| Mathbox for metakunt |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > 420lcm8e840 | Structured version Visualization version GIF version | ||
| Description: The lcm of 420 and 8 is 840. (Contributed by metakunt, 25-Apr-2024.) |
| Ref | Expression |
|---|---|
| 420lcm8e840 | ⊢ (;;420 lcm 8) = ;;840 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 4nn0 12400 | . . . 4 ⊢ 4 ∈ ℕ0 | |
| 2 | 2nn 12198 | . . . 4 ⊢ 2 ∈ ℕ | |
| 3 | 1, 2 | decnncl 12608 | . . 3 ⊢ ;42 ∈ ℕ |
| 4 | 3 | decnncl2 12612 | . 2 ⊢ ;;420 ∈ ℕ |
| 5 | 8nn 12220 | . 2 ⊢ 8 ∈ ℕ | |
| 6 | 4nn 12208 | . 2 ⊢ 4 ∈ ℕ | |
| 7 | 8nn0 12404 | . . . 4 ⊢ 8 ∈ ℕ0 | |
| 8 | 7, 6 | decnncl 12608 | . . 3 ⊢ ;84 ∈ ℕ |
| 9 | 8 | decnncl2 12612 | . 2 ⊢ ;;840 ∈ ℕ |
| 10 | 420gcd8e4 42098 | . 2 ⊢ (;;420 gcd 8) = 4 | |
| 11 | eqid 2731 | . 2 ⊢ (4 · ;;840) = (4 · ;;840) | |
| 12 | 4, 5 | mulcomnni 42079 | . . . . 5 ⊢ (;;420 · 8) = (8 · ;;420) |
| 13 | 4t2e8 12288 | . . . . . 6 ⊢ (4 · 2) = 8 | |
| 14 | 13 | oveq1i 7356 | . . . . 5 ⊢ ((4 · 2) · ;;420) = (8 · ;;420) |
| 15 | 12, 14 | eqtr4i 2757 | . . . 4 ⊢ (;;420 · 8) = ((4 · 2) · ;;420) |
| 16 | 6, 2, 4 | mulassnni 42078 | . . . 4 ⊢ ((4 · 2) · ;;420) = (4 · (2 · ;;420)) |
| 17 | 15, 16 | eqtri 2754 | . . 3 ⊢ (;;420 · 8) = (4 · (2 · ;;420)) |
| 18 | 2 | nnnn0i 12389 | . . . . 5 ⊢ 2 ∈ ℕ0 |
| 19 | 3 | nnnn0i 12389 | . . . . 5 ⊢ ;42 ∈ ℕ0 |
| 20 | 0nn0 12396 | . . . . 5 ⊢ 0 ∈ ℕ0 | |
| 21 | eqid 2731 | . . . . 5 ⊢ ;;420 = ;;420 | |
| 22 | eqid 2731 | . . . . . . 7 ⊢ ;42 = ;42 | |
| 23 | 4cn 12210 | . . . . . . . . . 10 ⊢ 4 ∈ ℂ | |
| 24 | 2cn 12200 | . . . . . . . . . 10 ⊢ 2 ∈ ℂ | |
| 25 | 23, 24, 13 | mulcomli 11121 | . . . . . . . . 9 ⊢ (2 · 4) = 8 |
| 26 | 25 | oveq1i 7356 | . . . . . . . 8 ⊢ ((2 · 4) + 0) = (8 + 0) |
| 27 | 8cn 12222 | . . . . . . . . 9 ⊢ 8 ∈ ℂ | |
| 28 | 27 | addridi 11300 | . . . . . . . 8 ⊢ (8 + 0) = 8 |
| 29 | 26, 28 | eqtri 2754 | . . . . . . 7 ⊢ ((2 · 4) + 0) = 8 |
| 30 | 2t2e4 12284 | . . . . . . . 8 ⊢ (2 · 2) = 4 | |
| 31 | 1 | dec0h 12610 | . . . . . . . . 9 ⊢ 4 = ;04 |
| 32 | 31 | eqcomi 2740 | . . . . . . . 8 ⊢ ;04 = 4 |
| 33 | 30, 32 | eqtr4i 2757 | . . . . . . 7 ⊢ (2 · 2) = ;04 |
| 34 | 18, 1, 18, 22, 1, 20, 29, 33 | decmul2c 12654 | . . . . . 6 ⊢ (2 · ;42) = ;84 |
| 35 | 23 | addridi 11300 | . . . . . 6 ⊢ (4 + 0) = 4 |
| 36 | 7, 1, 20, 34, 35 | decaddi 12648 | . . . . 5 ⊢ ((2 · ;42) + 0) = ;84 |
| 37 | 2t0e0 12289 | . . . . . 6 ⊢ (2 · 0) = 0 | |
| 38 | 20 | dec0h 12610 | . . . . . . 7 ⊢ 0 = ;00 |
| 39 | 38 | eqcomi 2740 | . . . . . 6 ⊢ ;00 = 0 |
| 40 | 37, 39 | eqtr4i 2757 | . . . . 5 ⊢ (2 · 0) = ;00 |
| 41 | 18, 19, 20, 21, 20, 20, 36, 40 | decmul2c 12654 | . . . 4 ⊢ (2 · ;;420) = ;;840 |
| 42 | 41 | oveq2i 7357 | . . 3 ⊢ (4 · (2 · ;;420)) = (4 · ;;840) |
| 43 | 17, 42 | eqtri 2754 | . 2 ⊢ (;;420 · 8) = (4 · ;;840) |
| 44 | 4, 5, 6, 9, 10, 11, 43 | lcmeprodgcdi 42099 | 1 ⊢ (;;420 lcm 8) = ;;840 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 (class class class)co 7346 0cc0 11006 + caddc 11009 · cmul 11011 2c2 12180 4c4 12182 8c8 12186 ;cdc 12588 lcm clcm 16499 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 ax-pre-sup 11084 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-sup 9326 df-inf 9327 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-div 11775 df-nn 12126 df-2 12188 df-3 12189 df-4 12190 df-5 12191 df-6 12192 df-7 12193 df-8 12194 df-9 12195 df-n0 12382 df-z 12469 df-dec 12589 df-uz 12733 df-rp 12891 df-fl 13696 df-mod 13774 df-seq 13909 df-exp 13969 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 df-dvds 16164 df-gcd 16406 df-lcm 16501 |
| This theorem is referenced by: lcm8un 42112 |
| Copyright terms: Public domain | W3C validator |