| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 8nn0 | Structured version Visualization version GIF version | ||
| Description: 8 is a nonnegative integer. (Contributed by Mario Carneiro, 19-Apr-2015.) |
| Ref | Expression |
|---|---|
| 8nn0 | ⊢ 8 ∈ ℕ0 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 8nn 12333 | . 2 ⊢ 8 ∈ ℕ | |
| 2 | 1 | nnnn0i 12507 | 1 ⊢ 8 ∈ ℕ0 |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2108 8c8 12299 ℕ0cn0 12499 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 ax-un 7727 ax-1cn 11185 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 df-ov 7406 df-om 7860 df-2nd 7987 df-frecs 8278 df-wrecs 8309 df-recs 8383 df-rdg 8422 df-nn 12239 df-2 12301 df-3 12302 df-4 12303 df-5 12304 df-6 12305 df-7 12306 df-8 12307 df-n0 12500 |
| This theorem is referenced by: 8p3e11 12787 8p4e12 12788 8p5e13 12789 8p6e14 12790 8p7e15 12791 8p8e16 12792 9p9e18 12800 6t4e24 12812 7t5e35 12818 8t3e24 12822 8t4e32 12823 8t5e40 12824 8t6e48 12825 8t7e56 12826 8t8e64 12827 9t3e27 12829 9t9e81 12835 2exp11 17107 2exp16 17108 19prm 17135 prmlem2 17137 37prm 17138 43prm 17139 83prm 17140 139prm 17141 163prm 17142 317prm 17143 631prm 17144 1259lem1 17148 1259lem2 17149 1259lem3 17150 1259lem4 17151 1259lem5 17152 1259prm 17153 2503lem1 17154 2503lem2 17155 2503lem3 17156 2503prm 17157 4001lem1 17158 4001lem2 17159 4001lem3 17160 4001lem4 17161 4001prm 17162 slotsdnscsi 17404 log2ublem3 26908 log2ub 26909 bpos1 27244 2lgslem3a 27357 2lgslem3b 27358 2lgslem3c 27359 2lgslem3d 27360 basendxltedgfndx 28919 ex-exp 30377 cos9thpiminplylem1 33762 hgt750lem 34629 hgt750lem2 34630 tgoldbachgtde 34638 420gcd8e4 41965 420lcm8e840 41970 lcmineqlem 42011 3exp7 42012 3lexlogpow5ineq1 42013 3lexlogpow5ineq2 42014 3lexlogpow5ineq5 42019 aks4d1p1 42035 235t711 42301 ex-decpmul 42302 sum9cubes 42642 3cubeslem3l 42656 3cubeslem3r 42657 fmtno5lem1 47515 fmtno5lem3 47517 fmtno5lem4 47518 257prm 47523 fmtno4prmfac 47534 fmtno4nprmfac193 47536 fmtno5faclem1 47541 fmtno5faclem3 47543 fmtno5fac 47544 139prmALT 47558 127prm 47561 m7prm 47562 m11nprm 47563 2exp340mod341 47695 8exp8mod9 47698 nfermltl8rev 47704 bgoldbachlt 47775 tgblthelfgott 47777 tgoldbachlt 47778 |
| Copyright terms: Public domain | W3C validator |