![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 6nn0 | Structured version Visualization version GIF version |
Description: 6 is a nonnegative integer. (Contributed by Mario Carneiro, 19-Apr-2015.) |
Ref | Expression |
---|---|
6nn0 | ⊢ 6 ∈ ℕ0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 6nn 12339 | . 2 ⊢ 6 ∈ ℕ | |
2 | 1 | nnnn0i 12518 | 1 ⊢ 6 ∈ ℕ0 |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2098 6c6 12309 ℕ0cn0 12510 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-sep 5303 ax-nul 5310 ax-pr 5433 ax-un 7746 ax-1cn 11204 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-ral 3059 df-rex 3068 df-reu 3375 df-rab 3431 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4327 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-iun 5002 df-br 5153 df-opab 5215 df-mpt 5236 df-tr 5270 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-pred 6310 df-ord 6377 df-on 6378 df-lim 6379 df-suc 6380 df-iota 6505 df-fun 6555 df-fn 6556 df-f 6557 df-f1 6558 df-fo 6559 df-f1o 6560 df-fv 6561 df-ov 7429 df-om 7877 df-2nd 8000 df-frecs 8293 df-wrecs 8324 df-recs 8398 df-rdg 8437 df-nn 12251 df-2 12313 df-3 12314 df-4 12315 df-5 12316 df-6 12317 df-n0 12511 |
This theorem is referenced by: 6p5e11 12788 6p6e12 12789 7p7e14 12794 8p7e15 12800 9p7e16 12807 9p8e17 12808 6t3e18 12820 6t4e24 12821 6t5e30 12822 6t6e36 12823 7t7e49 12829 8t3e24 12831 8t7e56 12835 8t8e64 12836 9t4e36 12839 9t5e45 12840 9t7e63 12842 9t8e72 12843 6lcm4e12 16594 2exp7 17064 2exp8 17065 2exp11 17066 2exp16 17067 2expltfac 17069 19prm 17094 prmlem2 17096 37prm 17097 43prm 17098 139prm 17100 163prm 17101 317prm 17102 631prm 17103 1259lem1 17107 1259lem2 17108 1259lem3 17109 1259lem4 17110 1259lem5 17111 2503lem1 17113 2503lem2 17114 2503lem3 17115 2503prm 17116 4001lem1 17117 4001lem2 17118 4001lem3 17119 4001lem4 17120 4001prm 17121 slotsdnscsi 17380 log2ublem2 26899 log2ublem3 26900 log2ub 26901 log2le1 26902 birthday 26906 bclbnd 27233 bpos1 27236 bposlem8 27244 bposlem9 27245 bpos 27246 slotsinbpsd 28265 slotslnbpsd 28266 lngndxnitvndx 28267 ttgvalOLD 28700 ttglemOLD 28702 ttgbasOLD 28704 ttgplusgOLD 28706 ttgvscaOLD 28709 eengstr 28811 ex-exp 30280 zlmdsOLD 33597 hgt750lemd 34313 hgt750lem 34316 hgt750lem2 34317 kur14lem8 34856 420gcd8e4 41509 12lcm5e60 41511 60lcm7e420 41513 lcmineqlem 41555 3exp7 41556 3lexlogpow5ineq1 41557 3lexlogpow5ineq5 41563 aks4d1p1p7 41577 aks4d1p1p5 41578 aks4d1p1 41579 235t711 41898 ex-decpmul 41899 3cubeslem3l 42137 3cubeslem3r 42138 expdiophlem2 42474 resqrtvalex 43106 imsqrtvalex 43107 wallispi2lem2 45489 fmtno2 46919 fmtno3 46920 fmtno4 46921 fmtno5lem1 46922 fmtno5lem2 46923 fmtno5lem3 46924 fmtno5lem4 46925 fmtno5 46926 257prm 46930 fmtno4prmfac 46941 fmtno4nprmfac193 46943 fmtno5faclem1 46948 fmtno5faclem2 46949 fmtno5faclem3 46950 fmtno5fac 46951 fmtno5nprm 46952 139prmALT 46965 127prm 46968 m11nprm 46970 2exp340mod341 47102 8exp8mod9 47105 ackval41 47846 ackval42 47847 |
Copyright terms: Public domain | W3C validator |