| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 9nn0 | Structured version Visualization version GIF version | ||
| Description: 9 is a nonnegative integer. (Contributed by Mario Carneiro, 19-Apr-2015.) |
| Ref | Expression |
|---|---|
| 9nn0 | ⊢ 9 ∈ ℕ0 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 9nn 12245 | . 2 ⊢ 9 ∈ ℕ | |
| 2 | 1 | nnnn0i 12411 | 1 ⊢ 9 ∈ ℕ0 |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 9c9 12209 ℕ0cn0 12403 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 ax-un 7675 ax-1cn 11086 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7356 df-om 7807 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-nn 12148 df-2 12210 df-3 12211 df-4 12212 df-5 12213 df-6 12214 df-7 12215 df-8 12216 df-9 12217 df-n0 12404 |
| This theorem is referenced by: deccl 12625 le9lt10 12637 decsucc 12651 9p2e11 12697 9p3e12 12698 9p4e13 12699 9p5e14 12700 9p6e15 12701 9p7e16 12702 9p8e17 12703 9p9e18 12704 9t3e27 12733 9t4e36 12734 9t5e45 12735 9t6e54 12736 9t7e63 12737 9t8e72 12738 9t9e81 12739 sq10e99m1 14191 3dvds2dec 16263 2exp8 17019 19prm 17048 prmlem2 17050 37prm 17051 83prm 17053 139prm 17054 163prm 17055 317prm 17056 631prm 17057 1259lem1 17061 1259lem2 17062 1259lem3 17063 1259lem4 17064 1259lem5 17065 1259prm 17066 2503lem1 17067 2503lem2 17068 2503lem3 17069 2503prm 17070 4001lem1 17071 4001lem2 17072 4001lem3 17073 4001lem4 17074 dsndxntsetndx 17316 unifndxntsetndx 17323 log2ublem3 26875 log2ub 26876 bposlem8 27219 9p10ne21 30433 dp2lt10 32843 1mhdrd 32875 hgt750lem2 34639 hgt750leme 34645 kur14lem8 35205 60gcd7e1 41998 3exp7 42046 3lexlogpow5ineq1 42047 3lexlogpow5ineq5 42053 aks4d1p1 42069 sqdeccom12 42282 sum9cubes 42665 3cubeslem3r 42680 resqrtvalex 43638 imsqrtvalex 43639 fmtno5lem1 47557 fmtno5lem3 47559 fmtno5lem4 47560 fmtno5 47561 257prm 47565 fmtno4prmfac 47576 fmtno4nprmfac193 47578 fmtno5fac 47586 139prmALT 47600 127prm 47603 m11nprm 47605 2exp340mod341 47737 tgblthelfgott 47819 tgoldbachlt 47820 ackval3012 48697 |
| Copyright terms: Public domain | W3C validator |