Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 7nn0 | Structured version Visualization version GIF version |
Description: 7 is a nonnegative integer. (Contributed by Mario Carneiro, 19-Apr-2015.) |
Ref | Expression |
---|---|
7nn0 | ⊢ 7 ∈ ℕ0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 7nn 12074 | . 2 ⊢ 7 ∈ ℕ | |
2 | 1 | nnnn0i 12250 | 1 ⊢ 7 ∈ ℕ0 |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2107 7c7 12042 ℕ0cn0 12242 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2710 ax-sep 5224 ax-nul 5231 ax-pr 5353 ax-un 7597 ax-1cn 10938 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-ral 3070 df-rex 3071 df-reu 3073 df-rab 3074 df-v 3435 df-sbc 3718 df-csb 3834 df-dif 3891 df-un 3893 df-in 3895 df-ss 3905 df-pss 3907 df-nul 4258 df-if 4461 df-pw 4536 df-sn 4563 df-pr 4565 df-op 4569 df-uni 4841 df-iun 4927 df-br 5076 df-opab 5138 df-mpt 5159 df-tr 5193 df-id 5490 df-eprel 5496 df-po 5504 df-so 5505 df-fr 5545 df-we 5547 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-pred 6206 df-ord 6273 df-on 6274 df-lim 6275 df-suc 6276 df-iota 6395 df-fun 6439 df-fn 6440 df-f 6441 df-f1 6442 df-fo 6443 df-f1o 6444 df-fv 6445 df-ov 7287 df-om 7722 df-2nd 7841 df-frecs 8106 df-wrecs 8137 df-recs 8211 df-rdg 8250 df-nn 11983 df-2 12045 df-3 12046 df-4 12047 df-5 12048 df-6 12049 df-7 12050 df-n0 12243 |
This theorem is referenced by: 7p4e11 12522 7p5e12 12523 7p6e13 12524 7p7e14 12525 8p8e16 12532 9p8e17 12539 9p9e18 12540 7t3e21 12556 7t4e28 12557 7t5e35 12558 7t6e42 12559 7t7e49 12560 8t8e64 12567 9t3e27 12569 9t4e36 12570 9t8e72 12574 9t9e81 12575 7prm 16821 17prm 16827 23prm 16829 prmlem2 16830 37prm 16831 83prm 16833 139prm 16834 163prm 16835 317prm 16836 631prm 16837 1259lem1 16841 1259lem2 16842 1259lem3 16843 1259lem4 16844 1259lem5 16845 1259prm 16846 2503lem1 16847 2503lem2 16848 2503lem3 16849 2503prm 16850 4001lem1 16851 4001lem2 16852 4001lem3 16853 4001lem4 16854 4001prm 16855 quartlem1 26016 quartlem2 26017 log2ublem1 26105 log2ublem3 26107 log2ub 26108 bclbnd 26437 bpos1 26440 slotslnbpsd 26812 ex-prmo 28832 hgt750lemd 32637 hgt750lem 32640 hgt750lem2 32641 hgt750leme 32647 tgoldbachgnn 32648 tgoldbachgtde 32649 tgoldbachgt 32652 60lcm7e420 40025 3exp7 40068 3lexlogpow5ineq1 40069 3lexlogpow5ineq2 40070 3lexlogpow2ineq1 40073 3lexlogpow5ineq5 40075 aks4d1p1 40091 235t711 40326 ex-decpmul 40327 3cubeslem3l 40515 3cubeslem3r 40516 expdiophlem2 40851 resqrtvalex 41260 imsqrtvalex 41261 fmtno5lem2 45017 fmtno5lem4 45019 fmtno5 45020 257prm 45024 fmtno4nprmfac193 45037 fmtno5faclem1 45042 fmtno5faclem2 45043 fmtno5fac 45045 fmtno5nprm 45046 139prmALT 45059 127prm 45062 m11nprm 45064 2exp340mod341 45196 tgoldbach 45280 ackval2012 46048 |
Copyright terms: Public domain | W3C validator |