| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 6nn0 | Structured version Visualization version GIF version | ||
| Description: 6 is a nonnegative integer. (Contributed by Mario Carneiro, 19-Apr-2015.) |
| Ref | Expression |
|---|---|
| 6nn0 | ⊢ 6 ∈ ℕ0 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 6nn 12236 | . 2 ⊢ 6 ∈ ℕ | |
| 2 | 1 | nnnn0i 12411 | 1 ⊢ 6 ∈ ℕ0 |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 6c6 12206 ℕ0cn0 12403 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 ax-un 7675 ax-1cn 11086 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7356 df-om 7807 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-nn 12148 df-2 12210 df-3 12211 df-4 12212 df-5 12213 df-6 12214 df-n0 12404 |
| This theorem is referenced by: 6p5e11 12683 6p6e12 12684 7p7e14 12689 8p7e15 12695 9p7e16 12702 9p8e17 12703 6t3e18 12715 6t4e24 12716 6t5e30 12717 6t6e36 12718 7t7e49 12724 8t3e24 12726 8t7e56 12730 8t8e64 12731 9t4e36 12734 9t5e45 12735 9t7e63 12737 9t8e72 12738 6lcm4e12 16546 2exp7 17018 2exp8 17019 2exp11 17020 2exp16 17021 2expltfac 17023 19prm 17048 prmlem2 17050 37prm 17051 43prm 17052 139prm 17054 163prm 17055 317prm 17056 631prm 17057 1259lem1 17061 1259lem2 17062 1259lem3 17063 1259lem4 17064 1259lem5 17065 2503lem1 17067 2503lem2 17068 2503lem3 17069 2503prm 17070 4001lem1 17071 4001lem2 17072 4001lem3 17073 4001lem4 17074 4001prm 17075 slotsdnscsi 17315 log2ublem2 26874 log2ublem3 26875 log2ub 26876 log2le1 26877 birthday 26881 bclbnd 27208 bpos1 27211 bposlem8 27219 bposlem9 27220 bpos 27221 slotsinbpsd 28405 slotslnbpsd 28406 lngndxnitvndx 28407 eengstr 28944 ex-exp 30413 cos9thpiminplylem5 33772 hgt750lemd 34635 hgt750lem 34638 hgt750lem2 34639 kur14lem8 35205 420gcd8e4 41999 12lcm5e60 42001 60lcm7e420 42003 lcmineqlem 42045 3exp7 42046 3lexlogpow5ineq1 42047 3lexlogpow5ineq5 42053 aks4d1p1p7 42067 aks4d1p1p5 42068 aks4d1p1 42069 235t711 42298 ex-decpmul 42299 3cubeslem3l 42679 3cubeslem3r 42680 expdiophlem2 43015 resqrtvalex 43638 imsqrtvalex 43639 wallispi2lem2 46073 fmtno2 47554 fmtno3 47555 fmtno4 47556 fmtno5lem1 47557 fmtno5lem2 47558 fmtno5lem3 47559 fmtno5lem4 47560 fmtno5 47561 257prm 47565 fmtno4prmfac 47576 fmtno4nprmfac193 47578 fmtno5faclem1 47583 fmtno5faclem2 47584 fmtno5faclem3 47585 fmtno5fac 47586 fmtno5nprm 47587 139prmALT 47600 127prm 47603 m11nprm 47605 2exp340mod341 47737 8exp8mod9 47740 ackval41 48700 ackval42 48701 |
| Copyright terms: Public domain | W3C validator |