Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 6nn0 | Structured version Visualization version GIF version |
Description: 6 is a nonnegative integer. (Contributed by Mario Carneiro, 19-Apr-2015.) |
Ref | Expression |
---|---|
6nn0 | ⊢ 6 ∈ ℕ0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 6nn 11967 | . 2 ⊢ 6 ∈ ℕ | |
2 | 1 | nnnn0i 12146 | 1 ⊢ 6 ∈ ℕ0 |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2112 6c6 11937 ℕ0cn0 12138 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2160 ax-12 2177 ax-ext 2710 ax-sep 5216 ax-nul 5223 ax-pr 5346 ax-un 7563 ax-1cn 10835 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2073 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2818 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3071 df-rab 3073 df-v 3425 df-sbc 3713 df-csb 3830 df-dif 3887 df-un 3889 df-in 3891 df-ss 3901 df-pss 3903 df-nul 4255 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5153 df-tr 5186 df-id 5479 df-eprel 5485 df-po 5493 df-so 5494 df-fr 5534 df-we 5536 df-xp 5585 df-rel 5586 df-cnv 5587 df-co 5588 df-dm 5589 df-rn 5590 df-res 5591 df-ima 5592 df-pred 6189 df-ord 6251 df-on 6252 df-lim 6253 df-suc 6254 df-iota 6373 df-fun 6417 df-fn 6418 df-f 6419 df-f1 6420 df-fo 6421 df-f1o 6422 df-fv 6423 df-ov 7255 df-om 7685 df-wrecs 8089 df-recs 8150 df-rdg 8188 df-nn 11879 df-2 11941 df-3 11942 df-4 11943 df-5 11944 df-6 11945 df-n0 12139 |
This theorem is referenced by: 6p5e11 12414 6p6e12 12415 7p7e14 12420 8p7e15 12426 9p7e16 12433 9p8e17 12434 6t3e18 12446 6t4e24 12447 6t5e30 12448 6t6e36 12449 7t7e49 12455 8t3e24 12457 8t7e56 12461 8t8e64 12462 9t4e36 12465 9t5e45 12466 9t7e63 12468 9t8e72 12469 6lcm4e12 16224 2exp7 16692 2exp8 16693 2exp11 16694 2exp16 16695 2expltfac 16697 19prm 16722 prmlem2 16724 37prm 16725 43prm 16726 139prm 16728 163prm 16729 317prm 16730 631prm 16731 1259lem1 16735 1259lem2 16736 1259lem3 16737 1259lem4 16738 1259lem5 16739 2503lem1 16741 2503lem2 16742 2503lem3 16743 2503prm 16744 4001lem1 16745 4001lem2 16746 4001lem3 16747 4001lem4 16748 4001prm 16749 slotsdnscsi 16998 log2ublem2 25977 log2ublem3 25978 log2ub 25979 log2le1 25980 birthday 25984 bclbnd 26308 bpos1 26311 bposlem8 26319 bposlem9 26320 bpos 26321 slotsinbpsd 26682 slotslnbpsd 26683 ttgval 27115 ttglemOLD 27117 ttgbasOLD 27119 ttgplusgOLD 27121 ttgvscaOLD 27124 eengstr 27226 ex-exp 28690 zlmds 31789 hgt750lemd 32503 hgt750lem 32506 hgt750lem2 32507 kur14lem8 33050 420gcd8e4 39921 12lcm5e60 39923 60lcm7e420 39925 lcmineqlem 39967 3exp7 39968 3lexlogpow5ineq1 39969 3lexlogpow5ineq5 39975 aks4d1p1p7 39988 aks4d1p1p5 39989 aks4d1p1 39990 235t711 40212 ex-decpmul 40213 3cubeslem3l 40396 3cubeslem3r 40397 expdiophlem2 40732 resqrtvalex 41114 imsqrtvalex 41115 wallispi2lem2 43476 fmtno2 44863 fmtno3 44864 fmtno4 44865 fmtno5lem1 44866 fmtno5lem2 44867 fmtno5lem3 44868 fmtno5lem4 44869 fmtno5 44870 257prm 44874 fmtno4prmfac 44885 fmtno4nprmfac193 44887 fmtno5faclem1 44892 fmtno5faclem2 44893 fmtno5faclem3 44894 fmtno5fac 44895 fmtno5nprm 44896 139prmALT 44909 127prm 44912 m11nprm 44914 2exp340mod341 45046 8exp8mod9 45049 ackval41 45902 ackval42 45903 |
Copyright terms: Public domain | W3C validator |