| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > modxp1i | Structured version Visualization version GIF version | ||
| Description: Add one to an exponent in a power mod calculation. (Contributed by Mario Carneiro, 21-Feb-2014.) |
| Ref | Expression |
|---|---|
| modxai.1 | ⊢ 𝑁 ∈ ℕ |
| modxai.2 | ⊢ 𝐴 ∈ ℕ |
| modxai.3 | ⊢ 𝐵 ∈ ℕ0 |
| modxai.4 | ⊢ 𝐷 ∈ ℤ |
| modxai.5 | ⊢ 𝐾 ∈ ℕ0 |
| modxai.6 | ⊢ 𝑀 ∈ ℕ0 |
| modxp1i.9 | ⊢ ((𝐴↑𝐵) mod 𝑁) = (𝐾 mod 𝑁) |
| modxp1i.7 | ⊢ (𝐵 + 1) = 𝐸 |
| modxp1i.8 | ⊢ ((𝐷 · 𝑁) + 𝑀) = (𝐾 · 𝐴) |
| Ref | Expression |
|---|---|
| modxp1i | ⊢ ((𝐴↑𝐸) mod 𝑁) = (𝑀 mod 𝑁) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | modxai.1 | . 2 ⊢ 𝑁 ∈ ℕ | |
| 2 | modxai.2 | . 2 ⊢ 𝐴 ∈ ℕ | |
| 3 | modxai.3 | . 2 ⊢ 𝐵 ∈ ℕ0 | |
| 4 | modxai.4 | . 2 ⊢ 𝐷 ∈ ℤ | |
| 5 | modxai.5 | . 2 ⊢ 𝐾 ∈ ℕ0 | |
| 6 | modxai.6 | . 2 ⊢ 𝑀 ∈ ℕ0 | |
| 7 | 1nn0 12474 | . 2 ⊢ 1 ∈ ℕ0 | |
| 8 | 2 | nnnn0i 12466 | . 2 ⊢ 𝐴 ∈ ℕ0 |
| 9 | modxp1i.9 | . 2 ⊢ ((𝐴↑𝐵) mod 𝑁) = (𝐾 mod 𝑁) | |
| 10 | 2 | nncni 12207 | . . . 4 ⊢ 𝐴 ∈ ℂ |
| 11 | exp1 14042 | . . . 4 ⊢ (𝐴 ∈ ℂ → (𝐴↑1) = 𝐴) | |
| 12 | 10, 11 | ax-mp 5 | . . 3 ⊢ (𝐴↑1) = 𝐴 |
| 13 | 12 | oveq1i 7404 | . 2 ⊢ ((𝐴↑1) mod 𝑁) = (𝐴 mod 𝑁) |
| 14 | modxp1i.7 | . 2 ⊢ (𝐵 + 1) = 𝐸 | |
| 15 | modxp1i.8 | . 2 ⊢ ((𝐷 · 𝑁) + 𝑀) = (𝐾 · 𝐴) | |
| 16 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 13, 14, 15 | modxai 17045 | 1 ⊢ ((𝐴↑𝐸) mod 𝑁) = (𝑀 mod 𝑁) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 (class class class)co 7394 ℂcc 11084 1c1 11087 + caddc 11089 · cmul 11091 ℕcn 12197 ℕ0cn0 12458 ℤcz 12545 mod cmo 13843 ↑cexp 14036 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5259 ax-nul 5269 ax-pow 5328 ax-pr 5395 ax-un 7718 ax-cnex 11142 ax-resscn 11143 ax-1cn 11144 ax-icn 11145 ax-addcl 11146 ax-addrcl 11147 ax-mulcl 11148 ax-mulrcl 11149 ax-mulcom 11150 ax-addass 11151 ax-mulass 11152 ax-distr 11153 ax-i2m1 11154 ax-1ne0 11155 ax-1rid 11156 ax-rnegex 11157 ax-rrecex 11158 ax-cnre 11159 ax-pre-lttri 11160 ax-pre-lttrn 11161 ax-pre-ltadd 11162 ax-pre-mulgt0 11163 ax-pre-sup 11164 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2880 df-ne 2928 df-nel 3032 df-ral 3047 df-rex 3056 df-rmo 3357 df-reu 3358 df-rab 3412 df-v 3457 df-sbc 3762 df-csb 3871 df-dif 3925 df-un 3927 df-in 3929 df-ss 3939 df-pss 3942 df-nul 4305 df-if 4497 df-pw 4573 df-sn 4598 df-pr 4600 df-op 4604 df-uni 4880 df-iun 4965 df-br 5116 df-opab 5178 df-mpt 5197 df-tr 5223 df-id 5541 df-eprel 5546 df-po 5554 df-so 5555 df-fr 5599 df-we 5601 df-xp 5652 df-rel 5653 df-cnv 5654 df-co 5655 df-dm 5656 df-rn 5657 df-res 5658 df-ima 5659 df-pred 6282 df-ord 6343 df-on 6344 df-lim 6345 df-suc 6346 df-iota 6472 df-fun 6521 df-fn 6522 df-f 6523 df-f1 6524 df-fo 6525 df-f1o 6526 df-fv 6527 df-riota 7351 df-ov 7397 df-oprab 7398 df-mpo 7399 df-om 7851 df-2nd 7978 df-frecs 8269 df-wrecs 8300 df-recs 8349 df-rdg 8387 df-er 8682 df-en 8923 df-dom 8924 df-sdom 8925 df-sup 9411 df-inf 9412 df-pnf 11228 df-mnf 11229 df-xr 11230 df-ltxr 11231 df-le 11232 df-sub 11425 df-neg 11426 df-div 11852 df-nn 12198 df-n0 12459 df-z 12546 df-uz 12810 df-rp 12966 df-fl 13766 df-mod 13844 df-seq 13977 df-exp 14037 |
| This theorem is referenced by: 1259lem1 17107 1259lem4 17110 2503lem2 17114 4001lem1 17117 2exp340mod341 47689 nfermltl8rev 47698 |
| Copyright terms: Public domain | W3C validator |