MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pockthi Structured version   Visualization version   GIF version

Theorem pockthi 16878
Description: Pocklington's theorem, which gives a sufficient criterion for a number 𝑁 to be prime. This is the preferred method for verifying large primes, being much more efficient to compute than trial division. This form has been optimized for application to specific large primes; see pockthg 16877 for a more general closed-form version. (Contributed by Mario Carneiro, 2-Mar-2014.)
Hypotheses
Ref Expression
pockthi.p 𝑃 ∈ ℙ
pockthi.g 𝐺 ∈ ℕ
pockthi.m 𝑀 = (𝐺 · 𝑃)
pockthi.n 𝑁 = (𝑀 + 1)
pockthi.d 𝐷 ∈ ℕ
pockthi.e 𝐸 ∈ ℕ
pockthi.a 𝐴 ∈ ℕ
pockthi.fac 𝑀 = (𝐷 · (𝑃𝐸))
pockthi.gt 𝐷 < (𝑃𝐸)
pockthi.mod ((𝐴𝑀) mod 𝑁) = (1 mod 𝑁)
pockthi.gcd (((𝐴𝐺) − 1) gcd 𝑁) = 1
Assertion
Ref Expression
pockthi 𝑁 ∈ ℙ

Proof of Theorem pockthi
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pockthi.d . 2 𝐷 ∈ ℕ
2 pockthi.p . . . . . 6 𝑃 ∈ ℙ
3 prmnn 16644 . . . . . 6 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
42, 3ax-mp 5 . . . . 5 𝑃 ∈ ℕ
5 pockthi.e . . . . . 6 𝐸 ∈ ℕ
65nnnn0i 12450 . . . . 5 𝐸 ∈ ℕ0
7 nnexpcl 14039 . . . . 5 ((𝑃 ∈ ℕ ∧ 𝐸 ∈ ℕ0) → (𝑃𝐸) ∈ ℕ)
84, 6, 7mp2an 692 . . . 4 (𝑃𝐸) ∈ ℕ
98a1i 11 . . 3 (𝐷 ∈ ℕ → (𝑃𝐸) ∈ ℕ)
10 id 22 . . 3 (𝐷 ∈ ℕ → 𝐷 ∈ ℕ)
11 pockthi.gt . . . 4 𝐷 < (𝑃𝐸)
1211a1i 11 . . 3 (𝐷 ∈ ℕ → 𝐷 < (𝑃𝐸))
13 pockthi.n . . . . 5 𝑁 = (𝑀 + 1)
14 pockthi.fac . . . . . . 7 𝑀 = (𝐷 · (𝑃𝐸))
151nncni 12196 . . . . . . . 8 𝐷 ∈ ℂ
168nncni 12196 . . . . . . . 8 (𝑃𝐸) ∈ ℂ
1715, 16mulcomi 11182 . . . . . . 7 (𝐷 · (𝑃𝐸)) = ((𝑃𝐸) · 𝐷)
1814, 17eqtri 2752 . . . . . 6 𝑀 = ((𝑃𝐸) · 𝐷)
1918oveq1i 7397 . . . . 5 (𝑀 + 1) = (((𝑃𝐸) · 𝐷) + 1)
2013, 19eqtri 2752 . . . 4 𝑁 = (((𝑃𝐸) · 𝐷) + 1)
2120a1i 11 . . 3 (𝐷 ∈ ℕ → 𝑁 = (((𝑃𝐸) · 𝐷) + 1))
22 prmdvdsexpb 16686 . . . . . . 7 ((𝑥 ∈ ℙ ∧ 𝑃 ∈ ℙ ∧ 𝐸 ∈ ℕ) → (𝑥 ∥ (𝑃𝐸) ↔ 𝑥 = 𝑃))
232, 5, 22mp3an23 1455 . . . . . 6 (𝑥 ∈ ℙ → (𝑥 ∥ (𝑃𝐸) ↔ 𝑥 = 𝑃))
24 pockthi.m . . . . . . . . . . . . 13 𝑀 = (𝐺 · 𝑃)
25 pockthi.g . . . . . . . . . . . . . 14 𝐺 ∈ ℕ
2625, 4nnmulcli 12211 . . . . . . . . . . . . 13 (𝐺 · 𝑃) ∈ ℕ
2724, 26eqeltri 2824 . . . . . . . . . . . 12 𝑀 ∈ ℕ
2827nncni 12196 . . . . . . . . . . 11 𝑀 ∈ ℂ
29 ax-1cn 11126 . . . . . . . . . . 11 1 ∈ ℂ
3028, 29, 13mvrraddi 11438 . . . . . . . . . 10 (𝑁 − 1) = 𝑀
3130oveq2i 7398 . . . . . . . . 9 (𝐴↑(𝑁 − 1)) = (𝐴𝑀)
3231oveq1i 7397 . . . . . . . 8 ((𝐴↑(𝑁 − 1)) mod 𝑁) = ((𝐴𝑀) mod 𝑁)
33 pockthi.mod . . . . . . . . 9 ((𝐴𝑀) mod 𝑁) = (1 mod 𝑁)
34 peano2nn 12198 . . . . . . . . . . . . 13 (𝑀 ∈ ℕ → (𝑀 + 1) ∈ ℕ)
3527, 34ax-mp 5 . . . . . . . . . . . 12 (𝑀 + 1) ∈ ℕ
3613, 35eqeltri 2824 . . . . . . . . . . 11 𝑁 ∈ ℕ
3736nnrei 12195 . . . . . . . . . 10 𝑁 ∈ ℝ
3827nngt0i 12225 . . . . . . . . . . . 12 0 < 𝑀
3927nnrei 12195 . . . . . . . . . . . . 13 𝑀 ∈ ℝ
40 1re 11174 . . . . . . . . . . . . 13 1 ∈ ℝ
41 ltaddpos2 11669 . . . . . . . . . . . . 13 ((𝑀 ∈ ℝ ∧ 1 ∈ ℝ) → (0 < 𝑀 ↔ 1 < (𝑀 + 1)))
4239, 40, 41mp2an 692 . . . . . . . . . . . 12 (0 < 𝑀 ↔ 1 < (𝑀 + 1))
4338, 42mpbi 230 . . . . . . . . . . 11 1 < (𝑀 + 1)
4443, 13breqtrri 5134 . . . . . . . . . 10 1 < 𝑁
45 1mod 13865 . . . . . . . . . 10 ((𝑁 ∈ ℝ ∧ 1 < 𝑁) → (1 mod 𝑁) = 1)
4637, 44, 45mp2an 692 . . . . . . . . 9 (1 mod 𝑁) = 1
4733, 46eqtri 2752 . . . . . . . 8 ((𝐴𝑀) mod 𝑁) = 1
4832, 47eqtri 2752 . . . . . . 7 ((𝐴↑(𝑁 − 1)) mod 𝑁) = 1
49 oveq2 7395 . . . . . . . . . . . 12 (𝑥 = 𝑃 → ((𝑁 − 1) / 𝑥) = ((𝑁 − 1) / 𝑃))
5025nncni 12196 . . . . . . . . . . . . . . 15 𝐺 ∈ ℂ
514nncni 12196 . . . . . . . . . . . . . . 15 𝑃 ∈ ℂ
5250, 51mulcomi 11182 . . . . . . . . . . . . . 14 (𝐺 · 𝑃) = (𝑃 · 𝐺)
5330, 24, 523eqtrri 2757 . . . . . . . . . . . . 13 (𝑃 · 𝐺) = (𝑁 − 1)
5436nncni 12196 . . . . . . . . . . . . . . 15 𝑁 ∈ ℂ
5554, 29subcli 11498 . . . . . . . . . . . . . 14 (𝑁 − 1) ∈ ℂ
564nnne0i 12226 . . . . . . . . . . . . . 14 𝑃 ≠ 0
5755, 51, 50, 56divmuli 11936 . . . . . . . . . . . . 13 (((𝑁 − 1) / 𝑃) = 𝐺 ↔ (𝑃 · 𝐺) = (𝑁 − 1))
5853, 57mpbir 231 . . . . . . . . . . . 12 ((𝑁 − 1) / 𝑃) = 𝐺
5949, 58eqtrdi 2780 . . . . . . . . . . 11 (𝑥 = 𝑃 → ((𝑁 − 1) / 𝑥) = 𝐺)
6059oveq2d 7403 . . . . . . . . . 10 (𝑥 = 𝑃 → (𝐴↑((𝑁 − 1) / 𝑥)) = (𝐴𝐺))
6160oveq1d 7402 . . . . . . . . 9 (𝑥 = 𝑃 → ((𝐴↑((𝑁 − 1) / 𝑥)) − 1) = ((𝐴𝐺) − 1))
6261oveq1d 7402 . . . . . . . 8 (𝑥 = 𝑃 → (((𝐴↑((𝑁 − 1) / 𝑥)) − 1) gcd 𝑁) = (((𝐴𝐺) − 1) gcd 𝑁))
63 pockthi.gcd . . . . . . . 8 (((𝐴𝐺) − 1) gcd 𝑁) = 1
6462, 63eqtrdi 2780 . . . . . . 7 (𝑥 = 𝑃 → (((𝐴↑((𝑁 − 1) / 𝑥)) − 1) gcd 𝑁) = 1)
65 pockthi.a . . . . . . . . 9 𝐴 ∈ ℕ
6665nnzi 12557 . . . . . . . 8 𝐴 ∈ ℤ
67 oveq1 7394 . . . . . . . . . . . 12 (𝑦 = 𝐴 → (𝑦↑(𝑁 − 1)) = (𝐴↑(𝑁 − 1)))
6867oveq1d 7402 . . . . . . . . . . 11 (𝑦 = 𝐴 → ((𝑦↑(𝑁 − 1)) mod 𝑁) = ((𝐴↑(𝑁 − 1)) mod 𝑁))
6968eqeq1d 2731 . . . . . . . . . 10 (𝑦 = 𝐴 → (((𝑦↑(𝑁 − 1)) mod 𝑁) = 1 ↔ ((𝐴↑(𝑁 − 1)) mod 𝑁) = 1))
70 oveq1 7394 . . . . . . . . . . . . 13 (𝑦 = 𝐴 → (𝑦↑((𝑁 − 1) / 𝑥)) = (𝐴↑((𝑁 − 1) / 𝑥)))
7170oveq1d 7402 . . . . . . . . . . . 12 (𝑦 = 𝐴 → ((𝑦↑((𝑁 − 1) / 𝑥)) − 1) = ((𝐴↑((𝑁 − 1) / 𝑥)) − 1))
7271oveq1d 7402 . . . . . . . . . . 11 (𝑦 = 𝐴 → (((𝑦↑((𝑁 − 1) / 𝑥)) − 1) gcd 𝑁) = (((𝐴↑((𝑁 − 1) / 𝑥)) − 1) gcd 𝑁))
7372eqeq1d 2731 . . . . . . . . . 10 (𝑦 = 𝐴 → ((((𝑦↑((𝑁 − 1) / 𝑥)) − 1) gcd 𝑁) = 1 ↔ (((𝐴↑((𝑁 − 1) / 𝑥)) − 1) gcd 𝑁) = 1))
7469, 73anbi12d 632 . . . . . . . . 9 (𝑦 = 𝐴 → ((((𝑦↑(𝑁 − 1)) mod 𝑁) = 1 ∧ (((𝑦↑((𝑁 − 1) / 𝑥)) − 1) gcd 𝑁) = 1) ↔ (((𝐴↑(𝑁 − 1)) mod 𝑁) = 1 ∧ (((𝐴↑((𝑁 − 1) / 𝑥)) − 1) gcd 𝑁) = 1)))
7574rspcev 3588 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ (((𝐴↑(𝑁 − 1)) mod 𝑁) = 1 ∧ (((𝐴↑((𝑁 − 1) / 𝑥)) − 1) gcd 𝑁) = 1)) → ∃𝑦 ∈ ℤ (((𝑦↑(𝑁 − 1)) mod 𝑁) = 1 ∧ (((𝑦↑((𝑁 − 1) / 𝑥)) − 1) gcd 𝑁) = 1))
7666, 75mpan 690 . . . . . . 7 ((((𝐴↑(𝑁 − 1)) mod 𝑁) = 1 ∧ (((𝐴↑((𝑁 − 1) / 𝑥)) − 1) gcd 𝑁) = 1) → ∃𝑦 ∈ ℤ (((𝑦↑(𝑁 − 1)) mod 𝑁) = 1 ∧ (((𝑦↑((𝑁 − 1) / 𝑥)) − 1) gcd 𝑁) = 1))
7748, 64, 76sylancr 587 . . . . . 6 (𝑥 = 𝑃 → ∃𝑦 ∈ ℤ (((𝑦↑(𝑁 − 1)) mod 𝑁) = 1 ∧ (((𝑦↑((𝑁 − 1) / 𝑥)) − 1) gcd 𝑁) = 1))
7823, 77biimtrdi 253 . . . . 5 (𝑥 ∈ ℙ → (𝑥 ∥ (𝑃𝐸) → ∃𝑦 ∈ ℤ (((𝑦↑(𝑁 − 1)) mod 𝑁) = 1 ∧ (((𝑦↑((𝑁 − 1) / 𝑥)) − 1) gcd 𝑁) = 1)))
7978rgen 3046 . . . 4 𝑥 ∈ ℙ (𝑥 ∥ (𝑃𝐸) → ∃𝑦 ∈ ℤ (((𝑦↑(𝑁 − 1)) mod 𝑁) = 1 ∧ (((𝑦↑((𝑁 − 1) / 𝑥)) − 1) gcd 𝑁) = 1))
8079a1i 11 . . 3 (𝐷 ∈ ℕ → ∀𝑥 ∈ ℙ (𝑥 ∥ (𝑃𝐸) → ∃𝑦 ∈ ℤ (((𝑦↑(𝑁 − 1)) mod 𝑁) = 1 ∧ (((𝑦↑((𝑁 − 1) / 𝑥)) − 1) gcd 𝑁) = 1)))
819, 10, 12, 21, 80pockthg 16877 . 2 (𝐷 ∈ ℕ → 𝑁 ∈ ℙ)
821, 81ax-mp 5 1 𝑁 ∈ ℙ
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044  wrex 3053   class class class wbr 5107  (class class class)co 7387  cr 11067  0cc0 11068  1c1 11069   + caddc 11071   · cmul 11073   < clt 11208  cmin 11405   / cdiv 11835  cn 12186  0cn0 12442  cz 12529   mod cmo 13831  cexp 14026  cdvds 16222   gcd cgcd 16464  cprime 16641
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-oadd 8438  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-sup 9393  df-inf 9394  df-dju 9854  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-n0 12443  df-xnn0 12516  df-z 12530  df-uz 12794  df-q 12908  df-rp 12952  df-fz 13469  df-fzo 13616  df-fl 13754  df-mod 13832  df-seq 13967  df-exp 14027  df-hash 14296  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-dvds 16223  df-gcd 16465  df-prm 16642  df-odz 16735  df-phi 16736  df-pc 16808
This theorem is referenced by:  1259prm  17106  2503prm  17110  4001prm  17115
  Copyright terms: Public domain W3C validator