| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 7nn0 | Structured version Visualization version GIF version | ||
| Description: 7 is a nonnegative integer. (Contributed by Mario Carneiro, 19-Apr-2015.) |
| Ref | Expression |
|---|---|
| 7nn0 | ⊢ 7 ∈ ℕ0 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 7nn 12278 | . 2 ⊢ 7 ∈ ℕ | |
| 2 | 1 | nnnn0i 12450 | 1 ⊢ 7 ∈ ℕ0 |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 7c7 12246 ℕ0cn0 12442 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 ax-un 7711 ax-1cn 11126 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-om 7843 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-nn 12187 df-2 12249 df-3 12250 df-4 12251 df-5 12252 df-6 12253 df-7 12254 df-n0 12443 |
| This theorem is referenced by: 7p4e11 12725 7p5e12 12726 7p6e13 12727 7p7e14 12728 8p8e16 12735 9p8e17 12742 9p9e18 12743 7t3e21 12759 7t4e28 12760 7t5e35 12761 7t6e42 12762 7t7e49 12763 8t8e64 12770 9t3e27 12772 9t4e36 12773 9t8e72 12777 9t9e81 12778 s7f1o 14932 7prm 17081 17prm 17087 23prm 17089 prmlem2 17090 37prm 17091 83prm 17093 139prm 17094 163prm 17095 317prm 17096 631prm 17097 1259lem1 17101 1259lem2 17102 1259lem3 17103 1259lem4 17104 1259lem5 17105 1259prm 17106 2503lem1 17107 2503lem2 17108 2503lem3 17109 2503prm 17110 4001lem1 17111 4001lem2 17112 4001lem3 17113 4001lem4 17114 4001prm 17115 quartlem1 26767 quartlem2 26768 log2ublem1 26856 log2ublem3 26858 log2ub 26859 bclbnd 27191 bpos1 27194 slotslnbpsd 28369 ex-prmo 30388 hgt750lemd 34639 hgt750lem 34642 hgt750lem2 34643 hgt750leme 34649 tgoldbachgnn 34650 tgoldbachgtde 34651 tgoldbachgt 34654 60lcm7e420 41998 3exp7 42041 3lexlogpow5ineq1 42042 3lexlogpow5ineq2 42043 3lexlogpow2ineq1 42046 3lexlogpow5ineq5 42048 aks4d1p1 42064 235t711 42293 ex-decpmul 42294 3cubeslem3l 42674 3cubeslem3r 42675 expdiophlem2 43011 resqrtvalex 43634 imsqrtvalex 43635 fmtno5lem2 47555 fmtno5lem4 47557 fmtno5 47558 257prm 47562 fmtno4nprmfac193 47575 fmtno5faclem1 47580 fmtno5faclem2 47581 fmtno5fac 47583 fmtno5nprm 47584 139prmALT 47597 127prm 47600 m11nprm 47602 2exp340mod341 47734 tgoldbach 47818 ackval2012 48680 |
| Copyright terms: Public domain | W3C validator |