Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 5nn0 | Structured version Visualization version GIF version |
Description: 5 is a nonnegative integer. (Contributed by Mario Carneiro, 19-Apr-2015.) |
Ref | Expression |
---|---|
5nn0 | ⊢ 5 ∈ ℕ0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 5nn 12059 | . 2 ⊢ 5 ∈ ℕ | |
2 | 1 | nnnn0i 12241 | 1 ⊢ 5 ∈ ℕ0 |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2106 5c5 12031 ℕ0cn0 12233 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 ax-un 7588 ax-1cn 10929 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-ov 7278 df-om 7713 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-nn 11974 df-2 12036 df-3 12037 df-4 12038 df-5 12039 df-n0 12234 |
This theorem is referenced by: 6p6e12 12511 7p6e13 12515 8p6e14 12521 8p8e16 12523 9p6e15 12528 9p7e16 12529 5t2e10 12537 5t3e15 12538 5t4e20 12539 5t5e25 12540 6t6e36 12545 7t5e35 12549 7t6e42 12550 8t6e48 12556 8t8e64 12558 9t5e45 12562 9t6e54 12563 9t7e63 12564 dec2dvds 16764 dec5dvds2 16766 2exp8 16790 2exp11 16791 2exp16 16792 prmlem1 16809 5prm 16810 7prm 16812 11prm 16816 13prm 16817 17prm 16818 19prm 16819 prmlem2 16821 37prm 16822 139prm 16825 163prm 16826 317prm 16827 631prm 16828 1259lem1 16832 1259lem2 16833 1259lem3 16834 1259lem4 16835 1259lem5 16836 1259prm 16837 2503lem1 16838 2503lem2 16839 2503lem3 16840 2503prm 16841 4001lem1 16842 4001lem2 16843 4001lem3 16844 4001lem4 16845 4001prm 16846 slotsdnscsi 17102 slotsbhcdif 17125 slotsbhcdifOLD 17126 quart1cl 26004 quart1lem 26005 quart1 26006 log2ublem1 26096 log2ublem3 26098 log2ub 26099 log2le1 26100 birthday 26104 ppiublem2 26351 bpos1 26431 bposlem8 26439 ex-fac 28815 threehalves 31189 zlmdsOLD 31913 hgt750lemd 32628 hgt750lem2 32632 hgt750leme 32638 kur14lem8 33175 420gcd8e4 40014 12lcm5e60 40016 lcmineqlem 40060 3lexlogpow5ineq1 40062 3lexlogpow5ineq2 40063 3lexlogpow5ineq4 40064 3lexlogpow5ineq3 40065 3lexlogpow2ineq2 40067 3lexlogpow5ineq5 40068 aks4d1lem1 40070 aks4d1p1p3 40077 aks4d1p1p2 40078 aks4d1p1p4 40079 aks4d1p1p6 40081 aks4d1p1p7 40082 aks4d1p1p5 40083 aks4d1p1 40084 aks4d1p2 40085 aks4d1p3 40086 aks4d1p5 40088 aks4d1p6 40089 aks4d1p7d1 40090 aks4d1p7 40091 aks4d1p8 40095 sqn5i 40313 235t711 40319 ex-decpmul 40320 3cubeslem3l 40508 3cubeslem3r 40509 resqrtvalex 41253 imsqrtvalex 41254 inductionexd 41765 fmtno3 45003 fmtno4 45004 fmtno5lem1 45005 fmtno5lem2 45006 fmtno5lem3 45007 fmtno5lem4 45008 fmtno5 45009 257prm 45013 fmtno4prmfac 45024 fmtno4prmfac193 45025 fmtno4nprmfac193 45026 fmtno5faclem3 45033 flsqrt5 45046 139prmALT 45048 31prm 45049 127prm 45051 41prothprmlem2 45070 2exp340mod341 45185 linevalexample 45736 ackval2012 46037 ackval3012 46038 ackval41 46041 |
Copyright terms: Public domain | W3C validator |