![]() |
Mathbox for metakunt |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > 420lcm8e840 | Structured version Visualization version GIF version |
Description: The lcm of 420 and 8 is 840. (Contributed by metakunt, 25-Apr-2024.) |
Ref | Expression |
---|---|
420lcm8e840 | ⊢ (;;420 lcm 8) = ;;840 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 4nn0 12519 | . . . 4 ⊢ 4 ∈ ℕ0 | |
2 | 2nn 12313 | . . . 4 ⊢ 2 ∈ ℕ | |
3 | 1, 2 | decnncl 12725 | . . 3 ⊢ ;42 ∈ ℕ |
4 | 3 | decnncl2 12729 | . 2 ⊢ ;;420 ∈ ℕ |
5 | 8nn 12335 | . 2 ⊢ 8 ∈ ℕ | |
6 | 4nn 12323 | . 2 ⊢ 4 ∈ ℕ | |
7 | 8nn0 12523 | . . . 4 ⊢ 8 ∈ ℕ0 | |
8 | 7, 6 | decnncl 12725 | . . 3 ⊢ ;84 ∈ ℕ |
9 | 8 | decnncl2 12729 | . 2 ⊢ ;;840 ∈ ℕ |
10 | 420gcd8e4 41532 | . 2 ⊢ (;;420 gcd 8) = 4 | |
11 | eqid 2725 | . 2 ⊢ (4 · ;;840) = (4 · ;;840) | |
12 | 4, 5 | mulcomnni 41513 | . . . . 5 ⊢ (;;420 · 8) = (8 · ;;420) |
13 | 4t2e8 12408 | . . . . . 6 ⊢ (4 · 2) = 8 | |
14 | 13 | oveq1i 7425 | . . . . 5 ⊢ ((4 · 2) · ;;420) = (8 · ;;420) |
15 | 12, 14 | eqtr4i 2756 | . . . 4 ⊢ (;;420 · 8) = ((4 · 2) · ;;420) |
16 | 6, 2, 4 | mulassnni 41512 | . . . 4 ⊢ ((4 · 2) · ;;420) = (4 · (2 · ;;420)) |
17 | 15, 16 | eqtri 2753 | . . 3 ⊢ (;;420 · 8) = (4 · (2 · ;;420)) |
18 | 2 | nnnn0i 12508 | . . . . 5 ⊢ 2 ∈ ℕ0 |
19 | 3 | nnnn0i 12508 | . . . . 5 ⊢ ;42 ∈ ℕ0 |
20 | 0nn0 12515 | . . . . 5 ⊢ 0 ∈ ℕ0 | |
21 | eqid 2725 | . . . . 5 ⊢ ;;420 = ;;420 | |
22 | eqid 2725 | . . . . . . 7 ⊢ ;42 = ;42 | |
23 | 4cn 12325 | . . . . . . . . . 10 ⊢ 4 ∈ ℂ | |
24 | 2cn 12315 | . . . . . . . . . 10 ⊢ 2 ∈ ℂ | |
25 | 23, 24, 13 | mulcomli 11251 | . . . . . . . . 9 ⊢ (2 · 4) = 8 |
26 | 25 | oveq1i 7425 | . . . . . . . 8 ⊢ ((2 · 4) + 0) = (8 + 0) |
27 | 8cn 12337 | . . . . . . . . 9 ⊢ 8 ∈ ℂ | |
28 | 27 | addridi 11429 | . . . . . . . 8 ⊢ (8 + 0) = 8 |
29 | 26, 28 | eqtri 2753 | . . . . . . 7 ⊢ ((2 · 4) + 0) = 8 |
30 | 2t2e4 12404 | . . . . . . . 8 ⊢ (2 · 2) = 4 | |
31 | 1 | dec0h 12727 | . . . . . . . . 9 ⊢ 4 = ;04 |
32 | 31 | eqcomi 2734 | . . . . . . . 8 ⊢ ;04 = 4 |
33 | 30, 32 | eqtr4i 2756 | . . . . . . 7 ⊢ (2 · 2) = ;04 |
34 | 18, 1, 18, 22, 1, 20, 29, 33 | decmul2c 12771 | . . . . . 6 ⊢ (2 · ;42) = ;84 |
35 | 23 | addridi 11429 | . . . . . 6 ⊢ (4 + 0) = 4 |
36 | 7, 1, 20, 34, 35 | decaddi 12765 | . . . . 5 ⊢ ((2 · ;42) + 0) = ;84 |
37 | 2t0e0 12409 | . . . . . 6 ⊢ (2 · 0) = 0 | |
38 | 20 | dec0h 12727 | . . . . . . 7 ⊢ 0 = ;00 |
39 | 38 | eqcomi 2734 | . . . . . 6 ⊢ ;00 = 0 |
40 | 37, 39 | eqtr4i 2756 | . . . . 5 ⊢ (2 · 0) = ;00 |
41 | 18, 19, 20, 21, 20, 20, 36, 40 | decmul2c 12771 | . . . 4 ⊢ (2 · ;;420) = ;;840 |
42 | 41 | oveq2i 7426 | . . 3 ⊢ (4 · (2 · ;;420)) = (4 · ;;840) |
43 | 17, 42 | eqtri 2753 | . 2 ⊢ (;;420 · 8) = (4 · ;;840) |
44 | 4, 5, 6, 9, 10, 11, 43 | lcmeprodgcdi 41533 | 1 ⊢ (;;420 lcm 8) = ;;840 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1533 (class class class)co 7415 0cc0 11136 + caddc 11139 · cmul 11141 2c2 12295 4c4 12297 8c8 12301 ;cdc 12705 lcm clcm 16556 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5294 ax-nul 5301 ax-pow 5359 ax-pr 5423 ax-un 7737 ax-cnex 11192 ax-resscn 11193 ax-1cn 11194 ax-icn 11195 ax-addcl 11196 ax-addrcl 11197 ax-mulcl 11198 ax-mulrcl 11199 ax-mulcom 11200 ax-addass 11201 ax-mulass 11202 ax-distr 11203 ax-i2m1 11204 ax-1ne0 11205 ax-1rid 11206 ax-rnegex 11207 ax-rrecex 11208 ax-cnre 11209 ax-pre-lttri 11210 ax-pre-lttrn 11211 ax-pre-ltadd 11212 ax-pre-mulgt0 11213 ax-pre-sup 11214 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-pss 3960 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5227 df-tr 5261 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7371 df-ov 7418 df-oprab 7419 df-mpo 7420 df-om 7868 df-2nd 7990 df-frecs 8283 df-wrecs 8314 df-recs 8388 df-rdg 8427 df-er 8721 df-en 8961 df-dom 8962 df-sdom 8963 df-sup 9463 df-inf 9464 df-pnf 11278 df-mnf 11279 df-xr 11280 df-ltxr 11281 df-le 11282 df-sub 11474 df-neg 11475 df-div 11900 df-nn 12241 df-2 12303 df-3 12304 df-4 12305 df-5 12306 df-6 12307 df-7 12308 df-8 12309 df-9 12310 df-n0 12501 df-z 12587 df-dec 12706 df-uz 12851 df-rp 13005 df-fl 13787 df-mod 13865 df-seq 13997 df-exp 14057 df-cj 15076 df-re 15077 df-im 15078 df-sqrt 15212 df-abs 15213 df-dvds 16229 df-gcd 16467 df-lcm 16558 |
This theorem is referenced by: lcm8un 41546 |
Copyright terms: Public domain | W3C validator |