Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 1nn0 | Structured version Visualization version GIF version |
Description: 1 is a nonnegative integer. (Contributed by Raph Levien, 10-Dec-2002.) |
Ref | Expression |
---|---|
1nn0 | ⊢ 1 ∈ ℕ0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1nn 11967 | . 2 ⊢ 1 ∈ ℕ | |
2 | 1 | nnnn0i 12224 | 1 ⊢ 1 ∈ ℕ0 |
Copyright terms: Public domain | W3C validator |