| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 9nn0 | Structured version Visualization version GIF version | ||
| Description: 9 is a nonnegative integer. (Contributed by Mario Carneiro, 19-Apr-2015.) |
| Ref | Expression |
|---|---|
| 9nn0 | ⊢ 9 ∈ ℕ0 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 9nn 12284 | . 2 ⊢ 9 ∈ ℕ | |
| 2 | 1 | nnnn0i 12450 | 1 ⊢ 9 ∈ ℕ0 |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 9c9 12248 ℕ0cn0 12442 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 ax-un 7711 ax-1cn 11126 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-om 7843 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-nn 12187 df-2 12249 df-3 12250 df-4 12251 df-5 12252 df-6 12253 df-7 12254 df-8 12255 df-9 12256 df-n0 12443 |
| This theorem is referenced by: deccl 12664 le9lt10 12676 decsucc 12690 9p2e11 12736 9p3e12 12737 9p4e13 12738 9p5e14 12739 9p6e15 12740 9p7e16 12741 9p8e17 12742 9p9e18 12743 9t3e27 12772 9t4e36 12773 9t5e45 12774 9t6e54 12775 9t7e63 12776 9t8e72 12777 9t9e81 12778 sq10e99m1 14230 3dvds2dec 16303 2exp8 17059 19prm 17088 prmlem2 17090 37prm 17091 83prm 17093 139prm 17094 163prm 17095 317prm 17096 631prm 17097 1259lem1 17101 1259lem2 17102 1259lem3 17103 1259lem4 17104 1259lem5 17105 1259prm 17106 2503lem1 17107 2503lem2 17108 2503lem3 17109 2503prm 17110 4001lem1 17111 4001lem2 17112 4001lem3 17113 4001lem4 17114 dsndxntsetndx 17356 unifndxntsetndx 17363 log2ublem3 26858 log2ub 26859 bposlem8 27202 9p10ne21 30399 dp2lt10 32804 1mhdrd 32836 hgt750lem2 34643 hgt750leme 34649 kur14lem8 35200 60gcd7e1 41993 3exp7 42041 3lexlogpow5ineq1 42042 3lexlogpow5ineq5 42048 aks4d1p1 42064 sqdeccom12 42277 sum9cubes 42660 3cubeslem3r 42675 resqrtvalex 43634 imsqrtvalex 43635 fmtno5lem1 47554 fmtno5lem3 47556 fmtno5lem4 47557 fmtno5 47558 257prm 47562 fmtno4prmfac 47573 fmtno4nprmfac193 47575 fmtno5fac 47583 139prmALT 47597 127prm 47600 m11nprm 47602 2exp340mod341 47734 tgblthelfgott 47816 tgoldbachlt 47817 ackval3012 48681 |
| Copyright terms: Public domain | W3C validator |