![]() |
Mathbox for metakunt |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > 420lcm8e840 | Structured version Visualization version GIF version |
Description: The lcm of 420 and 8 is 840. (Contributed by metakunt, 25-Apr-2024.) |
Ref | Expression |
---|---|
420lcm8e840 | ⊢ (;;420 lcm 8) = ;;840 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 4nn0 12529 | . . . 4 ⊢ 4 ∈ ℕ0 | |
2 | 2nn 12323 | . . . 4 ⊢ 2 ∈ ℕ | |
3 | 1, 2 | decnncl 12735 | . . 3 ⊢ ;42 ∈ ℕ |
4 | 3 | decnncl2 12739 | . 2 ⊢ ;;420 ∈ ℕ |
5 | 8nn 12345 | . 2 ⊢ 8 ∈ ℕ | |
6 | 4nn 12333 | . 2 ⊢ 4 ∈ ℕ | |
7 | 8nn0 12533 | . . . 4 ⊢ 8 ∈ ℕ0 | |
8 | 7, 6 | decnncl 12735 | . . 3 ⊢ ;84 ∈ ℕ |
9 | 8 | decnncl2 12739 | . 2 ⊢ ;;840 ∈ ℕ |
10 | 420gcd8e4 41629 | . 2 ⊢ (;;420 gcd 8) = 4 | |
11 | eqid 2725 | . 2 ⊢ (4 · ;;840) = (4 · ;;840) | |
12 | 4, 5 | mulcomnni 41610 | . . . . 5 ⊢ (;;420 · 8) = (8 · ;;420) |
13 | 4t2e8 12418 | . . . . . 6 ⊢ (4 · 2) = 8 | |
14 | 13 | oveq1i 7429 | . . . . 5 ⊢ ((4 · 2) · ;;420) = (8 · ;;420) |
15 | 12, 14 | eqtr4i 2756 | . . . 4 ⊢ (;;420 · 8) = ((4 · 2) · ;;420) |
16 | 6, 2, 4 | mulassnni 41609 | . . . 4 ⊢ ((4 · 2) · ;;420) = (4 · (2 · ;;420)) |
17 | 15, 16 | eqtri 2753 | . . 3 ⊢ (;;420 · 8) = (4 · (2 · ;;420)) |
18 | 2 | nnnn0i 12518 | . . . . 5 ⊢ 2 ∈ ℕ0 |
19 | 3 | nnnn0i 12518 | . . . . 5 ⊢ ;42 ∈ ℕ0 |
20 | 0nn0 12525 | . . . . 5 ⊢ 0 ∈ ℕ0 | |
21 | eqid 2725 | . . . . 5 ⊢ ;;420 = ;;420 | |
22 | eqid 2725 | . . . . . . 7 ⊢ ;42 = ;42 | |
23 | 4cn 12335 | . . . . . . . . . 10 ⊢ 4 ∈ ℂ | |
24 | 2cn 12325 | . . . . . . . . . 10 ⊢ 2 ∈ ℂ | |
25 | 23, 24, 13 | mulcomli 11260 | . . . . . . . . 9 ⊢ (2 · 4) = 8 |
26 | 25 | oveq1i 7429 | . . . . . . . 8 ⊢ ((2 · 4) + 0) = (8 + 0) |
27 | 8cn 12347 | . . . . . . . . 9 ⊢ 8 ∈ ℂ | |
28 | 27 | addridi 11438 | . . . . . . . 8 ⊢ (8 + 0) = 8 |
29 | 26, 28 | eqtri 2753 | . . . . . . 7 ⊢ ((2 · 4) + 0) = 8 |
30 | 2t2e4 12414 | . . . . . . . 8 ⊢ (2 · 2) = 4 | |
31 | 1 | dec0h 12737 | . . . . . . . . 9 ⊢ 4 = ;04 |
32 | 31 | eqcomi 2734 | . . . . . . . 8 ⊢ ;04 = 4 |
33 | 30, 32 | eqtr4i 2756 | . . . . . . 7 ⊢ (2 · 2) = ;04 |
34 | 18, 1, 18, 22, 1, 20, 29, 33 | decmul2c 12781 | . . . . . 6 ⊢ (2 · ;42) = ;84 |
35 | 23 | addridi 11438 | . . . . . 6 ⊢ (4 + 0) = 4 |
36 | 7, 1, 20, 34, 35 | decaddi 12775 | . . . . 5 ⊢ ((2 · ;42) + 0) = ;84 |
37 | 2t0e0 12419 | . . . . . 6 ⊢ (2 · 0) = 0 | |
38 | 20 | dec0h 12737 | . . . . . . 7 ⊢ 0 = ;00 |
39 | 38 | eqcomi 2734 | . . . . . 6 ⊢ ;00 = 0 |
40 | 37, 39 | eqtr4i 2756 | . . . . 5 ⊢ (2 · 0) = ;00 |
41 | 18, 19, 20, 21, 20, 20, 36, 40 | decmul2c 12781 | . . . 4 ⊢ (2 · ;;420) = ;;840 |
42 | 41 | oveq2i 7430 | . . 3 ⊢ (4 · (2 · ;;420)) = (4 · ;;840) |
43 | 17, 42 | eqtri 2753 | . 2 ⊢ (;;420 · 8) = (4 · ;;840) |
44 | 4, 5, 6, 9, 10, 11, 43 | lcmeprodgcdi 41630 | 1 ⊢ (;;420 lcm 8) = ;;840 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1533 (class class class)co 7419 0cc0 11145 + caddc 11148 · cmul 11150 2c2 12305 4c4 12307 8c8 12311 ;cdc 12715 lcm clcm 16575 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5300 ax-nul 5307 ax-pow 5365 ax-pr 5429 ax-un 7741 ax-cnex 11201 ax-resscn 11202 ax-1cn 11203 ax-icn 11204 ax-addcl 11205 ax-addrcl 11206 ax-mulcl 11207 ax-mulrcl 11208 ax-mulcom 11209 ax-addass 11210 ax-mulass 11211 ax-distr 11212 ax-i2m1 11213 ax-1ne0 11214 ax-1rid 11215 ax-rnegex 11216 ax-rrecex 11217 ax-cnre 11218 ax-pre-lttri 11219 ax-pre-lttrn 11220 ax-pre-ltadd 11221 ax-pre-mulgt0 11222 ax-pre-sup 11223 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3964 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-iun 4999 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6307 df-ord 6374 df-on 6375 df-lim 6376 df-suc 6377 df-iota 6501 df-fun 6551 df-fn 6552 df-f 6553 df-f1 6554 df-fo 6555 df-f1o 6556 df-fv 6557 df-riota 7375 df-ov 7422 df-oprab 7423 df-mpo 7424 df-om 7872 df-2nd 7995 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-er 8725 df-en 8965 df-dom 8966 df-sdom 8967 df-sup 9472 df-inf 9473 df-pnf 11287 df-mnf 11288 df-xr 11289 df-ltxr 11290 df-le 11291 df-sub 11483 df-neg 11484 df-div 11909 df-nn 12251 df-2 12313 df-3 12314 df-4 12315 df-5 12316 df-6 12317 df-7 12318 df-8 12319 df-9 12320 df-n0 12511 df-z 12597 df-dec 12716 df-uz 12861 df-rp 13015 df-fl 13798 df-mod 13876 df-seq 14008 df-exp 14068 df-cj 15090 df-re 15091 df-im 15092 df-sqrt 15226 df-abs 15227 df-dvds 16243 df-gcd 16481 df-lcm 16577 |
This theorem is referenced by: lcm8un 41643 |
Copyright terms: Public domain | W3C validator |