Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 5nn0 | Structured version Visualization version GIF version |
Description: 5 is a nonnegative integer. (Contributed by Mario Carneiro, 19-Apr-2015.) |
Ref | Expression |
---|---|
5nn0 | ⊢ 5 ∈ ℕ0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 5nn 11964 | . 2 ⊢ 5 ∈ ℕ | |
2 | 1 | nnnn0i 12146 | 1 ⊢ 5 ∈ ℕ0 |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2112 5c5 11936 ℕ0cn0 12138 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2160 ax-12 2177 ax-ext 2710 ax-sep 5216 ax-nul 5223 ax-pr 5346 ax-un 7563 ax-1cn 10835 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2073 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2818 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3071 df-rab 3073 df-v 3425 df-sbc 3713 df-csb 3830 df-dif 3887 df-un 3889 df-in 3891 df-ss 3901 df-pss 3903 df-nul 4255 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5153 df-tr 5186 df-id 5479 df-eprel 5485 df-po 5493 df-so 5494 df-fr 5534 df-we 5536 df-xp 5585 df-rel 5586 df-cnv 5587 df-co 5588 df-dm 5589 df-rn 5590 df-res 5591 df-ima 5592 df-pred 6189 df-ord 6251 df-on 6252 df-lim 6253 df-suc 6254 df-iota 6373 df-fun 6417 df-fn 6418 df-f 6419 df-f1 6420 df-fo 6421 df-f1o 6422 df-fv 6423 df-ov 7255 df-om 7685 df-wrecs 8089 df-recs 8150 df-rdg 8188 df-nn 11879 df-2 11941 df-3 11942 df-4 11943 df-5 11944 df-n0 12139 |
This theorem is referenced by: 6p6e12 12415 7p6e13 12419 8p6e14 12425 8p8e16 12427 9p6e15 12432 9p7e16 12433 5t2e10 12441 5t3e15 12442 5t4e20 12443 5t5e25 12444 6t6e36 12449 7t5e35 12453 7t6e42 12454 8t6e48 12460 8t8e64 12462 9t5e45 12466 9t6e54 12467 9t7e63 12468 dec2dvds 16667 dec5dvds2 16669 2exp8 16693 2exp11 16694 2exp16 16695 prmlem1 16712 5prm 16713 7prm 16715 11prm 16719 13prm 16720 17prm 16721 19prm 16722 prmlem2 16724 37prm 16725 139prm 16728 163prm 16729 317prm 16730 631prm 16731 1259lem1 16735 1259lem2 16736 1259lem3 16737 1259lem4 16738 1259lem5 16739 1259prm 16740 2503lem1 16741 2503lem2 16742 2503lem3 16743 2503prm 16744 4001lem1 16745 4001lem2 16746 4001lem3 16747 4001lem4 16748 4001prm 16749 slotsdnscsi 16998 slotsbhcdif 17019 slotsbhcdifOLD 17020 quart1cl 25884 quart1lem 25885 quart1 25886 log2ublem1 25976 log2ublem3 25978 log2ub 25979 log2le1 25980 birthday 25984 ppiublem2 26231 bpos1 26311 bposlem8 26319 ex-fac 28691 threehalves 31066 zlmds 31789 hgt750lemd 32503 hgt750lem2 32507 hgt750leme 32513 kur14lem8 33050 420gcd8e4 39921 12lcm5e60 39923 lcmineqlem 39967 3lexlogpow5ineq1 39969 3lexlogpow5ineq2 39970 3lexlogpow5ineq4 39971 3lexlogpow5ineq3 39972 3lexlogpow2ineq2 39974 3lexlogpow5ineq5 39975 aks4d1p1p3 39983 aks4d1p1p2 39984 aks4d1p1p4 39985 aks4d1p1p6 39987 aks4d1p1p7 39988 aks4d1p1p5 39989 aks4d1p1 39990 aks4d1p2 39991 aks4d1p3 39992 aks4d1p5 39994 aks4d1p6 39995 aks4d1p7d1 39996 aks4d1p7 39997 sqn5i 40206 235t711 40212 ex-decpmul 40213 3cubeslem3l 40396 3cubeslem3r 40397 resqrtvalex 41114 imsqrtvalex 41115 inductionexd 41627 fmtno3 44864 fmtno4 44865 fmtno5lem1 44866 fmtno5lem2 44867 fmtno5lem3 44868 fmtno5lem4 44869 fmtno5 44870 257prm 44874 fmtno4prmfac 44885 fmtno4prmfac193 44886 fmtno4nprmfac193 44887 fmtno5faclem3 44894 flsqrt5 44907 139prmALT 44909 31prm 44910 127prm 44912 41prothprmlem2 44931 2exp340mod341 45046 linevalexample 45597 ackval2012 45898 ackval3012 45899 ackval41 45902 |
Copyright terms: Public domain | W3C validator |