3lexlogpow5ineq2 42088 3lexlogpow2ineq1 42091 3lexlogpow5ineq5 42093 aks4d1p1 42109 235t711 42338 ex-decpmul 42339 3cubeslem3l 42719 3cubeslem3r 42720 expdiophlem2 43055 resqrtvalex 43678 imsqrtvalex 43679 fmtno5lem2 47585 fmtno5lem4 47587 fmtno5 47588 257prm 47592 fmtno4nprmfac193 47605 fmtno5faclem1 47610 fmtno5faclem2 47611 fmtno5fac 47613 fmtno5nprm 47614 139prmALT 47627 127prm 47630 m11nprm 47632 2exp340mod341 47764 tgoldbach 47848 ackval2012 48723 |
| Copyright terms: Public domain | W3C validator |