![]() |
Mathbox for metakunt |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > 420lcm8e840 | Structured version Visualization version GIF version |
Description: The lcm of 420 and 8 is 840. (Contributed by metakunt, 25-Apr-2024.) |
Ref | Expression |
---|---|
420lcm8e840 | ⊢ (;;420 lcm 8) = ;;840 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 4nn0 12491 | . . . 4 ⊢ 4 ∈ ℕ0 | |
2 | 2nn 12285 | . . . 4 ⊢ 2 ∈ ℕ | |
3 | 1, 2 | decnncl 12697 | . . 3 ⊢ ;42 ∈ ℕ |
4 | 3 | decnncl2 12701 | . 2 ⊢ ;;420 ∈ ℕ |
5 | 8nn 12307 | . 2 ⊢ 8 ∈ ℕ | |
6 | 4nn 12295 | . 2 ⊢ 4 ∈ ℕ | |
7 | 8nn0 12495 | . . . 4 ⊢ 8 ∈ ℕ0 | |
8 | 7, 6 | decnncl 12697 | . . 3 ⊢ ;84 ∈ ℕ |
9 | 8 | decnncl2 12701 | . 2 ⊢ ;;840 ∈ ℕ |
10 | 420gcd8e4 40871 | . 2 ⊢ (;;420 gcd 8) = 4 | |
11 | eqid 2733 | . 2 ⊢ (4 · ;;840) = (4 · ;;840) | |
12 | 4, 5 | mulcomnni 40853 | . . . . 5 ⊢ (;;420 · 8) = (8 · ;;420) |
13 | 4t2e8 12380 | . . . . . 6 ⊢ (4 · 2) = 8 | |
14 | 13 | oveq1i 7419 | . . . . 5 ⊢ ((4 · 2) · ;;420) = (8 · ;;420) |
15 | 12, 14 | eqtr4i 2764 | . . . 4 ⊢ (;;420 · 8) = ((4 · 2) · ;;420) |
16 | 6, 2, 4 | mulassnni 40852 | . . . 4 ⊢ ((4 · 2) · ;;420) = (4 · (2 · ;;420)) |
17 | 15, 16 | eqtri 2761 | . . 3 ⊢ (;;420 · 8) = (4 · (2 · ;;420)) |
18 | 2 | nnnn0i 12480 | . . . . 5 ⊢ 2 ∈ ℕ0 |
19 | 3 | nnnn0i 12480 | . . . . 5 ⊢ ;42 ∈ ℕ0 |
20 | 0nn0 12487 | . . . . 5 ⊢ 0 ∈ ℕ0 | |
21 | eqid 2733 | . . . . 5 ⊢ ;;420 = ;;420 | |
22 | eqid 2733 | . . . . . . 7 ⊢ ;42 = ;42 | |
23 | 4cn 12297 | . . . . . . . . . 10 ⊢ 4 ∈ ℂ | |
24 | 2cn 12287 | . . . . . . . . . 10 ⊢ 2 ∈ ℂ | |
25 | 23, 24, 13 | mulcomli 11223 | . . . . . . . . 9 ⊢ (2 · 4) = 8 |
26 | 25 | oveq1i 7419 | . . . . . . . 8 ⊢ ((2 · 4) + 0) = (8 + 0) |
27 | 8cn 12309 | . . . . . . . . 9 ⊢ 8 ∈ ℂ | |
28 | 27 | addridi 11401 | . . . . . . . 8 ⊢ (8 + 0) = 8 |
29 | 26, 28 | eqtri 2761 | . . . . . . 7 ⊢ ((2 · 4) + 0) = 8 |
30 | 2t2e4 12376 | . . . . . . . 8 ⊢ (2 · 2) = 4 | |
31 | 1 | dec0h 12699 | . . . . . . . . 9 ⊢ 4 = ;04 |
32 | 31 | eqcomi 2742 | . . . . . . . 8 ⊢ ;04 = 4 |
33 | 30, 32 | eqtr4i 2764 | . . . . . . 7 ⊢ (2 · 2) = ;04 |
34 | 18, 1, 18, 22, 1, 20, 29, 33 | decmul2c 12743 | . . . . . 6 ⊢ (2 · ;42) = ;84 |
35 | 23 | addridi 11401 | . . . . . 6 ⊢ (4 + 0) = 4 |
36 | 7, 1, 20, 34, 35 | decaddi 12737 | . . . . 5 ⊢ ((2 · ;42) + 0) = ;84 |
37 | 2t0e0 12381 | . . . . . 6 ⊢ (2 · 0) = 0 | |
38 | 20 | dec0h 12699 | . . . . . . 7 ⊢ 0 = ;00 |
39 | 38 | eqcomi 2742 | . . . . . 6 ⊢ ;00 = 0 |
40 | 37, 39 | eqtr4i 2764 | . . . . 5 ⊢ (2 · 0) = ;00 |
41 | 18, 19, 20, 21, 20, 20, 36, 40 | decmul2c 12743 | . . . 4 ⊢ (2 · ;;420) = ;;840 |
42 | 41 | oveq2i 7420 | . . 3 ⊢ (4 · (2 · ;;420)) = (4 · ;;840) |
43 | 17, 42 | eqtri 2761 | . 2 ⊢ (;;420 · 8) = (4 · ;;840) |
44 | 4, 5, 6, 9, 10, 11, 43 | lcmeprodgcdi 40872 | 1 ⊢ (;;420 lcm 8) = ;;840 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1542 (class class class)co 7409 0cc0 11110 + caddc 11113 · cmul 11115 2c2 12267 4c4 12269 8c8 12273 ;cdc 12677 lcm clcm 16525 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 ax-cnex 11166 ax-resscn 11167 ax-1cn 11168 ax-icn 11169 ax-addcl 11170 ax-addrcl 11171 ax-mulcl 11172 ax-mulrcl 11173 ax-mulcom 11174 ax-addass 11175 ax-mulass 11176 ax-distr 11177 ax-i2m1 11178 ax-1ne0 11179 ax-1rid 11180 ax-rnegex 11181 ax-rrecex 11182 ax-cnre 11183 ax-pre-lttri 11184 ax-pre-lttrn 11185 ax-pre-ltadd 11186 ax-pre-mulgt0 11187 ax-pre-sup 11188 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3377 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7365 df-ov 7412 df-oprab 7413 df-mpo 7414 df-om 7856 df-2nd 7976 df-frecs 8266 df-wrecs 8297 df-recs 8371 df-rdg 8410 df-er 8703 df-en 8940 df-dom 8941 df-sdom 8942 df-sup 9437 df-inf 9438 df-pnf 11250 df-mnf 11251 df-xr 11252 df-ltxr 11253 df-le 11254 df-sub 11446 df-neg 11447 df-div 11872 df-nn 12213 df-2 12275 df-3 12276 df-4 12277 df-5 12278 df-6 12279 df-7 12280 df-8 12281 df-9 12282 df-n0 12473 df-z 12559 df-dec 12678 df-uz 12823 df-rp 12975 df-fl 13757 df-mod 13835 df-seq 13967 df-exp 14028 df-cj 15046 df-re 15047 df-im 15048 df-sqrt 15182 df-abs 15183 df-dvds 16198 df-gcd 16436 df-lcm 16527 |
This theorem is referenced by: lcm8un 40885 |
Copyright terms: Public domain | W3C validator |