| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > numlt | Structured version Visualization version GIF version | ||
| Description: Comparing two decimal integers (equal higher places). (Contributed by Mario Carneiro, 18-Feb-2014.) |
| Ref | Expression |
|---|---|
| numlt.1 | ⊢ 𝑇 ∈ ℕ |
| numlt.2 | ⊢ 𝐴 ∈ ℕ0 |
| numlt.3 | ⊢ 𝐵 ∈ ℕ0 |
| numlt.4 | ⊢ 𝐶 ∈ ℕ |
| numlt.5 | ⊢ 𝐵 < 𝐶 |
| Ref | Expression |
|---|---|
| numlt | ⊢ ((𝑇 · 𝐴) + 𝐵) < ((𝑇 · 𝐴) + 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | numlt.5 | . 2 ⊢ 𝐵 < 𝐶 | |
| 2 | numlt.3 | . . . 4 ⊢ 𝐵 ∈ ℕ0 | |
| 3 | 2 | nn0rei 12389 | . . 3 ⊢ 𝐵 ∈ ℝ |
| 4 | numlt.4 | . . . 4 ⊢ 𝐶 ∈ ℕ | |
| 5 | 4 | nnrei 12131 | . . 3 ⊢ 𝐶 ∈ ℝ |
| 6 | numlt.1 | . . . . . 6 ⊢ 𝑇 ∈ ℕ | |
| 7 | 6 | nnnn0i 12386 | . . . . 5 ⊢ 𝑇 ∈ ℕ0 |
| 8 | numlt.2 | . . . . 5 ⊢ 𝐴 ∈ ℕ0 | |
| 9 | 7, 8 | nn0mulcli 12416 | . . . 4 ⊢ (𝑇 · 𝐴) ∈ ℕ0 |
| 10 | 9 | nn0rei 12389 | . . 3 ⊢ (𝑇 · 𝐴) ∈ ℝ |
| 11 | 3, 5, 10 | ltadd2i 11241 | . 2 ⊢ (𝐵 < 𝐶 ↔ ((𝑇 · 𝐴) + 𝐵) < ((𝑇 · 𝐴) + 𝐶)) |
| 12 | 1, 11 | mpbi 230 | 1 ⊢ ((𝑇 · 𝐴) + 𝐵) < ((𝑇 · 𝐴) + 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2111 class class class wbr 5091 (class class class)co 7346 + caddc 11006 · cmul 11008 < clt 11143 ℕcn 12122 ℕ0cn0 12378 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-resscn 11060 ax-1cn 11061 ax-icn 11062 ax-addcl 11063 ax-addrcl 11064 ax-mulcl 11065 ax-mulrcl 11066 ax-mulcom 11067 ax-addass 11068 ax-mulass 11069 ax-distr 11070 ax-i2m1 11071 ax-1ne0 11072 ax-1rid 11073 ax-rnegex 11074 ax-rrecex 11075 ax-cnre 11076 ax-pre-lttri 11077 ax-pre-lttrn 11078 ax-pre-ltadd 11079 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-om 7797 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11145 df-mnf 11146 df-ltxr 11148 df-nn 12123 df-n0 12379 |
| This theorem is referenced by: numltc 12611 declt 12613 |
| Copyright terms: Public domain | W3C validator |