| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 8nn0 | Structured version Visualization version GIF version | ||
| Description: 8 is a nonnegative integer. (Contributed by Mario Carneiro, 19-Apr-2015.) |
| Ref | Expression |
|---|---|
| 8nn0 | ⊢ 8 ∈ ℕ0 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 8nn 12257 | . 2 ⊢ 8 ∈ ℕ | |
| 2 | 1 | nnnn0i 12426 | 1 ⊢ 8 ∈ ℕ0 |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 8c8 12223 ℕ0cn0 12418 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 ax-un 7691 ax-1cn 11102 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-ov 7372 df-om 7823 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-nn 12163 df-2 12225 df-3 12226 df-4 12227 df-5 12228 df-6 12229 df-7 12230 df-8 12231 df-n0 12419 |
| This theorem is referenced by: 8p3e11 12706 8p4e12 12707 8p5e13 12708 8p6e14 12709 8p7e15 12710 8p8e16 12711 9p9e18 12719 6t4e24 12731 7t5e35 12737 8t3e24 12741 8t4e32 12742 8t5e40 12743 8t6e48 12744 8t7e56 12745 8t8e64 12746 9t3e27 12748 9t9e81 12754 2exp11 17036 2exp16 17037 19prm 17064 prmlem2 17066 37prm 17067 43prm 17068 83prm 17069 139prm 17070 163prm 17071 317prm 17072 631prm 17073 1259lem1 17077 1259lem2 17078 1259lem3 17079 1259lem4 17080 1259lem5 17081 1259prm 17082 2503lem1 17083 2503lem2 17084 2503lem3 17085 2503prm 17086 4001lem1 17087 4001lem2 17088 4001lem3 17089 4001lem4 17090 4001prm 17091 slotsdnscsi 17331 log2ublem3 26834 log2ub 26835 bpos1 27170 2lgslem3a 27283 2lgslem3b 27284 2lgslem3c 27285 2lgslem3d 27286 basendxltedgfndx 28897 ex-exp 30352 cos9thpiminplylem1 33745 hgt750lem 34615 hgt750lem2 34616 tgoldbachgtde 34624 420gcd8e4 41967 420lcm8e840 41972 lcmineqlem 42013 3exp7 42014 3lexlogpow5ineq1 42015 3lexlogpow5ineq2 42016 3lexlogpow5ineq5 42021 aks4d1p1 42037 235t711 42266 ex-decpmul 42267 sum9cubes 42633 3cubeslem3l 42647 3cubeslem3r 42648 fmtno5lem1 47527 fmtno5lem3 47529 fmtno5lem4 47530 257prm 47535 fmtno4prmfac 47546 fmtno4nprmfac193 47548 fmtno5faclem1 47553 fmtno5faclem3 47555 fmtno5fac 47556 139prmALT 47570 127prm 47573 m7prm 47574 m11nprm 47575 2exp340mod341 47707 8exp8mod9 47710 nfermltl8rev 47716 bgoldbachlt 47787 tgblthelfgott 47789 tgoldbachlt 47790 |
| Copyright terms: Public domain | W3C validator |