| Mathbox for metakunt |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > 420lcm8e840 | Structured version Visualization version GIF version | ||
| Description: The lcm of 420 and 8 is 840. (Contributed by metakunt, 25-Apr-2024.) |
| Ref | Expression |
|---|---|
| 420lcm8e840 | ⊢ (;;420 lcm 8) = ;;840 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 4nn0 12403 | . . . 4 ⊢ 4 ∈ ℕ0 | |
| 2 | 2nn 12201 | . . . 4 ⊢ 2 ∈ ℕ | |
| 3 | 1, 2 | decnncl 12611 | . . 3 ⊢ ;42 ∈ ℕ |
| 4 | 3 | decnncl2 12615 | . 2 ⊢ ;;420 ∈ ℕ |
| 5 | 8nn 12223 | . 2 ⊢ 8 ∈ ℕ | |
| 6 | 4nn 12211 | . 2 ⊢ 4 ∈ ℕ | |
| 7 | 8nn0 12407 | . . . 4 ⊢ 8 ∈ ℕ0 | |
| 8 | 7, 6 | decnncl 12611 | . . 3 ⊢ ;84 ∈ ℕ |
| 9 | 8 | decnncl2 12615 | . 2 ⊢ ;;840 ∈ ℕ |
| 10 | 420gcd8e4 41999 | . 2 ⊢ (;;420 gcd 8) = 4 | |
| 11 | eqid 2729 | . 2 ⊢ (4 · ;;840) = (4 · ;;840) | |
| 12 | 4, 5 | mulcomnni 41980 | . . . . 5 ⊢ (;;420 · 8) = (8 · ;;420) |
| 13 | 4t2e8 12291 | . . . . . 6 ⊢ (4 · 2) = 8 | |
| 14 | 13 | oveq1i 7359 | . . . . 5 ⊢ ((4 · 2) · ;;420) = (8 · ;;420) |
| 15 | 12, 14 | eqtr4i 2755 | . . . 4 ⊢ (;;420 · 8) = ((4 · 2) · ;;420) |
| 16 | 6, 2, 4 | mulassnni 41979 | . . . 4 ⊢ ((4 · 2) · ;;420) = (4 · (2 · ;;420)) |
| 17 | 15, 16 | eqtri 2752 | . . 3 ⊢ (;;420 · 8) = (4 · (2 · ;;420)) |
| 18 | 2 | nnnn0i 12392 | . . . . 5 ⊢ 2 ∈ ℕ0 |
| 19 | 3 | nnnn0i 12392 | . . . . 5 ⊢ ;42 ∈ ℕ0 |
| 20 | 0nn0 12399 | . . . . 5 ⊢ 0 ∈ ℕ0 | |
| 21 | eqid 2729 | . . . . 5 ⊢ ;;420 = ;;420 | |
| 22 | eqid 2729 | . . . . . . 7 ⊢ ;42 = ;42 | |
| 23 | 4cn 12213 | . . . . . . . . . 10 ⊢ 4 ∈ ℂ | |
| 24 | 2cn 12203 | . . . . . . . . . 10 ⊢ 2 ∈ ℂ | |
| 25 | 23, 24, 13 | mulcomli 11124 | . . . . . . . . 9 ⊢ (2 · 4) = 8 |
| 26 | 25 | oveq1i 7359 | . . . . . . . 8 ⊢ ((2 · 4) + 0) = (8 + 0) |
| 27 | 8cn 12225 | . . . . . . . . 9 ⊢ 8 ∈ ℂ | |
| 28 | 27 | addridi 11303 | . . . . . . . 8 ⊢ (8 + 0) = 8 |
| 29 | 26, 28 | eqtri 2752 | . . . . . . 7 ⊢ ((2 · 4) + 0) = 8 |
| 30 | 2t2e4 12287 | . . . . . . . 8 ⊢ (2 · 2) = 4 | |
| 31 | 1 | dec0h 12613 | . . . . . . . . 9 ⊢ 4 = ;04 |
| 32 | 31 | eqcomi 2738 | . . . . . . . 8 ⊢ ;04 = 4 |
| 33 | 30, 32 | eqtr4i 2755 | . . . . . . 7 ⊢ (2 · 2) = ;04 |
| 34 | 18, 1, 18, 22, 1, 20, 29, 33 | decmul2c 12657 | . . . . . 6 ⊢ (2 · ;42) = ;84 |
| 35 | 23 | addridi 11303 | . . . . . 6 ⊢ (4 + 0) = 4 |
| 36 | 7, 1, 20, 34, 35 | decaddi 12651 | . . . . 5 ⊢ ((2 · ;42) + 0) = ;84 |
| 37 | 2t0e0 12292 | . . . . . 6 ⊢ (2 · 0) = 0 | |
| 38 | 20 | dec0h 12613 | . . . . . . 7 ⊢ 0 = ;00 |
| 39 | 38 | eqcomi 2738 | . . . . . 6 ⊢ ;00 = 0 |
| 40 | 37, 39 | eqtr4i 2755 | . . . . 5 ⊢ (2 · 0) = ;00 |
| 41 | 18, 19, 20, 21, 20, 20, 36, 40 | decmul2c 12657 | . . . 4 ⊢ (2 · ;;420) = ;;840 |
| 42 | 41 | oveq2i 7360 | . . 3 ⊢ (4 · (2 · ;;420)) = (4 · ;;840) |
| 43 | 17, 42 | eqtri 2752 | . 2 ⊢ (;;420 · 8) = (4 · ;;840) |
| 44 | 4, 5, 6, 9, 10, 11, 43 | lcmeprodgcdi 42000 | 1 ⊢ (;;420 lcm 8) = ;;840 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 (class class class)co 7349 0cc0 11009 + caddc 11012 · cmul 11014 2c2 12183 4c4 12185 8c8 12189 ;cdc 12591 lcm clcm 16499 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 ax-pre-sup 11087 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-er 8625 df-en 8873 df-dom 8874 df-sdom 8875 df-sup 9332 df-inf 9333 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-div 11778 df-nn 12129 df-2 12191 df-3 12192 df-4 12193 df-5 12194 df-6 12195 df-7 12196 df-8 12197 df-9 12198 df-n0 12385 df-z 12472 df-dec 12592 df-uz 12736 df-rp 12894 df-fl 13696 df-mod 13774 df-seq 13909 df-exp 13969 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 df-dvds 16164 df-gcd 16406 df-lcm 16501 |
| This theorem is referenced by: lcm8un 42013 |
| Copyright terms: Public domain | W3C validator |