Mathbox for metakunt |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > 12gcd5e1 | Structured version Visualization version GIF version |
Description: The gcd of 12 and 5 is 1. (Contributed by metakunt, 25-Apr-2024.) |
Ref | Expression |
---|---|
12gcd5e1 | ⊢ (;12 gcd 5) = 1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2lt5 12152 | . . . . . 6 ⊢ 2 < 5 | |
2 | 1 | olci 863 | . . . . 5 ⊢ (5 < 2 ∨ 2 < 5) |
3 | 5re 12060 | . . . . . 6 ⊢ 5 ∈ ℝ | |
4 | 2re 12047 | . . . . . 6 ⊢ 2 ∈ ℝ | |
5 | lttri2 11057 | . . . . . 6 ⊢ ((5 ∈ ℝ ∧ 2 ∈ ℝ) → (5 ≠ 2 ↔ (5 < 2 ∨ 2 < 5))) | |
6 | 3, 4, 5 | mp2an 689 | . . . . 5 ⊢ (5 ≠ 2 ↔ (5 < 2 ∨ 2 < 5)) |
7 | 2, 6 | mpbir 230 | . . . 4 ⊢ 5 ≠ 2 |
8 | 5prm 16810 | . . . . 5 ⊢ 5 ∈ ℙ | |
9 | 2prm 16397 | . . . . 5 ⊢ 2 ∈ ℙ | |
10 | prmrp 16417 | . . . . 5 ⊢ ((5 ∈ ℙ ∧ 2 ∈ ℙ) → ((5 gcd 2) = 1 ↔ 5 ≠ 2)) | |
11 | 8, 9, 10 | mp2an 689 | . . . 4 ⊢ ((5 gcd 2) = 1 ↔ 5 ≠ 2) |
12 | 7, 11 | mpbir 230 | . . 3 ⊢ (5 gcd 2) = 1 |
13 | 5nn 12059 | . . . . 5 ⊢ 5 ∈ ℕ | |
14 | 2nn 12046 | . . . . 5 ⊢ 2 ∈ ℕ | |
15 | 14 | nnzi 12344 | . . . . 5 ⊢ 2 ∈ ℤ |
16 | 13, 14, 15 | gcdaddmzz2nncomi 40004 | . . . 4 ⊢ (5 gcd 2) = (5 gcd ((2 · 5) + 2)) |
17 | 13, 14 | mulcomnni 39996 | . . . . . . . 8 ⊢ (5 · 2) = (2 · 5) |
18 | 5t2e10 12537 | . . . . . . . 8 ⊢ (5 · 2) = ;10 | |
19 | 17, 18 | eqtr3i 2768 | . . . . . . 7 ⊢ (2 · 5) = ;10 |
20 | 19 | oveq1i 7285 | . . . . . 6 ⊢ ((2 · 5) + 2) = (;10 + 2) |
21 | 1nn0 12249 | . . . . . . 7 ⊢ 1 ∈ ℕ0 | |
22 | 0nn0 12248 | . . . . . . 7 ⊢ 0 ∈ ℕ0 | |
23 | 14 | nnnn0i 12241 | . . . . . . 7 ⊢ 2 ∈ ℕ0 |
24 | eqid 2738 | . . . . . . 7 ⊢ ;10 = ;10 | |
25 | 23 | dec0h 12459 | . . . . . . 7 ⊢ 2 = ;02 |
26 | 1p0e1 12097 | . . . . . . 7 ⊢ (1 + 0) = 1 | |
27 | 2cn 12048 | . . . . . . . 8 ⊢ 2 ∈ ℂ | |
28 | 27 | addid2i 11163 | . . . . . . 7 ⊢ (0 + 2) = 2 |
29 | 21, 22, 22, 23, 24, 25, 26, 28 | decadd 12491 | . . . . . 6 ⊢ (;10 + 2) = ;12 |
30 | 20, 29 | eqtri 2766 | . . . . 5 ⊢ ((2 · 5) + 2) = ;12 |
31 | 30 | oveq2i 7286 | . . . 4 ⊢ (5 gcd ((2 · 5) + 2)) = (5 gcd ;12) |
32 | 16, 31 | eqtri 2766 | . . 3 ⊢ (5 gcd 2) = (5 gcd ;12) |
33 | 12, 32 | eqtr3i 2768 | . 2 ⊢ 1 = (5 gcd ;12) |
34 | 21, 14 | decnncl 12457 | . . 3 ⊢ ;12 ∈ ℕ |
35 | 13, 34 | gcdcomnni 39997 | . 2 ⊢ (5 gcd ;12) = (;12 gcd 5) |
36 | 33, 35 | eqtr2i 2767 | 1 ⊢ (;12 gcd 5) = 1 |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∨ wo 844 = wceq 1539 ∈ wcel 2106 ≠ wne 2943 class class class wbr 5074 (class class class)co 7275 ℝcr 10870 0cc0 10871 1c1 10872 + caddc 10874 · cmul 10876 < clt 11009 2c2 12028 5c5 12031 ;cdc 12437 gcd cgcd 16201 ℙcprime 16376 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 ax-pre-sup 10949 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-2o 8298 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-sup 9201 df-inf 9202 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-div 11633 df-nn 11974 df-2 12036 df-3 12037 df-4 12038 df-5 12039 df-6 12040 df-7 12041 df-8 12042 df-9 12043 df-n0 12234 df-z 12320 df-dec 12438 df-uz 12583 df-rp 12731 df-fz 13240 df-seq 13722 df-exp 13783 df-cj 14810 df-re 14811 df-im 14812 df-sqrt 14946 df-abs 14947 df-dvds 15964 df-gcd 16202 df-prm 16377 |
This theorem is referenced by: 12lcm5e60 40016 |
Copyright terms: Public domain | W3C validator |