![]() |
Mathbox for metakunt |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > 12gcd5e1 | Structured version Visualization version GIF version |
Description: The gcd of 12 and 5 is 1. (Contributed by metakunt, 25-Apr-2024.) |
Ref | Expression |
---|---|
12gcd5e1 | ⊢ (;12 gcd 5) = 1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2lt5 12395 | . . . . . 6 ⊢ 2 < 5 | |
2 | 1 | olci 863 | . . . . 5 ⊢ (5 < 2 ∨ 2 < 5) |
3 | 5re 12303 | . . . . . 6 ⊢ 5 ∈ ℝ | |
4 | 2re 12290 | . . . . . 6 ⊢ 2 ∈ ℝ | |
5 | lttri2 11300 | . . . . . 6 ⊢ ((5 ∈ ℝ ∧ 2 ∈ ℝ) → (5 ≠ 2 ↔ (5 < 2 ∨ 2 < 5))) | |
6 | 3, 4, 5 | mp2an 689 | . . . . 5 ⊢ (5 ≠ 2 ↔ (5 < 2 ∨ 2 < 5)) |
7 | 2, 6 | mpbir 230 | . . . 4 ⊢ 5 ≠ 2 |
8 | 5prm 17051 | . . . . 5 ⊢ 5 ∈ ℙ | |
9 | 2prm 16636 | . . . . 5 ⊢ 2 ∈ ℙ | |
10 | prmrp 16656 | . . . . 5 ⊢ ((5 ∈ ℙ ∧ 2 ∈ ℙ) → ((5 gcd 2) = 1 ↔ 5 ≠ 2)) | |
11 | 8, 9, 10 | mp2an 689 | . . . 4 ⊢ ((5 gcd 2) = 1 ↔ 5 ≠ 2) |
12 | 7, 11 | mpbir 230 | . . 3 ⊢ (5 gcd 2) = 1 |
13 | 5nn 12302 | . . . . 5 ⊢ 5 ∈ ℕ | |
14 | 2nn 12289 | . . . . 5 ⊢ 2 ∈ ℕ | |
15 | 14 | nnzi 12590 | . . . . 5 ⊢ 2 ∈ ℤ |
16 | 13, 14, 15 | gcdaddmzz2nncomi 41377 | . . . 4 ⊢ (5 gcd 2) = (5 gcd ((2 · 5) + 2)) |
17 | 13, 14 | mulcomnni 41369 | . . . . . . . 8 ⊢ (5 · 2) = (2 · 5) |
18 | 5t2e10 12781 | . . . . . . . 8 ⊢ (5 · 2) = ;10 | |
19 | 17, 18 | eqtr3i 2756 | . . . . . . 7 ⊢ (2 · 5) = ;10 |
20 | 19 | oveq1i 7415 | . . . . . 6 ⊢ ((2 · 5) + 2) = (;10 + 2) |
21 | 1nn0 12492 | . . . . . . 7 ⊢ 1 ∈ ℕ0 | |
22 | 0nn0 12491 | . . . . . . 7 ⊢ 0 ∈ ℕ0 | |
23 | 14 | nnnn0i 12484 | . . . . . . 7 ⊢ 2 ∈ ℕ0 |
24 | eqid 2726 | . . . . . . 7 ⊢ ;10 = ;10 | |
25 | 23 | dec0h 12703 | . . . . . . 7 ⊢ 2 = ;02 |
26 | 1p0e1 12340 | . . . . . . 7 ⊢ (1 + 0) = 1 | |
27 | 2cn 12291 | . . . . . . . 8 ⊢ 2 ∈ ℂ | |
28 | 27 | addlidi 11406 | . . . . . . 7 ⊢ (0 + 2) = 2 |
29 | 21, 22, 22, 23, 24, 25, 26, 28 | decadd 12735 | . . . . . 6 ⊢ (;10 + 2) = ;12 |
30 | 20, 29 | eqtri 2754 | . . . . 5 ⊢ ((2 · 5) + 2) = ;12 |
31 | 30 | oveq2i 7416 | . . . 4 ⊢ (5 gcd ((2 · 5) + 2)) = (5 gcd ;12) |
32 | 16, 31 | eqtri 2754 | . . 3 ⊢ (5 gcd 2) = (5 gcd ;12) |
33 | 12, 32 | eqtr3i 2756 | . 2 ⊢ 1 = (5 gcd ;12) |
34 | 21, 14 | decnncl 12701 | . . 3 ⊢ ;12 ∈ ℕ |
35 | 13, 34 | gcdcomnni 41370 | . 2 ⊢ (5 gcd ;12) = (;12 gcd 5) |
36 | 33, 35 | eqtr2i 2755 | 1 ⊢ (;12 gcd 5) = 1 |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∨ wo 844 = wceq 1533 ∈ wcel 2098 ≠ wne 2934 class class class wbr 5141 (class class class)co 7405 ℝcr 11111 0cc0 11112 1c1 11113 + caddc 11115 · cmul 11117 < clt 11252 2c2 12271 5c5 12274 ;cdc 12681 gcd cgcd 16442 ℙcprime 16615 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7722 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 ax-pre-sup 11190 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-nel 3041 df-ral 3056 df-rex 3065 df-rmo 3370 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6294 df-ord 6361 df-on 6362 df-lim 6363 df-suc 6364 df-iota 6489 df-fun 6539 df-fn 6540 df-f 6541 df-f1 6542 df-fo 6543 df-f1o 6544 df-fv 6545 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7853 df-1st 7974 df-2nd 7975 df-frecs 8267 df-wrecs 8298 df-recs 8372 df-rdg 8411 df-1o 8467 df-2o 8468 df-er 8705 df-en 8942 df-dom 8943 df-sdom 8944 df-fin 8945 df-sup 9439 df-inf 9440 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-div 11876 df-nn 12217 df-2 12279 df-3 12280 df-4 12281 df-5 12282 df-6 12283 df-7 12284 df-8 12285 df-9 12286 df-n0 12477 df-z 12563 df-dec 12682 df-uz 12827 df-rp 12981 df-fz 13491 df-seq 13973 df-exp 14033 df-cj 15052 df-re 15053 df-im 15054 df-sqrt 15188 df-abs 15189 df-dvds 16205 df-gcd 16443 df-prm 16616 |
This theorem is referenced by: 12lcm5e60 41389 |
Copyright terms: Public domain | W3C validator |