![]() |
Mathbox for metakunt |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > 12gcd5e1 | Structured version Visualization version GIF version |
Description: The gcd of 12 and 5 is 1. (Contributed by metakunt, 25-Apr-2024.) |
Ref | Expression |
---|---|
12gcd5e1 | ⊢ (;12 gcd 5) = 1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2lt5 12443 | . . . . . 6 ⊢ 2 < 5 | |
2 | 1 | olci 866 | . . . . 5 ⊢ (5 < 2 ∨ 2 < 5) |
3 | 5re 12351 | . . . . . 6 ⊢ 5 ∈ ℝ | |
4 | 2re 12338 | . . . . . 6 ⊢ 2 ∈ ℝ | |
5 | lttri2 11341 | . . . . . 6 ⊢ ((5 ∈ ℝ ∧ 2 ∈ ℝ) → (5 ≠ 2 ↔ (5 < 2 ∨ 2 < 5))) | |
6 | 3, 4, 5 | mp2an 692 | . . . . 5 ⊢ (5 ≠ 2 ↔ (5 < 2 ∨ 2 < 5)) |
7 | 2, 6 | mpbir 231 | . . . 4 ⊢ 5 ≠ 2 |
8 | 5prm 17143 | . . . . 5 ⊢ 5 ∈ ℙ | |
9 | 2prm 16726 | . . . . 5 ⊢ 2 ∈ ℙ | |
10 | prmrp 16746 | . . . . 5 ⊢ ((5 ∈ ℙ ∧ 2 ∈ ℙ) → ((5 gcd 2) = 1 ↔ 5 ≠ 2)) | |
11 | 8, 9, 10 | mp2an 692 | . . . 4 ⊢ ((5 gcd 2) = 1 ↔ 5 ≠ 2) |
12 | 7, 11 | mpbir 231 | . . 3 ⊢ (5 gcd 2) = 1 |
13 | 5nn 12350 | . . . . 5 ⊢ 5 ∈ ℕ | |
14 | 2nn 12337 | . . . . 5 ⊢ 2 ∈ ℕ | |
15 | 14 | nnzi 12639 | . . . . 5 ⊢ 2 ∈ ℤ |
16 | 13, 14, 15 | gcdaddmzz2nncomi 41977 | . . . 4 ⊢ (5 gcd 2) = (5 gcd ((2 · 5) + 2)) |
17 | 13, 14 | mulcomnni 41969 | . . . . . . . 8 ⊢ (5 · 2) = (2 · 5) |
18 | 5t2e10 12831 | . . . . . . . 8 ⊢ (5 · 2) = ;10 | |
19 | 17, 18 | eqtr3i 2765 | . . . . . . 7 ⊢ (2 · 5) = ;10 |
20 | 19 | oveq1i 7441 | . . . . . 6 ⊢ ((2 · 5) + 2) = (;10 + 2) |
21 | 1nn0 12540 | . . . . . . 7 ⊢ 1 ∈ ℕ0 | |
22 | 0nn0 12539 | . . . . . . 7 ⊢ 0 ∈ ℕ0 | |
23 | 14 | nnnn0i 12532 | . . . . . . 7 ⊢ 2 ∈ ℕ0 |
24 | eqid 2735 | . . . . . . 7 ⊢ ;10 = ;10 | |
25 | 23 | dec0h 12753 | . . . . . . 7 ⊢ 2 = ;02 |
26 | 1p0e1 12388 | . . . . . . 7 ⊢ (1 + 0) = 1 | |
27 | 2cn 12339 | . . . . . . . 8 ⊢ 2 ∈ ℂ | |
28 | 27 | addlidi 11447 | . . . . . . 7 ⊢ (0 + 2) = 2 |
29 | 21, 22, 22, 23, 24, 25, 26, 28 | decadd 12785 | . . . . . 6 ⊢ (;10 + 2) = ;12 |
30 | 20, 29 | eqtri 2763 | . . . . 5 ⊢ ((2 · 5) + 2) = ;12 |
31 | 30 | oveq2i 7442 | . . . 4 ⊢ (5 gcd ((2 · 5) + 2)) = (5 gcd ;12) |
32 | 16, 31 | eqtri 2763 | . . 3 ⊢ (5 gcd 2) = (5 gcd ;12) |
33 | 12, 32 | eqtr3i 2765 | . 2 ⊢ 1 = (5 gcd ;12) |
34 | 21, 14 | decnncl 12751 | . . 3 ⊢ ;12 ∈ ℕ |
35 | 13, 34 | gcdcomnni 41970 | . 2 ⊢ (5 gcd ;12) = (;12 gcd 5) |
36 | 33, 35 | eqtr2i 2764 | 1 ⊢ (;12 gcd 5) = 1 |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∨ wo 847 = wceq 1537 ∈ wcel 2106 ≠ wne 2938 class class class wbr 5148 (class class class)co 7431 ℝcr 11152 0cc0 11153 1c1 11154 + caddc 11156 · cmul 11158 < clt 11293 2c2 12319 5c5 12322 ;cdc 12731 gcd cgcd 16528 ℙcprime 16705 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 ax-pre-sup 11231 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8013 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-1o 8505 df-2o 8506 df-er 8744 df-en 8985 df-dom 8986 df-sdom 8987 df-fin 8988 df-sup 9480 df-inf 9481 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-div 11919 df-nn 12265 df-2 12327 df-3 12328 df-4 12329 df-5 12330 df-6 12331 df-7 12332 df-8 12333 df-9 12334 df-n0 12525 df-z 12612 df-dec 12732 df-uz 12877 df-rp 13033 df-fz 13545 df-seq 14040 df-exp 14100 df-cj 15135 df-re 15136 df-im 15137 df-sqrt 15271 df-abs 15272 df-dvds 16288 df-gcd 16529 df-prm 16706 |
This theorem is referenced by: 12lcm5e60 41990 |
Copyright terms: Public domain | W3C validator |