![]() |
Mathbox for metakunt |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > 12gcd5e1 | Structured version Visualization version GIF version |
Description: The gcd of 12 and 5 is 1. (Contributed by metakunt, 25-Apr-2024.) |
Ref | Expression |
---|---|
12gcd5e1 | ⊢ (;12 gcd 5) = 1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2lt5 12431 | . . . . . 6 ⊢ 2 < 5 | |
2 | 1 | olci 864 | . . . . 5 ⊢ (5 < 2 ∨ 2 < 5) |
3 | 5re 12339 | . . . . . 6 ⊢ 5 ∈ ℝ | |
4 | 2re 12326 | . . . . . 6 ⊢ 2 ∈ ℝ | |
5 | lttri2 11336 | . . . . . 6 ⊢ ((5 ∈ ℝ ∧ 2 ∈ ℝ) → (5 ≠ 2 ↔ (5 < 2 ∨ 2 < 5))) | |
6 | 3, 4, 5 | mp2an 690 | . . . . 5 ⊢ (5 ≠ 2 ↔ (5 < 2 ∨ 2 < 5)) |
7 | 2, 6 | mpbir 230 | . . . 4 ⊢ 5 ≠ 2 |
8 | 5prm 17087 | . . . . 5 ⊢ 5 ∈ ℙ | |
9 | 2prm 16672 | . . . . 5 ⊢ 2 ∈ ℙ | |
10 | prmrp 16692 | . . . . 5 ⊢ ((5 ∈ ℙ ∧ 2 ∈ ℙ) → ((5 gcd 2) = 1 ↔ 5 ≠ 2)) | |
11 | 8, 9, 10 | mp2an 690 | . . . 4 ⊢ ((5 gcd 2) = 1 ↔ 5 ≠ 2) |
12 | 7, 11 | mpbir 230 | . . 3 ⊢ (5 gcd 2) = 1 |
13 | 5nn 12338 | . . . . 5 ⊢ 5 ∈ ℕ | |
14 | 2nn 12325 | . . . . 5 ⊢ 2 ∈ ℕ | |
15 | 14 | nnzi 12626 | . . . . 5 ⊢ 2 ∈ ℤ |
16 | 13, 14, 15 | gcdaddmzz2nncomi 41506 | . . . 4 ⊢ (5 gcd 2) = (5 gcd ((2 · 5) + 2)) |
17 | 13, 14 | mulcomnni 41498 | . . . . . . . 8 ⊢ (5 · 2) = (2 · 5) |
18 | 5t2e10 12817 | . . . . . . . 8 ⊢ (5 · 2) = ;10 | |
19 | 17, 18 | eqtr3i 2758 | . . . . . . 7 ⊢ (2 · 5) = ;10 |
20 | 19 | oveq1i 7436 | . . . . . 6 ⊢ ((2 · 5) + 2) = (;10 + 2) |
21 | 1nn0 12528 | . . . . . . 7 ⊢ 1 ∈ ℕ0 | |
22 | 0nn0 12527 | . . . . . . 7 ⊢ 0 ∈ ℕ0 | |
23 | 14 | nnnn0i 12520 | . . . . . . 7 ⊢ 2 ∈ ℕ0 |
24 | eqid 2728 | . . . . . . 7 ⊢ ;10 = ;10 | |
25 | 23 | dec0h 12739 | . . . . . . 7 ⊢ 2 = ;02 |
26 | 1p0e1 12376 | . . . . . . 7 ⊢ (1 + 0) = 1 | |
27 | 2cn 12327 | . . . . . . . 8 ⊢ 2 ∈ ℂ | |
28 | 27 | addlidi 11442 | . . . . . . 7 ⊢ (0 + 2) = 2 |
29 | 21, 22, 22, 23, 24, 25, 26, 28 | decadd 12771 | . . . . . 6 ⊢ (;10 + 2) = ;12 |
30 | 20, 29 | eqtri 2756 | . . . . 5 ⊢ ((2 · 5) + 2) = ;12 |
31 | 30 | oveq2i 7437 | . . . 4 ⊢ (5 gcd ((2 · 5) + 2)) = (5 gcd ;12) |
32 | 16, 31 | eqtri 2756 | . . 3 ⊢ (5 gcd 2) = (5 gcd ;12) |
33 | 12, 32 | eqtr3i 2758 | . 2 ⊢ 1 = (5 gcd ;12) |
34 | 21, 14 | decnncl 12737 | . . 3 ⊢ ;12 ∈ ℕ |
35 | 13, 34 | gcdcomnni 41499 | . 2 ⊢ (5 gcd ;12) = (;12 gcd 5) |
36 | 33, 35 | eqtr2i 2757 | 1 ⊢ (;12 gcd 5) = 1 |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∨ wo 845 = wceq 1533 ∈ wcel 2098 ≠ wne 2937 class class class wbr 5152 (class class class)co 7426 ℝcr 11147 0cc0 11148 1c1 11149 + caddc 11151 · cmul 11153 < clt 11288 2c2 12307 5c5 12310 ;cdc 12717 gcd cgcd 16478 ℙcprime 16651 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-sep 5303 ax-nul 5310 ax-pow 5369 ax-pr 5433 ax-un 7748 ax-cnex 11204 ax-resscn 11205 ax-1cn 11206 ax-icn 11207 ax-addcl 11208 ax-addrcl 11209 ax-mulcl 11210 ax-mulrcl 11211 ax-mulcom 11212 ax-addass 11213 ax-mulass 11214 ax-distr 11215 ax-i2m1 11216 ax-1ne0 11217 ax-1rid 11218 ax-rnegex 11219 ax-rrecex 11220 ax-cnre 11221 ax-pre-lttri 11222 ax-pre-lttrn 11223 ax-pre-ltadd 11224 ax-pre-mulgt0 11225 ax-pre-sup 11226 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3374 df-reu 3375 df-rab 3431 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4327 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-iun 5002 df-br 5153 df-opab 5215 df-mpt 5236 df-tr 5270 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-pred 6310 df-ord 6377 df-on 6378 df-lim 6379 df-suc 6380 df-iota 6505 df-fun 6555 df-fn 6556 df-f 6557 df-f1 6558 df-fo 6559 df-f1o 6560 df-fv 6561 df-riota 7382 df-ov 7429 df-oprab 7430 df-mpo 7431 df-om 7879 df-1st 8001 df-2nd 8002 df-frecs 8295 df-wrecs 8326 df-recs 8400 df-rdg 8439 df-1o 8495 df-2o 8496 df-er 8733 df-en 8973 df-dom 8974 df-sdom 8975 df-fin 8976 df-sup 9475 df-inf 9476 df-pnf 11290 df-mnf 11291 df-xr 11292 df-ltxr 11293 df-le 11294 df-sub 11486 df-neg 11487 df-div 11912 df-nn 12253 df-2 12315 df-3 12316 df-4 12317 df-5 12318 df-6 12319 df-7 12320 df-8 12321 df-9 12322 df-n0 12513 df-z 12599 df-dec 12718 df-uz 12863 df-rp 13017 df-fz 13527 df-seq 14009 df-exp 14069 df-cj 15088 df-re 15089 df-im 15090 df-sqrt 15224 df-abs 15225 df-dvds 16241 df-gcd 16479 df-prm 16652 |
This theorem is referenced by: 12lcm5e60 41519 |
Copyright terms: Public domain | W3C validator |