![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 8nn0 | Structured version Visualization version GIF version |
Description: 8 is a nonnegative integer. (Contributed by Mario Carneiro, 19-Apr-2015.) |
Ref | Expression |
---|---|
8nn0 | ⊢ 8 ∈ ℕ0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 8nn 12388 | . 2 ⊢ 8 ∈ ℕ | |
2 | 1 | nnnn0i 12561 | 1 ⊢ 8 ∈ ℕ0 |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2108 8c8 12354 ℕ0cn0 12553 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-un 7770 ax-1cn 11242 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-om 7904 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-nn 12294 df-2 12356 df-3 12357 df-4 12358 df-5 12359 df-6 12360 df-7 12361 df-8 12362 df-n0 12554 |
This theorem is referenced by: 8p3e11 12839 8p4e12 12840 8p5e13 12841 8p6e14 12842 8p7e15 12843 8p8e16 12844 9p9e18 12852 6t4e24 12864 7t5e35 12870 8t3e24 12874 8t4e32 12875 8t5e40 12876 8t6e48 12877 8t7e56 12878 8t8e64 12879 9t3e27 12881 9t9e81 12887 2exp11 17137 2exp16 17138 19prm 17165 prmlem2 17167 37prm 17168 43prm 17169 83prm 17170 139prm 17171 163prm 17172 317prm 17173 631prm 17174 1259lem1 17178 1259lem2 17179 1259lem3 17180 1259lem4 17181 1259lem5 17182 1259prm 17183 2503lem1 17184 2503lem2 17185 2503lem3 17186 2503prm 17187 4001lem1 17188 4001lem2 17189 4001lem3 17190 4001lem4 17191 4001prm 17192 slotsdnscsi 17451 sradsOLD 21215 log2ublem3 27009 log2ub 27010 bpos1 27345 2lgslem3a 27458 2lgslem3b 27459 2lgslem3c 27460 2lgslem3d 27461 basendxltedgfndx 29028 baseltedgfOLD 29029 ex-exp 30482 hgt750lem 34628 hgt750lem2 34629 tgoldbachgtde 34637 420gcd8e4 41963 420lcm8e840 41968 lcmineqlem 42009 3exp7 42010 3lexlogpow5ineq1 42011 3lexlogpow5ineq2 42012 3lexlogpow5ineq5 42017 aks4d1p1 42033 235t711 42293 ex-decpmul 42294 sum9cubes 42627 3cubeslem3l 42642 3cubeslem3r 42643 fmtno5lem1 47427 fmtno5lem3 47429 fmtno5lem4 47430 257prm 47435 fmtno4prmfac 47446 fmtno4nprmfac193 47448 fmtno5faclem1 47453 fmtno5faclem3 47455 fmtno5fac 47456 139prmALT 47470 127prm 47473 m7prm 47474 m11nprm 47475 2exp340mod341 47607 8exp8mod9 47610 nfermltl8rev 47616 bgoldbachlt 47687 tgblthelfgott 47689 tgoldbachlt 47690 |
Copyright terms: Public domain | W3C validator |