| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 8nn0 | Structured version Visualization version GIF version | ||
| Description: 8 is a nonnegative integer. (Contributed by Mario Carneiro, 19-Apr-2015.) |
| Ref | Expression |
|---|---|
| 8nn0 | ⊢ 8 ∈ ℕ0 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 8nn 12223 | . 2 ⊢ 8 ∈ ℕ | |
| 2 | 1 | nnnn0i 12392 | 1 ⊢ 8 ∈ ℕ0 |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 8c8 12189 ℕ0cn0 12384 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pr 5371 ax-un 7671 ax-1cn 11067 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-ov 7352 df-om 7800 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-nn 12129 df-2 12191 df-3 12192 df-4 12193 df-5 12194 df-6 12195 df-7 12196 df-8 12197 df-n0 12385 |
| This theorem is referenced by: 8p3e11 12672 8p4e12 12673 8p5e13 12674 8p6e14 12675 8p7e15 12676 8p8e16 12677 9p9e18 12685 6t4e24 12697 7t5e35 12703 8t3e24 12707 8t4e32 12708 8t5e40 12709 8t6e48 12710 8t7e56 12711 8t8e64 12712 9t3e27 12714 9t9e81 12720 2exp11 17001 2exp16 17002 19prm 17029 prmlem2 17031 37prm 17032 43prm 17033 83prm 17034 139prm 17035 163prm 17036 317prm 17037 631prm 17038 1259lem1 17042 1259lem2 17043 1259lem3 17044 1259lem4 17045 1259lem5 17046 1259prm 17047 2503lem1 17048 2503lem2 17049 2503lem3 17050 2503prm 17051 4001lem1 17052 4001lem2 17053 4001lem3 17054 4001lem4 17055 4001prm 17056 slotsdnscsi 17296 log2ublem3 26856 log2ub 26857 bpos1 27192 2lgslem3a 27305 2lgslem3b 27306 2lgslem3c 27307 2lgslem3d 27308 basendxltedgfndx 28939 ex-exp 30394 cos9thpiminplylem1 33749 hgt750lem 34619 hgt750lem2 34620 tgoldbachgtde 34628 420gcd8e4 41979 420lcm8e840 41984 lcmineqlem 42025 3exp7 42026 3lexlogpow5ineq1 42027 3lexlogpow5ineq2 42028 3lexlogpow5ineq5 42033 aks4d1p1 42049 235t711 42278 ex-decpmul 42279 sum9cubes 42645 3cubeslem3l 42659 3cubeslem3r 42660 fmtno5lem1 47537 fmtno5lem3 47539 fmtno5lem4 47540 257prm 47545 fmtno4prmfac 47556 fmtno4nprmfac193 47558 fmtno5faclem1 47563 fmtno5faclem3 47565 fmtno5fac 47566 139prmALT 47580 127prm 47583 m7prm 47584 m11nprm 47585 2exp340mod341 47717 8exp8mod9 47720 nfermltl8rev 47726 bgoldbachlt 47797 tgblthelfgott 47799 tgoldbachlt 47800 |
| Copyright terms: Public domain | W3C validator |