| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 1nn0 | Structured version Visualization version GIF version | ||
| Description: 1 is a nonnegative integer. (Contributed by Raph Levien, 10-Dec-2002.) |
| Ref | Expression |
|---|---|
| 1nn0 | ⊢ 1 ∈ ℕ0 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1nn 12277 | . 2 ⊢ 1 ∈ ℕ | |
| 2 | 1 | nnnn0i 12534 | 1 ⊢ 1 ∈ ℕ0 |
| Copyright terms: Public domain | W3C validator |