![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > modxp1i | Structured version Visualization version GIF version |
Description: Add one to an exponent in a power mod calculation. (Contributed by Mario Carneiro, 21-Feb-2014.) |
Ref | Expression |
---|---|
modxai.1 | ⊢ 𝑁 ∈ ℕ |
modxai.2 | ⊢ 𝐴 ∈ ℕ |
modxai.3 | ⊢ 𝐵 ∈ ℕ0 |
modxai.4 | ⊢ 𝐷 ∈ ℤ |
modxai.5 | ⊢ 𝐾 ∈ ℕ0 |
modxai.6 | ⊢ 𝑀 ∈ ℕ0 |
modxp1i.9 | ⊢ ((𝐴↑𝐵) mod 𝑁) = (𝐾 mod 𝑁) |
modxp1i.7 | ⊢ (𝐵 + 1) = 𝐸 |
modxp1i.8 | ⊢ ((𝐷 · 𝑁) + 𝑀) = (𝐾 · 𝐴) |
Ref | Expression |
---|---|
modxp1i | ⊢ ((𝐴↑𝐸) mod 𝑁) = (𝑀 mod 𝑁) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | modxai.1 | . 2 ⊢ 𝑁 ∈ ℕ | |
2 | modxai.2 | . 2 ⊢ 𝐴 ∈ ℕ | |
3 | modxai.3 | . 2 ⊢ 𝐵 ∈ ℕ0 | |
4 | modxai.4 | . 2 ⊢ 𝐷 ∈ ℤ | |
5 | modxai.5 | . 2 ⊢ 𝐾 ∈ ℕ0 | |
6 | modxai.6 | . 2 ⊢ 𝑀 ∈ ℕ0 | |
7 | 1nn0 12571 | . 2 ⊢ 1 ∈ ℕ0 | |
8 | 2 | nnnn0i 12563 | . 2 ⊢ 𝐴 ∈ ℕ0 |
9 | modxp1i.9 | . 2 ⊢ ((𝐴↑𝐵) mod 𝑁) = (𝐾 mod 𝑁) | |
10 | 2 | nncni 12305 | . . . 4 ⊢ 𝐴 ∈ ℂ |
11 | exp1 14120 | . . . 4 ⊢ (𝐴 ∈ ℂ → (𝐴↑1) = 𝐴) | |
12 | 10, 11 | ax-mp 5 | . . 3 ⊢ (𝐴↑1) = 𝐴 |
13 | 12 | oveq1i 7460 | . 2 ⊢ ((𝐴↑1) mod 𝑁) = (𝐴 mod 𝑁) |
14 | modxp1i.7 | . 2 ⊢ (𝐵 + 1) = 𝐸 | |
15 | modxp1i.8 | . 2 ⊢ ((𝐷 · 𝑁) + 𝑀) = (𝐾 · 𝐴) | |
16 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 13, 14, 15 | modxai 17117 | 1 ⊢ ((𝐴↑𝐸) mod 𝑁) = (𝑀 mod 𝑁) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ∈ wcel 2108 (class class class)co 7450 ℂcc 11184 1c1 11187 + caddc 11189 · cmul 11191 ℕcn 12295 ℕ0cn0 12555 ℤcz 12641 mod cmo 13922 ↑cexp 14114 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7772 ax-cnex 11242 ax-resscn 11243 ax-1cn 11244 ax-icn 11245 ax-addcl 11246 ax-addrcl 11247 ax-mulcl 11248 ax-mulrcl 11249 ax-mulcom 11250 ax-addass 11251 ax-mulass 11252 ax-distr 11253 ax-i2m1 11254 ax-1ne0 11255 ax-1rid 11256 ax-rnegex 11257 ax-rrecex 11258 ax-cnre 11259 ax-pre-lttri 11260 ax-pre-lttrn 11261 ax-pre-ltadd 11262 ax-pre-mulgt0 11263 ax-pre-sup 11264 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6334 df-ord 6400 df-on 6401 df-lim 6402 df-suc 6403 df-iota 6527 df-fun 6577 df-fn 6578 df-f 6579 df-f1 6580 df-fo 6581 df-f1o 6582 df-fv 6583 df-riota 7406 df-ov 7453 df-oprab 7454 df-mpo 7455 df-om 7906 df-2nd 8033 df-frecs 8324 df-wrecs 8355 df-recs 8429 df-rdg 8468 df-er 8765 df-en 9006 df-dom 9007 df-sdom 9008 df-sup 9513 df-inf 9514 df-pnf 11328 df-mnf 11329 df-xr 11330 df-ltxr 11331 df-le 11332 df-sub 11524 df-neg 11525 df-div 11950 df-nn 12296 df-n0 12556 df-z 12642 df-uz 12906 df-rp 13060 df-fl 13845 df-mod 13923 df-seq 14055 df-exp 14115 |
This theorem is referenced by: 1259lem1 17180 1259lem4 17183 2503lem2 17187 4001lem1 17190 2exp340mod341 47609 nfermltl8rev 47618 |
Copyright terms: Public domain | W3C validator |