Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 9nn0 | Structured version Visualization version GIF version |
Description: 9 is a nonnegative integer. (Contributed by Mario Carneiro, 19-Apr-2015.) |
Ref | Expression |
---|---|
9nn0 | ⊢ 9 ∈ ℕ0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 9nn 12080 | . 2 ⊢ 9 ∈ ℕ | |
2 | 1 | nnnn0i 12250 | 1 ⊢ 9 ∈ ℕ0 |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2107 9c9 12044 ℕ0cn0 12242 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2710 ax-sep 5224 ax-nul 5231 ax-pr 5353 ax-un 7597 ax-1cn 10938 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-ral 3070 df-rex 3071 df-reu 3073 df-rab 3074 df-v 3435 df-sbc 3718 df-csb 3834 df-dif 3891 df-un 3893 df-in 3895 df-ss 3905 df-pss 3907 df-nul 4258 df-if 4461 df-pw 4536 df-sn 4563 df-pr 4565 df-op 4569 df-uni 4841 df-iun 4927 df-br 5076 df-opab 5138 df-mpt 5159 df-tr 5193 df-id 5490 df-eprel 5496 df-po 5504 df-so 5505 df-fr 5545 df-we 5547 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-pred 6206 df-ord 6273 df-on 6274 df-lim 6275 df-suc 6276 df-iota 6395 df-fun 6439 df-fn 6440 df-f 6441 df-f1 6442 df-fo 6443 df-f1o 6444 df-fv 6445 df-ov 7287 df-om 7722 df-2nd 7841 df-frecs 8106 df-wrecs 8137 df-recs 8211 df-rdg 8250 df-nn 11983 df-2 12045 df-3 12046 df-4 12047 df-5 12048 df-6 12049 df-7 12050 df-8 12051 df-9 12052 df-n0 12243 |
This theorem is referenced by: deccl 12461 le9lt10 12473 decsucc 12487 9p2e11 12533 9p3e12 12534 9p4e13 12535 9p5e14 12536 9p6e15 12537 9p7e16 12538 9p8e17 12539 9p9e18 12540 9t3e27 12569 9t4e36 12570 9t5e45 12571 9t6e54 12572 9t7e63 12573 9t8e72 12574 9t9e81 12575 sq10e99m1 13988 3dvds2dec 16051 2exp8 16799 19prm 16828 prmlem2 16830 37prm 16831 83prm 16833 139prm 16834 163prm 16835 317prm 16836 631prm 16837 1259lem1 16841 1259lem2 16842 1259lem3 16843 1259lem4 16844 1259lem5 16845 1259prm 16846 2503lem1 16847 2503lem2 16848 2503lem3 16849 2503prm 16850 4001lem1 16851 4001lem2 16852 4001lem3 16853 4001lem4 16854 dsndxntsetndx 17112 unifndxntsetndx 17119 cnfldfunALTOLD 20620 tuslemOLD 23428 setsmsdsOLD 23640 tnglemOLD 23806 tngdsOLD 23821 log2ublem3 26107 log2ub 26108 bposlem8 26448 9p10ne21 28843 dp2lt10 31167 1mhdrd 31199 hgt750lem2 32641 hgt750leme 32647 kur14lem8 33184 60gcd7e1 40020 3exp7 40068 3lexlogpow5ineq1 40069 3lexlogpow5ineq5 40075 aks4d1p1 40091 sqdeccom12 40324 3cubeslem3r 40516 resqrtvalex 41260 imsqrtvalex 41261 fmtno5lem1 45016 fmtno5lem3 45018 fmtno5lem4 45019 fmtno5 45020 257prm 45024 fmtno4prmfac 45035 fmtno4nprmfac193 45037 fmtno5fac 45045 139prmALT 45059 127prm 45062 m11nprm 45064 2exp340mod341 45196 tgblthelfgott 45278 tgoldbachlt 45279 ackval3012 46049 |
Copyright terms: Public domain | W3C validator |