| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 6nn0 | Structured version Visualization version GIF version | ||
| Description: 6 is a nonnegative integer. (Contributed by Mario Carneiro, 19-Apr-2015.) |
| Ref | Expression |
|---|---|
| 6nn0 | ⊢ 6 ∈ ℕ0 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 6nn 12282 | . 2 ⊢ 6 ∈ ℕ | |
| 2 | 1 | nnnn0i 12457 | 1 ⊢ 6 ∈ ℕ0 |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 6c6 12252 ℕ0cn0 12449 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 ax-un 7714 ax-1cn 11133 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-ov 7393 df-om 7846 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-nn 12194 df-2 12256 df-3 12257 df-4 12258 df-5 12259 df-6 12260 df-n0 12450 |
| This theorem is referenced by: 6p5e11 12729 6p6e12 12730 7p7e14 12735 8p7e15 12741 9p7e16 12748 9p8e17 12749 6t3e18 12761 6t4e24 12762 6t5e30 12763 6t6e36 12764 7t7e49 12770 8t3e24 12772 8t7e56 12776 8t8e64 12777 9t4e36 12780 9t5e45 12781 9t7e63 12783 9t8e72 12784 6lcm4e12 16593 2exp7 17065 2exp8 17066 2exp11 17067 2exp16 17068 2expltfac 17070 19prm 17095 prmlem2 17097 37prm 17098 43prm 17099 139prm 17101 163prm 17102 317prm 17103 631prm 17104 1259lem1 17108 1259lem2 17109 1259lem3 17110 1259lem4 17111 1259lem5 17112 2503lem1 17114 2503lem2 17115 2503lem3 17116 2503prm 17117 4001lem1 17118 4001lem2 17119 4001lem3 17120 4001lem4 17121 4001prm 17122 slotsdnscsi 17362 log2ublem2 26864 log2ublem3 26865 log2ub 26866 log2le1 26867 birthday 26871 bclbnd 27198 bpos1 27201 bposlem8 27209 bposlem9 27210 bpos 27211 slotsinbpsd 28375 slotslnbpsd 28376 lngndxnitvndx 28377 eengstr 28914 ex-exp 30386 cos9thpiminplylem5 33783 hgt750lemd 34646 hgt750lem 34649 hgt750lem2 34650 kur14lem8 35207 420gcd8e4 42001 12lcm5e60 42003 60lcm7e420 42005 lcmineqlem 42047 3exp7 42048 3lexlogpow5ineq1 42049 3lexlogpow5ineq5 42055 aks4d1p1p7 42069 aks4d1p1p5 42070 aks4d1p1 42071 235t711 42300 ex-decpmul 42301 3cubeslem3l 42681 3cubeslem3r 42682 expdiophlem2 43018 resqrtvalex 43641 imsqrtvalex 43642 wallispi2lem2 46077 fmtno2 47555 fmtno3 47556 fmtno4 47557 fmtno5lem1 47558 fmtno5lem2 47559 fmtno5lem3 47560 fmtno5lem4 47561 fmtno5 47562 257prm 47566 fmtno4prmfac 47577 fmtno4nprmfac193 47579 fmtno5faclem1 47584 fmtno5faclem2 47585 fmtno5faclem3 47586 fmtno5fac 47587 fmtno5nprm 47588 139prmALT 47601 127prm 47604 m11nprm 47606 2exp340mod341 47738 8exp8mod9 47741 ackval41 48688 ackval42 48689 |
| Copyright terms: Public domain | W3C validator |