![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 9nn0 | Structured version Visualization version GIF version |
Description: 9 is a nonnegative integer. (Contributed by Mario Carneiro, 19-Apr-2015.) |
Ref | Expression |
---|---|
9nn0 | ⊢ 9 ∈ ℕ0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 9nn 11544 | . 2 ⊢ 9 ∈ ℕ | |
2 | 1 | nnnn0i 11716 | 1 ⊢ 9 ∈ ℕ0 |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2050 9c9 11502 ℕ0cn0 11707 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-13 2301 ax-ext 2751 ax-sep 5060 ax-nul 5067 ax-pow 5119 ax-pr 5186 ax-un 7279 ax-1cn 10393 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3or 1069 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2016 df-mo 2547 df-eu 2584 df-clab 2760 df-cleq 2772 df-clel 2847 df-nfc 2919 df-ne 2969 df-ral 3094 df-rex 3095 df-reu 3096 df-rab 3098 df-v 3418 df-sbc 3683 df-csb 3788 df-dif 3833 df-un 3835 df-in 3837 df-ss 3844 df-pss 3846 df-nul 4180 df-if 4351 df-pw 4424 df-sn 4442 df-pr 4444 df-tp 4446 df-op 4448 df-uni 4713 df-iun 4794 df-br 4930 df-opab 4992 df-mpt 5009 df-tr 5031 df-id 5312 df-eprel 5317 df-po 5326 df-so 5327 df-fr 5366 df-we 5368 df-xp 5413 df-rel 5414 df-cnv 5415 df-co 5416 df-dm 5417 df-rn 5418 df-res 5419 df-ima 5420 df-pred 5986 df-ord 6032 df-on 6033 df-lim 6034 df-suc 6035 df-iota 6152 df-fun 6190 df-fn 6191 df-f 6192 df-f1 6193 df-fo 6194 df-f1o 6195 df-fv 6196 df-ov 6979 df-om 7397 df-wrecs 7750 df-recs 7812 df-rdg 7850 df-nn 11440 df-2 11503 df-3 11504 df-4 11505 df-5 11506 df-6 11507 df-7 11508 df-8 11509 df-9 11510 df-n0 11708 |
This theorem is referenced by: deccl 11926 le9lt10 11939 decsucc 11953 9p2e11 12000 9p3e12 12001 9p4e13 12002 9p5e14 12003 9p6e15 12004 9p7e16 12005 9p8e17 12006 9p9e18 12007 9t3e27 12036 9t4e36 12037 9t5e45 12038 9t6e54 12039 9t7e63 12040 9t8e72 12041 9t9e81 12042 sq10e99m1 13440 3dvds2dec 15542 2exp8 16279 19prm 16307 prmlem2 16309 37prm 16310 83prm 16312 139prm 16313 163prm 16314 317prm 16315 631prm 16316 1259lem1 16320 1259lem2 16321 1259lem3 16322 1259lem4 16323 1259lem5 16324 1259prm 16325 2503lem1 16326 2503lem2 16327 2503lem3 16328 2503prm 16329 4001lem1 16330 4001lem2 16331 4001lem3 16332 4001lem4 16333 cnfldfun 20259 tuslem 22579 setsmsds 22789 tnglem 22952 tngds 22960 log2ublem3 25228 log2ub 25229 bposlem8 25569 9p10ne21 28026 dp2lt10 30306 1mhdrd 30338 hgt750lem2 31568 hgt750leme 31574 kur14lem8 32042 sqdeccom12 38604 fmtno5lem1 43081 fmtno5lem3 43083 fmtno5lem4 43084 fmtno5 43085 257prm 43089 fmtno4prmfac 43100 fmtno4nprmfac193 43102 fmtno5fac 43110 139prmALT 43125 127prm 43129 m11nprm 43132 2exp340mod341 43264 tgblthelfgott 43346 tgoldbachlt 43347 |
Copyright terms: Public domain | W3C validator |