| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 9nn0 | Structured version Visualization version GIF version | ||
| Description: 9 is a nonnegative integer. (Contributed by Mario Carneiro, 19-Apr-2015.) |
| Ref | Expression |
|---|---|
| 9nn0 | ⊢ 9 ∈ ℕ0 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 9nn 12291 | . 2 ⊢ 9 ∈ ℕ | |
| 2 | 1 | nnnn0i 12457 | 1 ⊢ 9 ∈ ℕ0 |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 9c9 12255 ℕ0cn0 12449 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 ax-un 7714 ax-1cn 11133 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-ov 7393 df-om 7846 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-nn 12194 df-2 12256 df-3 12257 df-4 12258 df-5 12259 df-6 12260 df-7 12261 df-8 12262 df-9 12263 df-n0 12450 |
| This theorem is referenced by: deccl 12671 le9lt10 12683 decsucc 12697 9p2e11 12743 9p3e12 12744 9p4e13 12745 9p5e14 12746 9p6e15 12747 9p7e16 12748 9p8e17 12749 9p9e18 12750 9t3e27 12779 9t4e36 12780 9t5e45 12781 9t6e54 12782 9t7e63 12783 9t8e72 12784 9t9e81 12785 sq10e99m1 14237 3dvds2dec 16310 2exp8 17066 19prm 17095 prmlem2 17097 37prm 17098 83prm 17100 139prm 17101 163prm 17102 317prm 17103 631prm 17104 1259lem1 17108 1259lem2 17109 1259lem3 17110 1259lem4 17111 1259lem5 17112 1259prm 17113 2503lem1 17114 2503lem2 17115 2503lem3 17116 2503prm 17117 4001lem1 17118 4001lem2 17119 4001lem3 17120 4001lem4 17121 dsndxntsetndx 17363 unifndxntsetndx 17370 log2ublem3 26865 log2ub 26866 bposlem8 27209 9p10ne21 30406 dp2lt10 32811 1mhdrd 32843 hgt750lem2 34650 hgt750leme 34656 kur14lem8 35207 60gcd7e1 42000 3exp7 42048 3lexlogpow5ineq1 42049 3lexlogpow5ineq5 42055 aks4d1p1 42071 sqdeccom12 42284 sum9cubes 42667 3cubeslem3r 42682 resqrtvalex 43641 imsqrtvalex 43642 fmtno5lem1 47558 fmtno5lem3 47560 fmtno5lem4 47561 fmtno5 47562 257prm 47566 fmtno4prmfac 47577 fmtno4nprmfac193 47579 fmtno5fac 47587 139prmALT 47601 127prm 47604 m11nprm 47606 2exp340mod341 47738 tgblthelfgott 47820 tgoldbachlt 47821 ackval3012 48685 |
| Copyright terms: Public domain | W3C validator |