![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 8nn0 | Structured version Visualization version GIF version |
Description: 8 is a nonnegative integer. (Contributed by Mario Carneiro, 19-Apr-2015.) |
Ref | Expression |
---|---|
8nn0 | ⊢ 8 ∈ ℕ0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 8nn 11450 | . 2 ⊢ 8 ∈ ℕ | |
2 | 1 | nnnn0i 11626 | 1 ⊢ 8 ∈ ℕ0 |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2166 8c8 11411 ℕ0cn0 11617 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-8 2168 ax-9 2175 ax-10 2194 ax-11 2209 ax-12 2222 ax-13 2390 ax-ext 2802 ax-sep 5004 ax-nul 5012 ax-pow 5064 ax-pr 5126 ax-un 7208 ax-1cn 10309 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 881 df-3or 1114 df-3an 1115 df-tru 1662 df-ex 1881 df-nf 1885 df-sb 2070 df-mo 2604 df-eu 2639 df-clab 2811 df-cleq 2817 df-clel 2820 df-nfc 2957 df-ne 2999 df-ral 3121 df-rex 3122 df-reu 3123 df-rab 3125 df-v 3415 df-sbc 3662 df-csb 3757 df-dif 3800 df-un 3802 df-in 3804 df-ss 3811 df-pss 3813 df-nul 4144 df-if 4306 df-pw 4379 df-sn 4397 df-pr 4399 df-tp 4401 df-op 4403 df-uni 4658 df-iun 4741 df-br 4873 df-opab 4935 df-mpt 4952 df-tr 4975 df-id 5249 df-eprel 5254 df-po 5262 df-so 5263 df-fr 5300 df-we 5302 df-xp 5347 df-rel 5348 df-cnv 5349 df-co 5350 df-dm 5351 df-rn 5352 df-res 5353 df-ima 5354 df-pred 5919 df-ord 5965 df-on 5966 df-lim 5967 df-suc 5968 df-iota 6085 df-fun 6124 df-fn 6125 df-f 6126 df-f1 6127 df-fo 6128 df-f1o 6129 df-fv 6130 df-ov 6907 df-om 7326 df-wrecs 7671 df-recs 7733 df-rdg 7771 df-nn 11350 df-2 11413 df-3 11414 df-4 11415 df-5 11416 df-6 11417 df-7 11418 df-8 11419 df-n0 11618 |
This theorem is referenced by: 8p3e11 11903 8p4e12 11904 8p5e13 11905 8p6e14 11906 8p7e15 11907 8p8e16 11908 9p9e18 11916 6t4e24 11928 7t5e35 11934 8t3e24 11938 8t4e32 11939 8t5e40 11940 8t6e48 11941 8t7e56 11942 8t8e64 11943 9t3e27 11945 9t9e81 11951 2exp16 16162 19prm 16189 prmlem2 16191 37prm 16192 43prm 16193 83prm 16194 139prm 16195 163prm 16196 317prm 16197 631prm 16198 1259lem1 16202 1259lem2 16203 1259lem3 16204 1259lem4 16205 1259lem5 16206 1259prm 16207 2503lem1 16208 2503lem2 16209 2503lem3 16210 2503prm 16211 4001lem1 16212 4001lem2 16213 4001lem3 16214 4001lem4 16215 4001prm 16216 srads 19546 log2ublem3 25087 log2ub 25088 bpos1 25420 2lgslem3a 25533 2lgslem3b 25534 2lgslem3c 25535 2lgslem3d 25536 baseltedgf 26291 ex-exp 27864 hgt750lem 31277 hgt750lem2 31278 tgoldbachgtde 31286 235t711 38065 ex-decpmul 38066 fmtno5lem1 42294 fmtno5lem3 42296 fmtno5lem4 42297 257prm 42302 fmtno4prmfac 42313 fmtno4nprmfac193 42315 fmtno5faclem1 42320 fmtno5faclem3 42322 fmtno5fac 42323 139prmALT 42340 127prm 42344 m7prm 42345 2exp11 42346 m11nprm 42347 bgoldbachlt 42530 tgblthelfgott 42532 tgoldbachlt 42533 |
Copyright terms: Public domain | W3C validator |