Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 5nn0 | Structured version Visualization version GIF version |
Description: 5 is a nonnegative integer. (Contributed by Mario Carneiro, 19-Apr-2015.) |
Ref | Expression |
---|---|
5nn0 | ⊢ 5 ∈ ℕ0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 5nn 12059 | . 2 ⊢ 5 ∈ ℕ | |
2 | 1 | nnnn0i 12241 | 1 ⊢ 5 ∈ ℕ0 |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2110 5c5 12031 ℕ0cn0 12233 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-sep 5227 ax-nul 5234 ax-pr 5356 ax-un 7582 ax-1cn 10930 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-ral 3071 df-rex 3072 df-reu 3073 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-iun 4932 df-br 5080 df-opab 5142 df-mpt 5163 df-tr 5197 df-id 5490 df-eprel 5496 df-po 5504 df-so 5505 df-fr 5545 df-we 5547 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-pred 6201 df-ord 6268 df-on 6269 df-lim 6270 df-suc 6271 df-iota 6390 df-fun 6434 df-fn 6435 df-f 6436 df-f1 6437 df-fo 6438 df-f1o 6439 df-fv 6440 df-ov 7274 df-om 7707 df-2nd 7825 df-frecs 8088 df-wrecs 8119 df-recs 8193 df-rdg 8232 df-nn 11974 df-2 12036 df-3 12037 df-4 12038 df-5 12039 df-n0 12234 |
This theorem is referenced by: 6p6e12 12510 7p6e13 12514 8p6e14 12520 8p8e16 12522 9p6e15 12527 9p7e16 12528 5t2e10 12536 5t3e15 12537 5t4e20 12538 5t5e25 12539 6t6e36 12544 7t5e35 12548 7t6e42 12549 8t6e48 12555 8t8e64 12557 9t5e45 12561 9t6e54 12562 9t7e63 12563 dec2dvds 16762 dec5dvds2 16764 2exp8 16788 2exp11 16789 2exp16 16790 prmlem1 16807 5prm 16808 7prm 16810 11prm 16814 13prm 16815 17prm 16816 19prm 16817 prmlem2 16819 37prm 16820 139prm 16823 163prm 16824 317prm 16825 631prm 16826 1259lem1 16830 1259lem2 16831 1259lem3 16832 1259lem4 16833 1259lem5 16834 1259prm 16835 2503lem1 16836 2503lem2 16837 2503lem3 16838 2503prm 16839 4001lem1 16840 4001lem2 16841 4001lem3 16842 4001lem4 16843 4001prm 16844 slotsdnscsi 17100 slotsbhcdif 17123 slotsbhcdifOLD 17124 quart1cl 26002 quart1lem 26003 quart1 26004 log2ublem1 26094 log2ublem3 26096 log2ub 26097 log2le1 26098 birthday 26102 ppiublem2 26349 bpos1 26429 bposlem8 26437 ex-fac 28811 threehalves 31185 zlmdsOLD 31909 hgt750lemd 32624 hgt750lem2 32628 hgt750leme 32634 kur14lem8 33171 420gcd8e4 40011 12lcm5e60 40013 lcmineqlem 40057 3lexlogpow5ineq1 40059 3lexlogpow5ineq2 40060 3lexlogpow5ineq4 40061 3lexlogpow5ineq3 40062 3lexlogpow2ineq2 40064 3lexlogpow5ineq5 40065 aks4d1lem1 40067 aks4d1p1p3 40074 aks4d1p1p2 40075 aks4d1p1p4 40076 aks4d1p1p6 40078 aks4d1p1p7 40079 aks4d1p1p5 40080 aks4d1p1 40081 aks4d1p2 40082 aks4d1p3 40083 aks4d1p5 40085 aks4d1p6 40086 aks4d1p7d1 40087 aks4d1p7 40088 aks4d1p8 40092 sqn5i 40310 235t711 40316 ex-decpmul 40317 3cubeslem3l 40505 3cubeslem3r 40506 resqrtvalex 41223 imsqrtvalex 41224 inductionexd 41735 fmtno3 44972 fmtno4 44973 fmtno5lem1 44974 fmtno5lem2 44975 fmtno5lem3 44976 fmtno5lem4 44977 fmtno5 44978 257prm 44982 fmtno4prmfac 44993 fmtno4prmfac193 44994 fmtno4nprmfac193 44995 fmtno5faclem3 45002 flsqrt5 45015 139prmALT 45017 31prm 45018 127prm 45020 41prothprmlem2 45039 2exp340mod341 45154 linevalexample 45705 ackval2012 46006 ackval3012 46007 ackval41 46010 |
Copyright terms: Public domain | W3C validator |