Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 8nn0 | Structured version Visualization version GIF version |
Description: 8 is a nonnegative integer. (Contributed by Mario Carneiro, 19-Apr-2015.) |
Ref | Expression |
---|---|
8nn0 | ⊢ 8 ∈ ℕ0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 8nn 12068 | . 2 ⊢ 8 ∈ ℕ | |
2 | 1 | nnnn0i 12241 | 1 ⊢ 8 ∈ ℕ0 |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2106 8c8 12034 ℕ0cn0 12233 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 ax-un 7588 ax-1cn 10929 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-ov 7278 df-om 7713 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-nn 11974 df-2 12036 df-3 12037 df-4 12038 df-5 12039 df-6 12040 df-7 12041 df-8 12042 df-n0 12234 |
This theorem is referenced by: 8p3e11 12518 8p4e12 12519 8p5e13 12520 8p6e14 12521 8p7e15 12522 8p8e16 12523 9p9e18 12531 6t4e24 12543 7t5e35 12549 8t3e24 12553 8t4e32 12554 8t5e40 12555 8t6e48 12556 8t7e56 12557 8t8e64 12558 9t3e27 12560 9t9e81 12566 2exp11 16791 2exp16 16792 19prm 16819 prmlem2 16821 37prm 16822 43prm 16823 83prm 16824 139prm 16825 163prm 16826 317prm 16827 631prm 16828 1259lem1 16832 1259lem2 16833 1259lem3 16834 1259lem4 16835 1259lem5 16836 1259prm 16837 2503lem1 16838 2503lem2 16839 2503lem3 16840 2503prm 16841 4001lem1 16842 4001lem2 16843 4001lem3 16844 4001lem4 16845 4001prm 16846 slotsdnscsi 17102 sradsOLD 20456 log2ublem3 26098 log2ub 26099 bpos1 26431 2lgslem3a 26544 2lgslem3b 26545 2lgslem3c 26546 2lgslem3d 26547 basendxltedgfndx 27363 baseltedgfOLD 27364 ex-exp 28814 hgt750lem 32631 hgt750lem2 32632 tgoldbachgtde 32640 420gcd8e4 40014 420lcm8e840 40019 lcmineqlem 40060 3exp7 40061 3lexlogpow5ineq1 40062 3lexlogpow5ineq2 40063 3lexlogpow5ineq5 40068 aks4d1p1 40084 235t711 40319 ex-decpmul 40320 3cubeslem3l 40508 3cubeslem3r 40509 fmtno5lem1 45005 fmtno5lem3 45007 fmtno5lem4 45008 257prm 45013 fmtno4prmfac 45024 fmtno4nprmfac193 45026 fmtno5faclem1 45031 fmtno5faclem3 45033 fmtno5fac 45034 139prmALT 45048 127prm 45051 m7prm 45052 m11nprm 45053 2exp340mod341 45185 8exp8mod9 45188 nfermltl8rev 45194 bgoldbachlt 45265 tgblthelfgott 45267 tgoldbachlt 45268 |
Copyright terms: Public domain | W3C validator |