Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 6nn0 | Structured version Visualization version GIF version |
Description: 6 is a nonnegative integer. (Contributed by Mario Carneiro, 19-Apr-2015.) |
Ref | Expression |
---|---|
6nn0 | ⊢ 6 ∈ ℕ0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 6nn 12062 | . 2 ⊢ 6 ∈ ℕ | |
2 | 1 | nnnn0i 12241 | 1 ⊢ 6 ∈ ℕ0 |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2106 6c6 12032 ℕ0cn0 12233 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 ax-un 7588 ax-1cn 10929 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-ov 7278 df-om 7713 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-nn 11974 df-2 12036 df-3 12037 df-4 12038 df-5 12039 df-6 12040 df-n0 12234 |
This theorem is referenced by: 6p5e11 12510 6p6e12 12511 7p7e14 12516 8p7e15 12522 9p7e16 12529 9p8e17 12530 6t3e18 12542 6t4e24 12543 6t5e30 12544 6t6e36 12545 7t7e49 12551 8t3e24 12553 8t7e56 12557 8t8e64 12558 9t4e36 12561 9t5e45 12562 9t7e63 12564 9t8e72 12565 6lcm4e12 16321 2exp7 16789 2exp8 16790 2exp11 16791 2exp16 16792 2expltfac 16794 19prm 16819 prmlem2 16821 37prm 16822 43prm 16823 139prm 16825 163prm 16826 317prm 16827 631prm 16828 1259lem1 16832 1259lem2 16833 1259lem3 16834 1259lem4 16835 1259lem5 16836 2503lem1 16838 2503lem2 16839 2503lem3 16840 2503prm 16841 4001lem1 16842 4001lem2 16843 4001lem3 16844 4001lem4 16845 4001prm 16846 slotsdnscsi 17102 log2ublem2 26097 log2ublem3 26098 log2ub 26099 log2le1 26100 birthday 26104 bclbnd 26428 bpos1 26431 bposlem8 26439 bposlem9 26440 bpos 26441 slotsinbpsd 26802 slotslnbpsd 26803 lngndxnitvndx 26804 ttgvalOLD 27237 ttglemOLD 27239 ttgbasOLD 27241 ttgplusgOLD 27243 ttgvscaOLD 27246 eengstr 27348 ex-exp 28814 zlmdsOLD 31913 hgt750lemd 32628 hgt750lem 32631 hgt750lem2 32632 kur14lem8 33175 420gcd8e4 40014 12lcm5e60 40016 60lcm7e420 40018 lcmineqlem 40060 3exp7 40061 3lexlogpow5ineq1 40062 3lexlogpow5ineq5 40068 aks4d1p1p7 40082 aks4d1p1p5 40083 aks4d1p1 40084 235t711 40319 ex-decpmul 40320 3cubeslem3l 40508 3cubeslem3r 40509 expdiophlem2 40844 resqrtvalex 41253 imsqrtvalex 41254 wallispi2lem2 43613 fmtno2 45002 fmtno3 45003 fmtno4 45004 fmtno5lem1 45005 fmtno5lem2 45006 fmtno5lem3 45007 fmtno5lem4 45008 fmtno5 45009 257prm 45013 fmtno4prmfac 45024 fmtno4nprmfac193 45026 fmtno5faclem1 45031 fmtno5faclem2 45032 fmtno5faclem3 45033 fmtno5fac 45034 fmtno5nprm 45035 139prmALT 45048 127prm 45051 m11nprm 45053 2exp340mod341 45185 8exp8mod9 45188 ackval41 46041 ackval42 46042 |
Copyright terms: Public domain | W3C validator |