![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 6nn0 | Structured version Visualization version GIF version |
Description: 6 is a nonnegative integer. (Contributed by Mario Carneiro, 19-Apr-2015.) |
Ref | Expression |
---|---|
6nn0 | ⊢ 6 ∈ ℕ0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 6nn 12352 | . 2 ⊢ 6 ∈ ℕ | |
2 | 1 | nnnn0i 12531 | 1 ⊢ 6 ∈ ℕ0 |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2105 6c6 12322 ℕ0cn0 12523 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-sep 5301 ax-nul 5311 ax-pr 5437 ax-un 7753 ax-1cn 11210 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-ral 3059 df-rex 3068 df-reu 3378 df-rab 3433 df-v 3479 df-sbc 3791 df-csb 3908 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-pss 3982 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-iun 4997 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5582 df-eprel 5588 df-po 5596 df-so 5597 df-fr 5640 df-we 5642 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-pred 6322 df-ord 6388 df-on 6389 df-lim 6390 df-suc 6391 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-f1 6567 df-fo 6568 df-f1o 6569 df-fv 6570 df-ov 7433 df-om 7887 df-2nd 8013 df-frecs 8304 df-wrecs 8335 df-recs 8409 df-rdg 8448 df-nn 12264 df-2 12326 df-3 12327 df-4 12328 df-5 12329 df-6 12330 df-n0 12524 |
This theorem is referenced by: 6p5e11 12803 6p6e12 12804 7p7e14 12809 8p7e15 12815 9p7e16 12822 9p8e17 12823 6t3e18 12835 6t4e24 12836 6t5e30 12837 6t6e36 12838 7t7e49 12844 8t3e24 12846 8t7e56 12850 8t8e64 12851 9t4e36 12854 9t5e45 12855 9t7e63 12857 9t8e72 12858 6lcm4e12 16649 2exp7 17121 2exp8 17122 2exp11 17123 2exp16 17124 2expltfac 17126 19prm 17151 prmlem2 17153 37prm 17154 43prm 17155 139prm 17157 163prm 17158 317prm 17159 631prm 17160 1259lem1 17164 1259lem2 17165 1259lem3 17166 1259lem4 17167 1259lem5 17168 2503lem1 17170 2503lem2 17171 2503lem3 17172 2503prm 17173 4001lem1 17174 4001lem2 17175 4001lem3 17176 4001lem4 17177 4001prm 17178 slotsdnscsi 17437 log2ublem2 27004 log2ublem3 27005 log2ub 27006 log2le1 27007 birthday 27011 bclbnd 27338 bpos1 27341 bposlem8 27349 bposlem9 27350 bpos 27351 slotsinbpsd 28463 slotslnbpsd 28464 lngndxnitvndx 28465 ttgvalOLD 28898 ttglemOLD 28900 ttgbasOLD 28902 ttgplusgOLD 28904 ttgvscaOLD 28907 eengstr 29009 ex-exp 30478 zlmdsOLD 33923 hgt750lemd 34641 hgt750lem 34644 hgt750lem2 34645 kur14lem8 35197 420gcd8e4 41987 12lcm5e60 41989 60lcm7e420 41991 lcmineqlem 42033 3exp7 42034 3lexlogpow5ineq1 42035 3lexlogpow5ineq5 42041 aks4d1p1p7 42055 aks4d1p1p5 42056 aks4d1p1 42057 235t711 42317 ex-decpmul 42318 3cubeslem3l 42673 3cubeslem3r 42674 expdiophlem2 43010 resqrtvalex 43634 imsqrtvalex 43635 wallispi2lem2 46027 fmtno2 47474 fmtno3 47475 fmtno4 47476 fmtno5lem1 47477 fmtno5lem2 47478 fmtno5lem3 47479 fmtno5lem4 47480 fmtno5 47481 257prm 47485 fmtno4prmfac 47496 fmtno4nprmfac193 47498 fmtno5faclem1 47503 fmtno5faclem2 47504 fmtno5faclem3 47505 fmtno5fac 47506 fmtno5nprm 47507 139prmALT 47520 127prm 47523 m11nprm 47525 2exp340mod341 47657 8exp8mod9 47660 ackval41 48544 ackval42 48545 |
Copyright terms: Public domain | W3C validator |