Mathbox for metakunt |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > 12gcd5e1 | Structured version Visualization version GIF version |
Description: The gcd of 12 and 5 is 1. (Contributed by metakunt, 25-Apr-2024.) |
Ref | Expression |
---|---|
12gcd5e1 | ⊢ (;12 gcd 5) = 1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2lt5 12082 | . . . . . 6 ⊢ 2 < 5 | |
2 | 1 | olci 862 | . . . . 5 ⊢ (5 < 2 ∨ 2 < 5) |
3 | 5re 11990 | . . . . . 6 ⊢ 5 ∈ ℝ | |
4 | 2re 11977 | . . . . . 6 ⊢ 2 ∈ ℝ | |
5 | lttri2 10988 | . . . . . 6 ⊢ ((5 ∈ ℝ ∧ 2 ∈ ℝ) → (5 ≠ 2 ↔ (5 < 2 ∨ 2 < 5))) | |
6 | 3, 4, 5 | mp2an 688 | . . . . 5 ⊢ (5 ≠ 2 ↔ (5 < 2 ∨ 2 < 5)) |
7 | 2, 6 | mpbir 230 | . . . 4 ⊢ 5 ≠ 2 |
8 | 5prm 16738 | . . . . 5 ⊢ 5 ∈ ℙ | |
9 | 2prm 16325 | . . . . 5 ⊢ 2 ∈ ℙ | |
10 | prmrp 16345 | . . . . 5 ⊢ ((5 ∈ ℙ ∧ 2 ∈ ℙ) → ((5 gcd 2) = 1 ↔ 5 ≠ 2)) | |
11 | 8, 9, 10 | mp2an 688 | . . . 4 ⊢ ((5 gcd 2) = 1 ↔ 5 ≠ 2) |
12 | 7, 11 | mpbir 230 | . . 3 ⊢ (5 gcd 2) = 1 |
13 | 5nn 11989 | . . . . 5 ⊢ 5 ∈ ℕ | |
14 | 2nn 11976 | . . . . 5 ⊢ 2 ∈ ℕ | |
15 | 14 | nnzi 12274 | . . . . 5 ⊢ 2 ∈ ℤ |
16 | 13, 14, 15 | gcdaddmzz2nncomi 39932 | . . . 4 ⊢ (5 gcd 2) = (5 gcd ((2 · 5) + 2)) |
17 | 13, 14 | mulcomnni 39924 | . . . . . . . 8 ⊢ (5 · 2) = (2 · 5) |
18 | 5t2e10 12466 | . . . . . . . 8 ⊢ (5 · 2) = ;10 | |
19 | 17, 18 | eqtr3i 2768 | . . . . . . 7 ⊢ (2 · 5) = ;10 |
20 | 19 | oveq1i 7265 | . . . . . 6 ⊢ ((2 · 5) + 2) = (;10 + 2) |
21 | 1nn0 12179 | . . . . . . 7 ⊢ 1 ∈ ℕ0 | |
22 | 0nn0 12178 | . . . . . . 7 ⊢ 0 ∈ ℕ0 | |
23 | 14 | nnnn0i 12171 | . . . . . . 7 ⊢ 2 ∈ ℕ0 |
24 | eqid 2738 | . . . . . . 7 ⊢ ;10 = ;10 | |
25 | 23 | dec0h 12388 | . . . . . . 7 ⊢ 2 = ;02 |
26 | 1p0e1 12027 | . . . . . . 7 ⊢ (1 + 0) = 1 | |
27 | 2cn 11978 | . . . . . . . 8 ⊢ 2 ∈ ℂ | |
28 | 27 | addid2i 11093 | . . . . . . 7 ⊢ (0 + 2) = 2 |
29 | 21, 22, 22, 23, 24, 25, 26, 28 | decadd 12420 | . . . . . 6 ⊢ (;10 + 2) = ;12 |
30 | 20, 29 | eqtri 2766 | . . . . 5 ⊢ ((2 · 5) + 2) = ;12 |
31 | 30 | oveq2i 7266 | . . . 4 ⊢ (5 gcd ((2 · 5) + 2)) = (5 gcd ;12) |
32 | 16, 31 | eqtri 2766 | . . 3 ⊢ (5 gcd 2) = (5 gcd ;12) |
33 | 12, 32 | eqtr3i 2768 | . 2 ⊢ 1 = (5 gcd ;12) |
34 | 21, 14 | decnncl 12386 | . . 3 ⊢ ;12 ∈ ℕ |
35 | 13, 34 | gcdcomnni 39925 | . 2 ⊢ (5 gcd ;12) = (;12 gcd 5) |
36 | 33, 35 | eqtr2i 2767 | 1 ⊢ (;12 gcd 5) = 1 |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∨ wo 843 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 class class class wbr 5070 (class class class)co 7255 ℝcr 10801 0cc0 10802 1c1 10803 + caddc 10805 · cmul 10807 < clt 10940 2c2 11958 5c5 11961 ;cdc 12366 gcd cgcd 16129 ℙcprime 16304 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-2o 8268 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-sup 9131 df-inf 9132 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-7 11971 df-8 11972 df-9 11973 df-n0 12164 df-z 12250 df-dec 12367 df-uz 12512 df-rp 12660 df-fz 13169 df-seq 13650 df-exp 13711 df-cj 14738 df-re 14739 df-im 14740 df-sqrt 14874 df-abs 14875 df-dvds 15892 df-gcd 16130 df-prm 16305 |
This theorem is referenced by: 12lcm5e60 39944 |
Copyright terms: Public domain | W3C validator |