| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 9nn0 | Structured version Visualization version GIF version | ||
| Description: 9 is a nonnegative integer. (Contributed by Mario Carneiro, 19-Apr-2015.) |
| Ref | Expression |
|---|---|
| 9nn0 | ⊢ 9 ∈ ℕ0 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 9nn 12260 | . 2 ⊢ 9 ∈ ℕ | |
| 2 | 1 | nnnn0i 12426 | 1 ⊢ 9 ∈ ℕ0 |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 9c9 12224 ℕ0cn0 12418 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 ax-un 7691 ax-1cn 11102 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-ov 7372 df-om 7823 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-nn 12163 df-2 12225 df-3 12226 df-4 12227 df-5 12228 df-6 12229 df-7 12230 df-8 12231 df-9 12232 df-n0 12419 |
| This theorem is referenced by: deccl 12640 le9lt10 12652 decsucc 12666 9p2e11 12712 9p3e12 12713 9p4e13 12714 9p5e14 12715 9p6e15 12716 9p7e16 12717 9p8e17 12718 9p9e18 12719 9t3e27 12748 9t4e36 12749 9t5e45 12750 9t6e54 12751 9t7e63 12752 9t8e72 12753 9t9e81 12754 sq10e99m1 14206 3dvds2dec 16279 2exp8 17035 19prm 17064 prmlem2 17066 37prm 17067 83prm 17069 139prm 17070 163prm 17071 317prm 17072 631prm 17073 1259lem1 17077 1259lem2 17078 1259lem3 17079 1259lem4 17080 1259lem5 17081 1259prm 17082 2503lem1 17083 2503lem2 17084 2503lem3 17085 2503prm 17086 4001lem1 17087 4001lem2 17088 4001lem3 17089 4001lem4 17090 dsndxntsetndx 17332 unifndxntsetndx 17339 log2ublem3 26834 log2ub 26835 bposlem8 27178 9p10ne21 30372 dp2lt10 32777 1mhdrd 32809 hgt750lem2 34616 hgt750leme 34622 kur14lem8 35173 60gcd7e1 41966 3exp7 42014 3lexlogpow5ineq1 42015 3lexlogpow5ineq5 42021 aks4d1p1 42037 sqdeccom12 42250 sum9cubes 42633 3cubeslem3r 42648 resqrtvalex 43607 imsqrtvalex 43608 fmtno5lem1 47527 fmtno5lem3 47529 fmtno5lem4 47530 fmtno5 47531 257prm 47535 fmtno4prmfac 47546 fmtno4nprmfac193 47548 fmtno5fac 47556 139prmALT 47570 127prm 47573 m11nprm 47575 2exp340mod341 47707 tgblthelfgott 47789 tgoldbachlt 47790 ackval3012 48654 |
| Copyright terms: Public domain | W3C validator |