| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 6nn0 | Structured version Visualization version GIF version | ||
| Description: 6 is a nonnegative integer. (Contributed by Mario Carneiro, 19-Apr-2015.) |
| Ref | Expression |
|---|---|
| 6nn0 | ⊢ 6 ∈ ℕ0 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 6nn 12329 | . 2 ⊢ 6 ∈ ℕ | |
| 2 | 1 | nnnn0i 12509 | 1 ⊢ 6 ∈ ℕ0 |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2108 6c6 12299 ℕ0cn0 12501 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 ax-un 7729 ax-1cn 11187 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-ov 7408 df-om 7862 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-nn 12241 df-2 12303 df-3 12304 df-4 12305 df-5 12306 df-6 12307 df-n0 12502 |
| This theorem is referenced by: 6p5e11 12781 6p6e12 12782 7p7e14 12787 8p7e15 12793 9p7e16 12800 9p8e17 12801 6t3e18 12813 6t4e24 12814 6t5e30 12815 6t6e36 12816 7t7e49 12822 8t3e24 12824 8t7e56 12828 8t8e64 12829 9t4e36 12832 9t5e45 12833 9t7e63 12835 9t8e72 12836 6lcm4e12 16635 2exp7 17107 2exp8 17108 2exp11 17109 2exp16 17110 2expltfac 17112 19prm 17137 prmlem2 17139 37prm 17140 43prm 17141 139prm 17143 163prm 17144 317prm 17145 631prm 17146 1259lem1 17150 1259lem2 17151 1259lem3 17152 1259lem4 17153 1259lem5 17154 2503lem1 17156 2503lem2 17157 2503lem3 17158 2503prm 17159 4001lem1 17160 4001lem2 17161 4001lem3 17162 4001lem4 17163 4001prm 17164 slotsdnscsi 17406 log2ublem2 26909 log2ublem3 26910 log2ub 26911 log2le1 26912 birthday 26916 bclbnd 27243 bpos1 27246 bposlem8 27254 bposlem9 27255 bpos 27256 slotsinbpsd 28420 slotslnbpsd 28421 lngndxnitvndx 28422 eengstr 28959 ex-exp 30431 cos9thpiminplylem5 33820 hgt750lemd 34680 hgt750lem 34683 hgt750lem2 34684 kur14lem8 35235 420gcd8e4 42019 12lcm5e60 42021 60lcm7e420 42023 lcmineqlem 42065 3exp7 42066 3lexlogpow5ineq1 42067 3lexlogpow5ineq5 42073 aks4d1p1p7 42087 aks4d1p1p5 42088 aks4d1p1 42089 235t711 42354 ex-decpmul 42355 3cubeslem3l 42709 3cubeslem3r 42710 expdiophlem2 43046 resqrtvalex 43669 imsqrtvalex 43670 wallispi2lem2 46101 fmtno2 47564 fmtno3 47565 fmtno4 47566 fmtno5lem1 47567 fmtno5lem2 47568 fmtno5lem3 47569 fmtno5lem4 47570 fmtno5 47571 257prm 47575 fmtno4prmfac 47586 fmtno4nprmfac193 47588 fmtno5faclem1 47593 fmtno5faclem2 47594 fmtno5faclem3 47595 fmtno5fac 47596 fmtno5nprm 47597 139prmALT 47610 127prm 47613 m11nprm 47615 2exp340mod341 47747 8exp8mod9 47750 ackval41 48675 ackval42 48676 |
| Copyright terms: Public domain | W3C validator |