Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 2nn0 | Structured version Visualization version GIF version |
Description: 2 is a nonnegative integer. (Contributed by Raph Levien, 10-Dec-2002.) |
Ref | Expression |
---|---|
2nn0 | ⊢ 2 ∈ ℕ0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2nn 11951 | . 2 ⊢ 2 ∈ ℕ | |
2 | 1 | nnnn0i 12146 | 1 ⊢ 2 ∈ ℕ0 |
Copyright terms: Public domain | W3C validator |