Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 7nn0 | Structured version Visualization version GIF version |
Description: 7 is a nonnegative integer. (Contributed by Mario Carneiro, 19-Apr-2015.) |
Ref | Expression |
---|---|
7nn0 | ⊢ 7 ∈ ℕ0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 7nn 11995 | . 2 ⊢ 7 ∈ ℕ | |
2 | 1 | nnnn0i 12171 | 1 ⊢ 7 ∈ ℕ0 |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2108 7c7 11963 ℕ0cn0 12163 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-un 7566 ax-1cn 10860 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-om 7688 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-7 11971 df-n0 12164 |
This theorem is referenced by: 7p4e11 12442 7p5e12 12443 7p6e13 12444 7p7e14 12445 8p8e16 12452 9p8e17 12459 9p9e18 12460 7t3e21 12476 7t4e28 12477 7t5e35 12478 7t6e42 12479 7t7e49 12480 8t8e64 12487 9t3e27 12489 9t4e36 12490 9t8e72 12494 9t9e81 12495 7prm 16740 17prm 16746 23prm 16748 prmlem2 16749 37prm 16750 83prm 16752 139prm 16753 163prm 16754 317prm 16755 631prm 16756 1259lem1 16760 1259lem2 16761 1259lem3 16762 1259lem4 16763 1259lem5 16764 1259prm 16765 2503lem1 16766 2503lem2 16767 2503lem3 16768 2503prm 16769 4001lem1 16770 4001lem2 16771 4001lem3 16772 4001lem4 16773 4001prm 16774 quartlem1 25912 quartlem2 25913 log2ublem1 26001 log2ublem3 26003 log2ub 26004 bclbnd 26333 bpos1 26336 slotslnbpsd 26708 ex-prmo 28724 hgt750lemd 32528 hgt750lem 32531 hgt750lem2 32532 hgt750leme 32538 tgoldbachgnn 32539 tgoldbachgtde 32540 tgoldbachgt 32543 60lcm7e420 39946 3exp7 39989 3lexlogpow5ineq1 39990 3lexlogpow5ineq2 39991 3lexlogpow2ineq1 39994 3lexlogpow5ineq5 39996 aks4d1p1 40012 235t711 40240 ex-decpmul 40241 3cubeslem3l 40424 3cubeslem3r 40425 expdiophlem2 40760 resqrtvalex 41142 imsqrtvalex 41143 fmtno5lem2 44894 fmtno5lem4 44896 fmtno5 44897 257prm 44901 fmtno4nprmfac193 44914 fmtno5faclem1 44919 fmtno5faclem2 44920 fmtno5fac 44922 fmtno5nprm 44923 139prmALT 44936 127prm 44939 m11nprm 44941 2exp340mod341 45073 tgoldbach 45157 ackval2012 45925 |
Copyright terms: Public domain | W3C validator |