| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 6nn0 | Structured version Visualization version GIF version | ||
| Description: 6 is a nonnegative integer. (Contributed by Mario Carneiro, 19-Apr-2015.) |
| Ref | Expression |
|---|---|
| 6nn0 | ⊢ 6 ∈ ℕ0 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 6nn 12209 | . 2 ⊢ 6 ∈ ℕ | |
| 2 | 1 | nnnn0i 12384 | 1 ⊢ 6 ∈ ℕ0 |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2111 6c6 12179 ℕ0cn0 12376 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pr 5365 ax-un 7663 ax-1cn 11059 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-ov 7344 df-om 7792 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-nn 12121 df-2 12183 df-3 12184 df-4 12185 df-5 12186 df-6 12187 df-n0 12377 |
| This theorem is referenced by: 6p5e11 12656 6p6e12 12657 7p7e14 12662 8p7e15 12668 9p7e16 12675 9p8e17 12676 6t3e18 12688 6t4e24 12689 6t5e30 12690 6t6e36 12691 7t7e49 12697 8t3e24 12699 8t7e56 12703 8t8e64 12704 9t4e36 12707 9t5e45 12708 9t7e63 12710 9t8e72 12711 6lcm4e12 16522 2exp7 16994 2exp8 16995 2exp11 16996 2exp16 16997 2expltfac 16999 19prm 17024 prmlem2 17026 37prm 17027 43prm 17028 139prm 17030 163prm 17031 317prm 17032 631prm 17033 1259lem1 17037 1259lem2 17038 1259lem3 17039 1259lem4 17040 1259lem5 17041 2503lem1 17043 2503lem2 17044 2503lem3 17045 2503prm 17046 4001lem1 17047 4001lem2 17048 4001lem3 17049 4001lem4 17050 4001prm 17051 slotsdnscsi 17291 log2ublem2 26879 log2ublem3 26880 log2ub 26881 log2le1 26882 birthday 26886 bclbnd 27213 bpos1 27216 bposlem8 27224 bposlem9 27225 bpos 27226 slotsinbpsd 28414 slotslnbpsd 28415 lngndxnitvndx 28416 eengstr 28953 ex-exp 30422 cos9thpiminplylem5 33791 hgt750lemd 34653 hgt750lem 34656 hgt750lem2 34657 kur14lem8 35249 420gcd8e4 42039 12lcm5e60 42041 60lcm7e420 42043 lcmineqlem 42085 3exp7 42086 3lexlogpow5ineq1 42087 3lexlogpow5ineq5 42093 aks4d1p1p7 42107 aks4d1p1p5 42108 aks4d1p1 42109 235t711 42338 ex-decpmul 42339 3cubeslem3l 42719 3cubeslem3r 42720 expdiophlem2 43055 resqrtvalex 43678 imsqrtvalex 43679 wallispi2lem2 46110 fmtno2 47581 fmtno3 47582 fmtno4 47583 fmtno5lem1 47584 fmtno5lem2 47585 fmtno5lem3 47586 fmtno5lem4 47587 fmtno5 47588 257prm 47592 fmtno4prmfac 47603 fmtno4nprmfac193 47605 fmtno5faclem1 47610 fmtno5faclem2 47611 fmtno5faclem3 47612 fmtno5fac 47613 fmtno5nprm 47614 139prmALT 47627 127prm 47630 m11nprm 47632 2exp340mod341 47764 8exp8mod9 47767 ackval41 48727 ackval42 48728 |
| Copyright terms: Public domain | W3C validator |