| Mathbox for metakunt |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > 12gcd5e1 | Structured version Visualization version GIF version | ||
| Description: The gcd of 12 and 5 is 1. (Contributed by metakunt, 25-Apr-2024.) |
| Ref | Expression |
|---|---|
| 12gcd5e1 | ⊢ (;12 gcd 5) = 1 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2lt5 12308 | . . . . . 6 ⊢ 2 < 5 | |
| 2 | 1 | olci 866 | . . . . 5 ⊢ (5 < 2 ∨ 2 < 5) |
| 3 | 5re 12221 | . . . . . 6 ⊢ 5 ∈ ℝ | |
| 4 | 2re 12208 | . . . . . 6 ⊢ 2 ∈ ℝ | |
| 5 | lttri2 11204 | . . . . . 6 ⊢ ((5 ∈ ℝ ∧ 2 ∈ ℝ) → (5 ≠ 2 ↔ (5 < 2 ∨ 2 < 5))) | |
| 6 | 3, 4, 5 | mp2an 692 | . . . . 5 ⊢ (5 ≠ 2 ↔ (5 < 2 ∨ 2 < 5)) |
| 7 | 2, 6 | mpbir 231 | . . . 4 ⊢ 5 ≠ 2 |
| 8 | 5prm 17024 | . . . . 5 ⊢ 5 ∈ ℙ | |
| 9 | 2prm 16607 | . . . . 5 ⊢ 2 ∈ ℙ | |
| 10 | prmrp 16627 | . . . . 5 ⊢ ((5 ∈ ℙ ∧ 2 ∈ ℙ) → ((5 gcd 2) = 1 ↔ 5 ≠ 2)) | |
| 11 | 8, 9, 10 | mp2an 692 | . . . 4 ⊢ ((5 gcd 2) = 1 ↔ 5 ≠ 2) |
| 12 | 7, 11 | mpbir 231 | . . 3 ⊢ (5 gcd 2) = 1 |
| 13 | 5nn 12220 | . . . . 5 ⊢ 5 ∈ ℕ | |
| 14 | 2nn 12207 | . . . . 5 ⊢ 2 ∈ ℕ | |
| 15 | 14 | nnzi 12504 | . . . . 5 ⊢ 2 ∈ ℤ |
| 16 | 13, 14, 15 | gcdaddmzz2nncomi 42111 | . . . 4 ⊢ (5 gcd 2) = (5 gcd ((2 · 5) + 2)) |
| 17 | 13, 14 | mulcomnni 42103 | . . . . . . . 8 ⊢ (5 · 2) = (2 · 5) |
| 18 | 5t2e10 12696 | . . . . . . . 8 ⊢ (5 · 2) = ;10 | |
| 19 | 17, 18 | eqtr3i 2758 | . . . . . . 7 ⊢ (2 · 5) = ;10 |
| 20 | 19 | oveq1i 7364 | . . . . . 6 ⊢ ((2 · 5) + 2) = (;10 + 2) |
| 21 | 1nn0 12406 | . . . . . . 7 ⊢ 1 ∈ ℕ0 | |
| 22 | 0nn0 12405 | . . . . . . 7 ⊢ 0 ∈ ℕ0 | |
| 23 | 14 | nnnn0i 12398 | . . . . . . 7 ⊢ 2 ∈ ℕ0 |
| 24 | eqid 2733 | . . . . . . 7 ⊢ ;10 = ;10 | |
| 25 | 23 | dec0h 12618 | . . . . . . 7 ⊢ 2 = ;02 |
| 26 | 1p0e1 12253 | . . . . . . 7 ⊢ (1 + 0) = 1 | |
| 27 | 2cn 12209 | . . . . . . . 8 ⊢ 2 ∈ ℂ | |
| 28 | 27 | addlidi 11310 | . . . . . . 7 ⊢ (0 + 2) = 2 |
| 29 | 21, 22, 22, 23, 24, 25, 26, 28 | decadd 12650 | . . . . . 6 ⊢ (;10 + 2) = ;12 |
| 30 | 20, 29 | eqtri 2756 | . . . . 5 ⊢ ((2 · 5) + 2) = ;12 |
| 31 | 30 | oveq2i 7365 | . . . 4 ⊢ (5 gcd ((2 · 5) + 2)) = (5 gcd ;12) |
| 32 | 16, 31 | eqtri 2756 | . . 3 ⊢ (5 gcd 2) = (5 gcd ;12) |
| 33 | 12, 32 | eqtr3i 2758 | . 2 ⊢ 1 = (5 gcd ;12) |
| 34 | 21, 14 | decnncl 12616 | . . 3 ⊢ ;12 ∈ ℕ |
| 35 | 13, 34 | gcdcomnni 42104 | . 2 ⊢ (5 gcd ;12) = (;12 gcd 5) |
| 36 | 33, 35 | eqtr2i 2757 | 1 ⊢ (;12 gcd 5) = 1 |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∨ wo 847 = wceq 1541 ∈ wcel 2113 ≠ wne 2929 class class class wbr 5095 (class class class)co 7354 ℝcr 11014 0cc0 11015 1c1 11016 + caddc 11018 · cmul 11020 < clt 11155 2c2 12189 5c5 12192 ;cdc 12596 gcd cgcd 16409 ℙcprime 16586 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7676 ax-cnex 11071 ax-resscn 11072 ax-1cn 11073 ax-icn 11074 ax-addcl 11075 ax-addrcl 11076 ax-mulcl 11077 ax-mulrcl 11078 ax-mulcom 11079 ax-addass 11080 ax-mulass 11081 ax-distr 11082 ax-i2m1 11083 ax-1ne0 11084 ax-1rid 11085 ax-rnegex 11086 ax-rrecex 11087 ax-cnre 11088 ax-pre-lttri 11089 ax-pre-lttrn 11090 ax-pre-ltadd 11091 ax-pre-mulgt0 11092 ax-pre-sup 11093 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6255 df-ord 6316 df-on 6317 df-lim 6318 df-suc 6319 df-iota 6444 df-fun 6490 df-fn 6491 df-f 6492 df-f1 6493 df-fo 6494 df-f1o 6495 df-fv 6496 df-riota 7311 df-ov 7357 df-oprab 7358 df-mpo 7359 df-om 7805 df-1st 7929 df-2nd 7930 df-frecs 8219 df-wrecs 8250 df-recs 8299 df-rdg 8337 df-1o 8393 df-2o 8394 df-er 8630 df-en 8878 df-dom 8879 df-sdom 8880 df-fin 8881 df-sup 9335 df-inf 9336 df-pnf 11157 df-mnf 11158 df-xr 11159 df-ltxr 11160 df-le 11161 df-sub 11355 df-neg 11356 df-div 11784 df-nn 12135 df-2 12197 df-3 12198 df-4 12199 df-5 12200 df-6 12201 df-7 12202 df-8 12203 df-9 12204 df-n0 12391 df-z 12478 df-dec 12597 df-uz 12741 df-rp 12895 df-fz 13412 df-seq 13913 df-exp 13973 df-cj 15010 df-re 15011 df-im 15012 df-sqrt 15146 df-abs 15147 df-dvds 16168 df-gcd 16410 df-prm 16587 |
| This theorem is referenced by: 12lcm5e60 42124 |
| Copyright terms: Public domain | W3C validator |