![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > modxp1i | Structured version Visualization version GIF version |
Description: Add one to an exponent in a power mod calculation. (Contributed by Mario Carneiro, 21-Feb-2014.) |
Ref | Expression |
---|---|
modxai.1 | ⊢ 𝑁 ∈ ℕ |
modxai.2 | ⊢ 𝐴 ∈ ℕ |
modxai.3 | ⊢ 𝐵 ∈ ℕ0 |
modxai.4 | ⊢ 𝐷 ∈ ℤ |
modxai.5 | ⊢ 𝐾 ∈ ℕ0 |
modxai.6 | ⊢ 𝑀 ∈ ℕ0 |
modxp1i.9 | ⊢ ((𝐴↑𝐵) mod 𝑁) = (𝐾 mod 𝑁) |
modxp1i.7 | ⊢ (𝐵 + 1) = 𝐸 |
modxp1i.8 | ⊢ ((𝐷 · 𝑁) + 𝑀) = (𝐾 · 𝐴) |
Ref | Expression |
---|---|
modxp1i | ⊢ ((𝐴↑𝐸) mod 𝑁) = (𝑀 mod 𝑁) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | modxai.1 | . 2 ⊢ 𝑁 ∈ ℕ | |
2 | modxai.2 | . 2 ⊢ 𝐴 ∈ ℕ | |
3 | modxai.3 | . 2 ⊢ 𝐵 ∈ ℕ0 | |
4 | modxai.4 | . 2 ⊢ 𝐷 ∈ ℤ | |
5 | modxai.5 | . 2 ⊢ 𝐾 ∈ ℕ0 | |
6 | modxai.6 | . 2 ⊢ 𝑀 ∈ ℕ0 | |
7 | 1nn0 12546 | . 2 ⊢ 1 ∈ ℕ0 | |
8 | 2 | nnnn0i 12538 | . 2 ⊢ 𝐴 ∈ ℕ0 |
9 | modxp1i.9 | . 2 ⊢ ((𝐴↑𝐵) mod 𝑁) = (𝐾 mod 𝑁) | |
10 | 2 | nncni 12280 | . . . 4 ⊢ 𝐴 ∈ ℂ |
11 | exp1 14111 | . . . 4 ⊢ (𝐴 ∈ ℂ → (𝐴↑1) = 𝐴) | |
12 | 10, 11 | ax-mp 5 | . . 3 ⊢ (𝐴↑1) = 𝐴 |
13 | 12 | oveq1i 7445 | . 2 ⊢ ((𝐴↑1) mod 𝑁) = (𝐴 mod 𝑁) |
14 | modxp1i.7 | . 2 ⊢ (𝐵 + 1) = 𝐸 | |
15 | modxp1i.8 | . 2 ⊢ ((𝐷 · 𝑁) + 𝑀) = (𝐾 · 𝐴) | |
16 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 13, 14, 15 | modxai 17108 | 1 ⊢ ((𝐴↑𝐸) mod 𝑁) = (𝑀 mod 𝑁) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1538 ∈ wcel 2107 (class class class)co 7435 ℂcc 11157 1c1 11160 + caddc 11162 · cmul 11164 ℕcn 12270 ℕ0cn0 12530 ℤcz 12617 mod cmo 13912 ↑cexp 14105 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-sep 5303 ax-nul 5313 ax-pow 5372 ax-pr 5439 ax-un 7758 ax-cnex 11215 ax-resscn 11216 ax-1cn 11217 ax-icn 11218 ax-addcl 11219 ax-addrcl 11220 ax-mulcl 11221 ax-mulrcl 11222 ax-mulcom 11223 ax-addass 11224 ax-mulass 11225 ax-distr 11226 ax-i2m1 11227 ax-1ne0 11228 ax-1rid 11229 ax-rnegex 11230 ax-rrecex 11231 ax-cnre 11232 ax-pre-lttri 11233 ax-pre-lttrn 11234 ax-pre-ltadd 11235 ax-pre-mulgt0 11236 ax-pre-sup 11237 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1541 df-fal 1551 df-ex 1778 df-nf 1782 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3379 df-reu 3380 df-rab 3435 df-v 3481 df-sbc 3793 df-csb 3910 df-dif 3967 df-un 3969 df-in 3971 df-ss 3981 df-pss 3984 df-nul 4341 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4914 df-iun 4999 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5584 df-eprel 5590 df-po 5598 df-so 5599 df-fr 5642 df-we 5644 df-xp 5696 df-rel 5697 df-cnv 5698 df-co 5699 df-dm 5700 df-rn 5701 df-res 5702 df-ima 5703 df-pred 6326 df-ord 6392 df-on 6393 df-lim 6394 df-suc 6395 df-iota 6519 df-fun 6568 df-fn 6569 df-f 6570 df-f1 6571 df-fo 6572 df-f1o 6573 df-fv 6574 df-riota 7392 df-ov 7438 df-oprab 7439 df-mpo 7440 df-om 7892 df-2nd 8020 df-frecs 8311 df-wrecs 8342 df-recs 8416 df-rdg 8455 df-er 8750 df-en 8991 df-dom 8992 df-sdom 8993 df-sup 9486 df-inf 9487 df-pnf 11301 df-mnf 11302 df-xr 11303 df-ltxr 11304 df-le 11305 df-sub 11498 df-neg 11499 df-div 11925 df-nn 12271 df-n0 12531 df-z 12618 df-uz 12883 df-rp 13039 df-fl 13835 df-mod 13913 df-seq 14046 df-exp 14106 |
This theorem is referenced by: 1259lem1 17171 1259lem4 17174 2503lem2 17178 4001lem1 17181 2exp340mod341 47669 nfermltl8rev 47678 |
Copyright terms: Public domain | W3C validator |