| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 9nn0 | Structured version Visualization version GIF version | ||
| Description: 9 is a nonnegative integer. (Contributed by Mario Carneiro, 19-Apr-2015.) |
| Ref | Expression |
|---|---|
| 9nn0 | ⊢ 9 ∈ ℕ0 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 9nn 12336 | . 2 ⊢ 9 ∈ ℕ | |
| 2 | 1 | nnnn0i 12507 | 1 ⊢ 9 ∈ ℕ0 |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2108 9c9 12300 ℕ0cn0 12499 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 ax-un 7727 ax-1cn 11185 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 df-ov 7406 df-om 7860 df-2nd 7987 df-frecs 8278 df-wrecs 8309 df-recs 8383 df-rdg 8422 df-nn 12239 df-2 12301 df-3 12302 df-4 12303 df-5 12304 df-6 12305 df-7 12306 df-8 12307 df-9 12308 df-n0 12500 |
| This theorem is referenced by: deccl 12721 le9lt10 12733 decsucc 12747 9p2e11 12793 9p3e12 12794 9p4e13 12795 9p5e14 12796 9p6e15 12797 9p7e16 12798 9p8e17 12799 9p9e18 12800 9t3e27 12829 9t4e36 12830 9t5e45 12831 9t6e54 12832 9t7e63 12833 9t8e72 12834 9t9e81 12835 sq10e99m1 14281 3dvds2dec 16350 2exp8 17106 19prm 17135 prmlem2 17137 37prm 17138 83prm 17140 139prm 17141 163prm 17142 317prm 17143 631prm 17144 1259lem1 17148 1259lem2 17149 1259lem3 17150 1259lem4 17151 1259lem5 17152 1259prm 17153 2503lem1 17154 2503lem2 17155 2503lem3 17156 2503prm 17157 4001lem1 17158 4001lem2 17159 4001lem3 17160 4001lem4 17161 dsndxntsetndx 17405 unifndxntsetndx 17412 log2ublem3 26908 log2ub 26909 bposlem8 27252 9p10ne21 30397 dp2lt10 32804 1mhdrd 32836 hgt750lem2 34630 hgt750leme 34636 kur14lem8 35181 60gcd7e1 41964 3exp7 42012 3lexlogpow5ineq1 42013 3lexlogpow5ineq5 42019 aks4d1p1 42035 sqdeccom12 42286 sum9cubes 42642 3cubeslem3r 42657 resqrtvalex 43616 imsqrtvalex 43617 fmtno5lem1 47515 fmtno5lem3 47517 fmtno5lem4 47518 fmtno5 47519 257prm 47523 fmtno4prmfac 47534 fmtno4nprmfac193 47536 fmtno5fac 47544 139prmALT 47558 127prm 47561 m11nprm 47563 2exp340mod341 47695 tgblthelfgott 47777 tgoldbachlt 47778 ackval3012 48620 |
| Copyright terms: Public domain | W3C validator |