Mathbox for metakunt |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > 420lcm8e840 | Structured version Visualization version GIF version |
Description: The lcm of 420 and 8 is 840. (Contributed by metakunt, 25-Apr-2024.) |
Ref | Expression |
---|---|
420lcm8e840 | ⊢ (;;420 lcm 8) = ;;840 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 4nn0 12252 | . . . 4 ⊢ 4 ∈ ℕ0 | |
2 | 2nn 12046 | . . . 4 ⊢ 2 ∈ ℕ | |
3 | 1, 2 | decnncl 12457 | . . 3 ⊢ ;42 ∈ ℕ |
4 | 3 | decnncl2 12461 | . 2 ⊢ ;;420 ∈ ℕ |
5 | 8nn 12068 | . 2 ⊢ 8 ∈ ℕ | |
6 | 4nn 12056 | . 2 ⊢ 4 ∈ ℕ | |
7 | 8nn0 12256 | . . . 4 ⊢ 8 ∈ ℕ0 | |
8 | 7, 6 | decnncl 12457 | . . 3 ⊢ ;84 ∈ ℕ |
9 | 8 | decnncl2 12461 | . 2 ⊢ ;;840 ∈ ℕ |
10 | 420gcd8e4 40014 | . 2 ⊢ (;;420 gcd 8) = 4 | |
11 | eqid 2738 | . 2 ⊢ (4 · ;;840) = (4 · ;;840) | |
12 | 4, 5 | mulcomnni 39996 | . . . . 5 ⊢ (;;420 · 8) = (8 · ;;420) |
13 | 4t2e8 12141 | . . . . . 6 ⊢ (4 · 2) = 8 | |
14 | 13 | oveq1i 7285 | . . . . 5 ⊢ ((4 · 2) · ;;420) = (8 · ;;420) |
15 | 12, 14 | eqtr4i 2769 | . . . 4 ⊢ (;;420 · 8) = ((4 · 2) · ;;420) |
16 | 6, 2, 4 | mulassnni 39995 | . . . 4 ⊢ ((4 · 2) · ;;420) = (4 · (2 · ;;420)) |
17 | 15, 16 | eqtri 2766 | . . 3 ⊢ (;;420 · 8) = (4 · (2 · ;;420)) |
18 | 2 | nnnn0i 12241 | . . . . 5 ⊢ 2 ∈ ℕ0 |
19 | 3 | nnnn0i 12241 | . . . . 5 ⊢ ;42 ∈ ℕ0 |
20 | 0nn0 12248 | . . . . 5 ⊢ 0 ∈ ℕ0 | |
21 | eqid 2738 | . . . . 5 ⊢ ;;420 = ;;420 | |
22 | eqid 2738 | . . . . . . 7 ⊢ ;42 = ;42 | |
23 | 4cn 12058 | . . . . . . . . . 10 ⊢ 4 ∈ ℂ | |
24 | 2cn 12048 | . . . . . . . . . 10 ⊢ 2 ∈ ℂ | |
25 | 23, 24, 13 | mulcomli 10984 | . . . . . . . . 9 ⊢ (2 · 4) = 8 |
26 | 25 | oveq1i 7285 | . . . . . . . 8 ⊢ ((2 · 4) + 0) = (8 + 0) |
27 | 8cn 12070 | . . . . . . . . 9 ⊢ 8 ∈ ℂ | |
28 | 27 | addid1i 11162 | . . . . . . . 8 ⊢ (8 + 0) = 8 |
29 | 26, 28 | eqtri 2766 | . . . . . . 7 ⊢ ((2 · 4) + 0) = 8 |
30 | 2t2e4 12137 | . . . . . . . 8 ⊢ (2 · 2) = 4 | |
31 | 1 | dec0h 12459 | . . . . . . . . 9 ⊢ 4 = ;04 |
32 | 31 | eqcomi 2747 | . . . . . . . 8 ⊢ ;04 = 4 |
33 | 30, 32 | eqtr4i 2769 | . . . . . . 7 ⊢ (2 · 2) = ;04 |
34 | 18, 1, 18, 22, 1, 20, 29, 33 | decmul2c 12503 | . . . . . 6 ⊢ (2 · ;42) = ;84 |
35 | 23 | addid1i 11162 | . . . . . 6 ⊢ (4 + 0) = 4 |
36 | 7, 1, 20, 34, 35 | decaddi 12497 | . . . . 5 ⊢ ((2 · ;42) + 0) = ;84 |
37 | 2t0e0 12142 | . . . . . 6 ⊢ (2 · 0) = 0 | |
38 | 20 | dec0h 12459 | . . . . . . 7 ⊢ 0 = ;00 |
39 | 38 | eqcomi 2747 | . . . . . 6 ⊢ ;00 = 0 |
40 | 37, 39 | eqtr4i 2769 | . . . . 5 ⊢ (2 · 0) = ;00 |
41 | 18, 19, 20, 21, 20, 20, 36, 40 | decmul2c 12503 | . . . 4 ⊢ (2 · ;;420) = ;;840 |
42 | 41 | oveq2i 7286 | . . 3 ⊢ (4 · (2 · ;;420)) = (4 · ;;840) |
43 | 17, 42 | eqtri 2766 | . 2 ⊢ (;;420 · 8) = (4 · ;;840) |
44 | 4, 5, 6, 9, 10, 11, 43 | lcmeprodgcdi 40015 | 1 ⊢ (;;420 lcm 8) = ;;840 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 (class class class)co 7275 0cc0 10871 + caddc 10874 · cmul 10876 2c2 12028 4c4 12030 8c8 12034 ;cdc 12437 lcm clcm 16293 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 ax-pre-sup 10949 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-sup 9201 df-inf 9202 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-div 11633 df-nn 11974 df-2 12036 df-3 12037 df-4 12038 df-5 12039 df-6 12040 df-7 12041 df-8 12042 df-9 12043 df-n0 12234 df-z 12320 df-dec 12438 df-uz 12583 df-rp 12731 df-fl 13512 df-mod 13590 df-seq 13722 df-exp 13783 df-cj 14810 df-re 14811 df-im 14812 df-sqrt 14946 df-abs 14947 df-dvds 15964 df-gcd 16202 df-lcm 16295 |
This theorem is referenced by: lcm8un 40028 |
Copyright terms: Public domain | W3C validator |