MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pockthi Structured version   Visualization version   GIF version

Theorem pockthi 16941
Description: Pocklington's theorem, which gives a sufficient criterion for a number 𝑁 to be prime. This is the preferred method for verifying large primes, being much more efficient to compute than trial division. This form has been optimized for application to specific large primes; see pockthg 16940 for a more general closed-form version. (Contributed by Mario Carneiro, 2-Mar-2014.)
Hypotheses
Ref Expression
pockthi.p 𝑃 ∈ ℙ
pockthi.g 𝐺 ∈ ℕ
pockthi.m 𝑀 = (𝐺 · 𝑃)
pockthi.n 𝑁 = (𝑀 + 1)
pockthi.d 𝐷 ∈ ℕ
pockthi.e 𝐸 ∈ ℕ
pockthi.a 𝐴 ∈ ℕ
pockthi.fac 𝑀 = (𝐷 · (𝑃𝐸))
pockthi.gt 𝐷 < (𝑃𝐸)
pockthi.mod ((𝐴𝑀) mod 𝑁) = (1 mod 𝑁)
pockthi.gcd (((𝐴𝐺) − 1) gcd 𝑁) = 1
Assertion
Ref Expression
pockthi 𝑁 ∈ ℙ

Proof of Theorem pockthi
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pockthi.d . 2 𝐷 ∈ ℕ
2 pockthi.p . . . . . 6 𝑃 ∈ ℙ
3 prmnn 16708 . . . . . 6 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
42, 3ax-mp 5 . . . . 5 𝑃 ∈ ℕ
5 pockthi.e . . . . . 6 𝐸 ∈ ℕ
65nnnn0i 12532 . . . . 5 𝐸 ∈ ℕ0
7 nnexpcl 14112 . . . . 5 ((𝑃 ∈ ℕ ∧ 𝐸 ∈ ℕ0) → (𝑃𝐸) ∈ ℕ)
84, 6, 7mp2an 692 . . . 4 (𝑃𝐸) ∈ ℕ
98a1i 11 . . 3 (𝐷 ∈ ℕ → (𝑃𝐸) ∈ ℕ)
10 id 22 . . 3 (𝐷 ∈ ℕ → 𝐷 ∈ ℕ)
11 pockthi.gt . . . 4 𝐷 < (𝑃𝐸)
1211a1i 11 . . 3 (𝐷 ∈ ℕ → 𝐷 < (𝑃𝐸))
13 pockthi.n . . . . 5 𝑁 = (𝑀 + 1)
14 pockthi.fac . . . . . . 7 𝑀 = (𝐷 · (𝑃𝐸))
151nncni 12274 . . . . . . . 8 𝐷 ∈ ℂ
168nncni 12274 . . . . . . . 8 (𝑃𝐸) ∈ ℂ
1715, 16mulcomi 11267 . . . . . . 7 (𝐷 · (𝑃𝐸)) = ((𝑃𝐸) · 𝐷)
1814, 17eqtri 2763 . . . . . 6 𝑀 = ((𝑃𝐸) · 𝐷)
1918oveq1i 7441 . . . . 5 (𝑀 + 1) = (((𝑃𝐸) · 𝐷) + 1)
2013, 19eqtri 2763 . . . 4 𝑁 = (((𝑃𝐸) · 𝐷) + 1)
2120a1i 11 . . 3 (𝐷 ∈ ℕ → 𝑁 = (((𝑃𝐸) · 𝐷) + 1))
22 prmdvdsexpb 16750 . . . . . . 7 ((𝑥 ∈ ℙ ∧ 𝑃 ∈ ℙ ∧ 𝐸 ∈ ℕ) → (𝑥 ∥ (𝑃𝐸) ↔ 𝑥 = 𝑃))
232, 5, 22mp3an23 1452 . . . . . 6 (𝑥 ∈ ℙ → (𝑥 ∥ (𝑃𝐸) ↔ 𝑥 = 𝑃))
24 pockthi.m . . . . . . . . . . . . 13 𝑀 = (𝐺 · 𝑃)
25 pockthi.g . . . . . . . . . . . . . 14 𝐺 ∈ ℕ
2625, 4nnmulcli 12289 . . . . . . . . . . . . 13 (𝐺 · 𝑃) ∈ ℕ
2724, 26eqeltri 2835 . . . . . . . . . . . 12 𝑀 ∈ ℕ
2827nncni 12274 . . . . . . . . . . 11 𝑀 ∈ ℂ
29 ax-1cn 11211 . . . . . . . . . . 11 1 ∈ ℂ
3028, 29, 13mvrraddi 11523 . . . . . . . . . 10 (𝑁 − 1) = 𝑀
3130oveq2i 7442 . . . . . . . . 9 (𝐴↑(𝑁 − 1)) = (𝐴𝑀)
3231oveq1i 7441 . . . . . . . 8 ((𝐴↑(𝑁 − 1)) mod 𝑁) = ((𝐴𝑀) mod 𝑁)
33 pockthi.mod . . . . . . . . 9 ((𝐴𝑀) mod 𝑁) = (1 mod 𝑁)
34 peano2nn 12276 . . . . . . . . . . . . 13 (𝑀 ∈ ℕ → (𝑀 + 1) ∈ ℕ)
3527, 34ax-mp 5 . . . . . . . . . . . 12 (𝑀 + 1) ∈ ℕ
3613, 35eqeltri 2835 . . . . . . . . . . 11 𝑁 ∈ ℕ
3736nnrei 12273 . . . . . . . . . 10 𝑁 ∈ ℝ
3827nngt0i 12303 . . . . . . . . . . . 12 0 < 𝑀
3927nnrei 12273 . . . . . . . . . . . . 13 𝑀 ∈ ℝ
40 1re 11259 . . . . . . . . . . . . 13 1 ∈ ℝ
41 ltaddpos2 11752 . . . . . . . . . . . . 13 ((𝑀 ∈ ℝ ∧ 1 ∈ ℝ) → (0 < 𝑀 ↔ 1 < (𝑀 + 1)))
4239, 40, 41mp2an 692 . . . . . . . . . . . 12 (0 < 𝑀 ↔ 1 < (𝑀 + 1))
4338, 42mpbi 230 . . . . . . . . . . 11 1 < (𝑀 + 1)
4443, 13breqtrri 5175 . . . . . . . . . 10 1 < 𝑁
45 1mod 13940 . . . . . . . . . 10 ((𝑁 ∈ ℝ ∧ 1 < 𝑁) → (1 mod 𝑁) = 1)
4637, 44, 45mp2an 692 . . . . . . . . 9 (1 mod 𝑁) = 1
4733, 46eqtri 2763 . . . . . . . 8 ((𝐴𝑀) mod 𝑁) = 1
4832, 47eqtri 2763 . . . . . . 7 ((𝐴↑(𝑁 − 1)) mod 𝑁) = 1
49 oveq2 7439 . . . . . . . . . . . 12 (𝑥 = 𝑃 → ((𝑁 − 1) / 𝑥) = ((𝑁 − 1) / 𝑃))
5025nncni 12274 . . . . . . . . . . . . . . 15 𝐺 ∈ ℂ
514nncni 12274 . . . . . . . . . . . . . . 15 𝑃 ∈ ℂ
5250, 51mulcomi 11267 . . . . . . . . . . . . . 14 (𝐺 · 𝑃) = (𝑃 · 𝐺)
5330, 24, 523eqtrri 2768 . . . . . . . . . . . . 13 (𝑃 · 𝐺) = (𝑁 − 1)
5436nncni 12274 . . . . . . . . . . . . . . 15 𝑁 ∈ ℂ
5554, 29subcli 11583 . . . . . . . . . . . . . 14 (𝑁 − 1) ∈ ℂ
564nnne0i 12304 . . . . . . . . . . . . . 14 𝑃 ≠ 0
5755, 51, 50, 56divmuli 12019 . . . . . . . . . . . . 13 (((𝑁 − 1) / 𝑃) = 𝐺 ↔ (𝑃 · 𝐺) = (𝑁 − 1))
5853, 57mpbir 231 . . . . . . . . . . . 12 ((𝑁 − 1) / 𝑃) = 𝐺
5949, 58eqtrdi 2791 . . . . . . . . . . 11 (𝑥 = 𝑃 → ((𝑁 − 1) / 𝑥) = 𝐺)
6059oveq2d 7447 . . . . . . . . . 10 (𝑥 = 𝑃 → (𝐴↑((𝑁 − 1) / 𝑥)) = (𝐴𝐺))
6160oveq1d 7446 . . . . . . . . 9 (𝑥 = 𝑃 → ((𝐴↑((𝑁 − 1) / 𝑥)) − 1) = ((𝐴𝐺) − 1))
6261oveq1d 7446 . . . . . . . 8 (𝑥 = 𝑃 → (((𝐴↑((𝑁 − 1) / 𝑥)) − 1) gcd 𝑁) = (((𝐴𝐺) − 1) gcd 𝑁))
63 pockthi.gcd . . . . . . . 8 (((𝐴𝐺) − 1) gcd 𝑁) = 1
6462, 63eqtrdi 2791 . . . . . . 7 (𝑥 = 𝑃 → (((𝐴↑((𝑁 − 1) / 𝑥)) − 1) gcd 𝑁) = 1)
65 pockthi.a . . . . . . . . 9 𝐴 ∈ ℕ
6665nnzi 12639 . . . . . . . 8 𝐴 ∈ ℤ
67 oveq1 7438 . . . . . . . . . . . 12 (𝑦 = 𝐴 → (𝑦↑(𝑁 − 1)) = (𝐴↑(𝑁 − 1)))
6867oveq1d 7446 . . . . . . . . . . 11 (𝑦 = 𝐴 → ((𝑦↑(𝑁 − 1)) mod 𝑁) = ((𝐴↑(𝑁 − 1)) mod 𝑁))
6968eqeq1d 2737 . . . . . . . . . 10 (𝑦 = 𝐴 → (((𝑦↑(𝑁 − 1)) mod 𝑁) = 1 ↔ ((𝐴↑(𝑁 − 1)) mod 𝑁) = 1))
70 oveq1 7438 . . . . . . . . . . . . 13 (𝑦 = 𝐴 → (𝑦↑((𝑁 − 1) / 𝑥)) = (𝐴↑((𝑁 − 1) / 𝑥)))
7170oveq1d 7446 . . . . . . . . . . . 12 (𝑦 = 𝐴 → ((𝑦↑((𝑁 − 1) / 𝑥)) − 1) = ((𝐴↑((𝑁 − 1) / 𝑥)) − 1))
7271oveq1d 7446 . . . . . . . . . . 11 (𝑦 = 𝐴 → (((𝑦↑((𝑁 − 1) / 𝑥)) − 1) gcd 𝑁) = (((𝐴↑((𝑁 − 1) / 𝑥)) − 1) gcd 𝑁))
7372eqeq1d 2737 . . . . . . . . . 10 (𝑦 = 𝐴 → ((((𝑦↑((𝑁 − 1) / 𝑥)) − 1) gcd 𝑁) = 1 ↔ (((𝐴↑((𝑁 − 1) / 𝑥)) − 1) gcd 𝑁) = 1))
7469, 73anbi12d 632 . . . . . . . . 9 (𝑦 = 𝐴 → ((((𝑦↑(𝑁 − 1)) mod 𝑁) = 1 ∧ (((𝑦↑((𝑁 − 1) / 𝑥)) − 1) gcd 𝑁) = 1) ↔ (((𝐴↑(𝑁 − 1)) mod 𝑁) = 1 ∧ (((𝐴↑((𝑁 − 1) / 𝑥)) − 1) gcd 𝑁) = 1)))
7574rspcev 3622 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ (((𝐴↑(𝑁 − 1)) mod 𝑁) = 1 ∧ (((𝐴↑((𝑁 − 1) / 𝑥)) − 1) gcd 𝑁) = 1)) → ∃𝑦 ∈ ℤ (((𝑦↑(𝑁 − 1)) mod 𝑁) = 1 ∧ (((𝑦↑((𝑁 − 1) / 𝑥)) − 1) gcd 𝑁) = 1))
7666, 75mpan 690 . . . . . . 7 ((((𝐴↑(𝑁 − 1)) mod 𝑁) = 1 ∧ (((𝐴↑((𝑁 − 1) / 𝑥)) − 1) gcd 𝑁) = 1) → ∃𝑦 ∈ ℤ (((𝑦↑(𝑁 − 1)) mod 𝑁) = 1 ∧ (((𝑦↑((𝑁 − 1) / 𝑥)) − 1) gcd 𝑁) = 1))
7748, 64, 76sylancr 587 . . . . . 6 (𝑥 = 𝑃 → ∃𝑦 ∈ ℤ (((𝑦↑(𝑁 − 1)) mod 𝑁) = 1 ∧ (((𝑦↑((𝑁 − 1) / 𝑥)) − 1) gcd 𝑁) = 1))
7823, 77biimtrdi 253 . . . . 5 (𝑥 ∈ ℙ → (𝑥 ∥ (𝑃𝐸) → ∃𝑦 ∈ ℤ (((𝑦↑(𝑁 − 1)) mod 𝑁) = 1 ∧ (((𝑦↑((𝑁 − 1) / 𝑥)) − 1) gcd 𝑁) = 1)))
7978rgen 3061 . . . 4 𝑥 ∈ ℙ (𝑥 ∥ (𝑃𝐸) → ∃𝑦 ∈ ℤ (((𝑦↑(𝑁 − 1)) mod 𝑁) = 1 ∧ (((𝑦↑((𝑁 − 1) / 𝑥)) − 1) gcd 𝑁) = 1))
8079a1i 11 . . 3 (𝐷 ∈ ℕ → ∀𝑥 ∈ ℙ (𝑥 ∥ (𝑃𝐸) → ∃𝑦 ∈ ℤ (((𝑦↑(𝑁 − 1)) mod 𝑁) = 1 ∧ (((𝑦↑((𝑁 − 1) / 𝑥)) − 1) gcd 𝑁) = 1)))
819, 10, 12, 21, 80pockthg 16940 . 2 (𝐷 ∈ ℕ → 𝑁 ∈ ℙ)
821, 81ax-mp 5 1 𝑁 ∈ ℙ
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2106  wral 3059  wrex 3068   class class class wbr 5148  (class class class)co 7431  cr 11152  0cc0 11153  1c1 11154   + caddc 11156   · cmul 11158   < clt 11293  cmin 11490   / cdiv 11918  cn 12264  0cn0 12524  cz 12611   mod cmo 13906  cexp 14099  cdvds 16287   gcd cgcd 16528  cprime 16705
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-2o 8506  df-oadd 8509  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-sup 9480  df-inf 9481  df-dju 9939  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-n0 12525  df-xnn0 12598  df-z 12612  df-uz 12877  df-q 12989  df-rp 13033  df-fz 13545  df-fzo 13692  df-fl 13829  df-mod 13907  df-seq 14040  df-exp 14100  df-hash 14367  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-abs 15272  df-dvds 16288  df-gcd 16529  df-prm 16706  df-odz 16799  df-phi 16800  df-pc 16871
This theorem is referenced by:  1259prm  17170  2503prm  17174  4001prm  17179
  Copyright terms: Public domain W3C validator