![]() |
Mathbox for metakunt |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > 420lcm8e840 | Structured version Visualization version GIF version |
Description: The lcm of 420 and 8 is 840. (Contributed by metakunt, 25-Apr-2024.) |
Ref | Expression |
---|---|
420lcm8e840 | ⊢ (;;420 lcm 8) = ;;840 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 4nn0 12507 | . . . 4 ⊢ 4 ∈ ℕ0 | |
2 | 2nn 12301 | . . . 4 ⊢ 2 ∈ ℕ | |
3 | 1, 2 | decnncl 12713 | . . 3 ⊢ ;42 ∈ ℕ |
4 | 3 | decnncl2 12717 | . 2 ⊢ ;;420 ∈ ℕ |
5 | 8nn 12323 | . 2 ⊢ 8 ∈ ℕ | |
6 | 4nn 12311 | . 2 ⊢ 4 ∈ ℕ | |
7 | 8nn0 12511 | . . . 4 ⊢ 8 ∈ ℕ0 | |
8 | 7, 6 | decnncl 12713 | . . 3 ⊢ ;84 ∈ ℕ |
9 | 8 | decnncl2 12717 | . 2 ⊢ ;;840 ∈ ℕ |
10 | 420gcd8e4 41401 | . 2 ⊢ (;;420 gcd 8) = 4 | |
11 | eqid 2727 | . 2 ⊢ (4 · ;;840) = (4 · ;;840) | |
12 | 4, 5 | mulcomnni 41382 | . . . . 5 ⊢ (;;420 · 8) = (8 · ;;420) |
13 | 4t2e8 12396 | . . . . . 6 ⊢ (4 · 2) = 8 | |
14 | 13 | oveq1i 7424 | . . . . 5 ⊢ ((4 · 2) · ;;420) = (8 · ;;420) |
15 | 12, 14 | eqtr4i 2758 | . . . 4 ⊢ (;;420 · 8) = ((4 · 2) · ;;420) |
16 | 6, 2, 4 | mulassnni 41381 | . . . 4 ⊢ ((4 · 2) · ;;420) = (4 · (2 · ;;420)) |
17 | 15, 16 | eqtri 2755 | . . 3 ⊢ (;;420 · 8) = (4 · (2 · ;;420)) |
18 | 2 | nnnn0i 12496 | . . . . 5 ⊢ 2 ∈ ℕ0 |
19 | 3 | nnnn0i 12496 | . . . . 5 ⊢ ;42 ∈ ℕ0 |
20 | 0nn0 12503 | . . . . 5 ⊢ 0 ∈ ℕ0 | |
21 | eqid 2727 | . . . . 5 ⊢ ;;420 = ;;420 | |
22 | eqid 2727 | . . . . . . 7 ⊢ ;42 = ;42 | |
23 | 4cn 12313 | . . . . . . . . . 10 ⊢ 4 ∈ ℂ | |
24 | 2cn 12303 | . . . . . . . . . 10 ⊢ 2 ∈ ℂ | |
25 | 23, 24, 13 | mulcomli 11239 | . . . . . . . . 9 ⊢ (2 · 4) = 8 |
26 | 25 | oveq1i 7424 | . . . . . . . 8 ⊢ ((2 · 4) + 0) = (8 + 0) |
27 | 8cn 12325 | . . . . . . . . 9 ⊢ 8 ∈ ℂ | |
28 | 27 | addridi 11417 | . . . . . . . 8 ⊢ (8 + 0) = 8 |
29 | 26, 28 | eqtri 2755 | . . . . . . 7 ⊢ ((2 · 4) + 0) = 8 |
30 | 2t2e4 12392 | . . . . . . . 8 ⊢ (2 · 2) = 4 | |
31 | 1 | dec0h 12715 | . . . . . . . . 9 ⊢ 4 = ;04 |
32 | 31 | eqcomi 2736 | . . . . . . . 8 ⊢ ;04 = 4 |
33 | 30, 32 | eqtr4i 2758 | . . . . . . 7 ⊢ (2 · 2) = ;04 |
34 | 18, 1, 18, 22, 1, 20, 29, 33 | decmul2c 12759 | . . . . . 6 ⊢ (2 · ;42) = ;84 |
35 | 23 | addridi 11417 | . . . . . 6 ⊢ (4 + 0) = 4 |
36 | 7, 1, 20, 34, 35 | decaddi 12753 | . . . . 5 ⊢ ((2 · ;42) + 0) = ;84 |
37 | 2t0e0 12397 | . . . . . 6 ⊢ (2 · 0) = 0 | |
38 | 20 | dec0h 12715 | . . . . . . 7 ⊢ 0 = ;00 |
39 | 38 | eqcomi 2736 | . . . . . 6 ⊢ ;00 = 0 |
40 | 37, 39 | eqtr4i 2758 | . . . . 5 ⊢ (2 · 0) = ;00 |
41 | 18, 19, 20, 21, 20, 20, 36, 40 | decmul2c 12759 | . . . 4 ⊢ (2 · ;;420) = ;;840 |
42 | 41 | oveq2i 7425 | . . 3 ⊢ (4 · (2 · ;;420)) = (4 · ;;840) |
43 | 17, 42 | eqtri 2755 | . 2 ⊢ (;;420 · 8) = (4 · ;;840) |
44 | 4, 5, 6, 9, 10, 11, 43 | lcmeprodgcdi 41402 | 1 ⊢ (;;420 lcm 8) = ;;840 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1534 (class class class)co 7414 0cc0 11124 + caddc 11127 · cmul 11129 2c2 12283 4c4 12285 8c8 12289 ;cdc 12693 lcm clcm 16544 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7732 ax-cnex 11180 ax-resscn 11181 ax-1cn 11182 ax-icn 11183 ax-addcl 11184 ax-addrcl 11185 ax-mulcl 11186 ax-mulrcl 11187 ax-mulcom 11188 ax-addass 11189 ax-mulass 11190 ax-distr 11191 ax-i2m1 11192 ax-1ne0 11193 ax-1rid 11194 ax-rnegex 11195 ax-rrecex 11196 ax-cnre 11197 ax-pre-lttri 11198 ax-pre-lttrn 11199 ax-pre-ltadd 11200 ax-pre-mulgt0 11201 ax-pre-sup 11202 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-nel 3042 df-ral 3057 df-rex 3066 df-rmo 3371 df-reu 3372 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7863 df-2nd 7986 df-frecs 8278 df-wrecs 8309 df-recs 8383 df-rdg 8422 df-er 8716 df-en 8954 df-dom 8955 df-sdom 8956 df-sup 9451 df-inf 9452 df-pnf 11266 df-mnf 11267 df-xr 11268 df-ltxr 11269 df-le 11270 df-sub 11462 df-neg 11463 df-div 11888 df-nn 12229 df-2 12291 df-3 12292 df-4 12293 df-5 12294 df-6 12295 df-7 12296 df-8 12297 df-9 12298 df-n0 12489 df-z 12575 df-dec 12694 df-uz 12839 df-rp 12993 df-fl 13775 df-mod 13853 df-seq 13985 df-exp 14045 df-cj 15064 df-re 15065 df-im 15066 df-sqrt 15200 df-abs 15201 df-dvds 16217 df-gcd 16455 df-lcm 16546 |
This theorem is referenced by: lcm8un 41415 |
Copyright terms: Public domain | W3C validator |