Proof of Theorem 43prm
| Step | Hyp | Ref
| Expression |
| 1 | | 4nn0 12545 |
. . 3
⊢ 4 ∈
ℕ0 |
| 2 | | 3nn 12345 |
. . 3
⊢ 3 ∈
ℕ |
| 3 | 1, 2 | decnncl 12753 |
. 2
⊢ ;43 ∈ ℕ |
| 4 | | 8nn0 12549 |
. . . 4
⊢ 8 ∈
ℕ0 |
| 5 | 4, 1 | deccl 12748 |
. . 3
⊢ ;84 ∈
ℕ0 |
| 6 | | 3nn0 12544 |
. . 3
⊢ 3 ∈
ℕ0 |
| 7 | | 1nn0 12542 |
. . 3
⊢ 1 ∈
ℕ0 |
| 8 | | 3lt10 12870 |
. . 3
⊢ 3 <
;10 |
| 9 | | 8nn 12361 |
. . . 4
⊢ 8 ∈
ℕ |
| 10 | | 4lt10 12869 |
. . . 4
⊢ 4 <
;10 |
| 11 | 9, 1, 1, 10 | declti 12771 |
. . 3
⊢ 4 <
;84 |
| 12 | 1, 5, 6, 7, 8, 11 | decltc 12762 |
. 2
⊢ ;43 < ;;841 |
| 13 | | 4nn 12349 |
. . 3
⊢ 4 ∈
ℕ |
| 14 | | 1lt10 12872 |
. . 3
⊢ 1 <
;10 |
| 15 | 13, 6, 7, 14 | declti 12771 |
. 2
⊢ 1 <
;43 |
| 16 | | 2cn 12341 |
. . . 4
⊢ 2 ∈
ℂ |
| 17 | 16 | mullidi 11266 |
. . 3
⊢ (1
· 2) = 2 |
| 18 | | df-3 12330 |
. . 3
⊢ 3 = (2 +
1) |
| 19 | 1, 7, 17, 18 | dec2dvds 17101 |
. 2
⊢ ¬ 2
∥ ;43 |
| 20 | 7, 1 | deccl 12748 |
. . 3
⊢ ;14 ∈
ℕ0 |
| 21 | | 1nn 12277 |
. . 3
⊢ 1 ∈
ℕ |
| 22 | | 0nn0 12541 |
. . . 4
⊢ 0 ∈
ℕ0 |
| 23 | | eqid 2737 |
. . . 4
⊢ ;14 = ;14 |
| 24 | 7 | dec0h 12755 |
. . . 4
⊢ 1 = ;01 |
| 25 | | 3cn 12347 |
. . . . . . 7
⊢ 3 ∈
ℂ |
| 26 | 25 | mulridi 11265 |
. . . . . 6
⊢ (3
· 1) = 3 |
| 27 | | ax-1cn 11213 |
. . . . . . 7
⊢ 1 ∈
ℂ |
| 28 | 27 | addlidi 11449 |
. . . . . 6
⊢ (0 + 1) =
1 |
| 29 | 26, 28 | oveq12i 7443 |
. . . . 5
⊢ ((3
· 1) + (0 + 1)) = (3 + 1) |
| 30 | | 3p1e4 12411 |
. . . . 5
⊢ (3 + 1) =
4 |
| 31 | 29, 30 | eqtri 2765 |
. . . 4
⊢ ((3
· 1) + (0 + 1)) = 4 |
| 32 | | 2nn0 12543 |
. . . . 5
⊢ 2 ∈
ℕ0 |
| 33 | | 2p1e3 12408 |
. . . . 5
⊢ (2 + 1) =
3 |
| 34 | | 4cn 12351 |
. . . . . 6
⊢ 4 ∈
ℂ |
| 35 | | 4t3e12 12831 |
. . . . . 6
⊢ (4
· 3) = ;12 |
| 36 | 34, 25, 35 | mulcomli 11270 |
. . . . 5
⊢ (3
· 4) = ;12 |
| 37 | 7, 32, 33, 36 | decsuc 12764 |
. . . 4
⊢ ((3
· 4) + 1) = ;13 |
| 38 | 7, 1, 22, 7, 23, 24, 6, 6, 7,
31, 37 | decma2c 12786 |
. . 3
⊢ ((3
· ;14) + 1) = ;43 |
| 39 | | 1lt3 12439 |
. . 3
⊢ 1 <
3 |
| 40 | 2, 20, 21, 38, 39 | ndvdsi 16449 |
. 2
⊢ ¬ 3
∥ ;43 |
| 41 | | 3lt5 12444 |
. . 3
⊢ 3 <
5 |
| 42 | 1, 2, 41 | dec5dvds 17102 |
. 2
⊢ ¬ 5
∥ ;43 |
| 43 | | 7nn 12358 |
. . 3
⊢ 7 ∈
ℕ |
| 44 | | 6nn0 12547 |
. . 3
⊢ 6 ∈
ℕ0 |
| 45 | | 7t6e42 12846 |
. . . 4
⊢ (7
· 6) = ;42 |
| 46 | 1, 32, 33, 45 | decsuc 12764 |
. . 3
⊢ ((7
· 6) + 1) = ;43 |
| 47 | | 1lt7 12457 |
. . 3
⊢ 1 <
7 |
| 48 | 43, 44, 21, 46, 47 | ndvdsi 16449 |
. 2
⊢ ¬ 7
∥ ;43 |
| 49 | 7, 21 | decnncl 12753 |
. . 3
⊢ ;11 ∈ ℕ |
| 50 | 21 | decnncl2 12757 |
. . 3
⊢ ;10 ∈ ℕ |
| 51 | | eqid 2737 |
. . . 4
⊢ ;11 = ;11 |
| 52 | | eqid 2737 |
. . . 4
⊢ ;10 = ;10 |
| 53 | 25 | mullidi 11266 |
. . . . . 6
⊢ (1
· 3) = 3 |
| 54 | 27 | addridi 11448 |
. . . . . 6
⊢ (1 + 0) =
1 |
| 55 | 53, 54 | oveq12i 7443 |
. . . . 5
⊢ ((1
· 3) + (1 + 0)) = (3 + 1) |
| 56 | 55, 30 | eqtri 2765 |
. . . 4
⊢ ((1
· 3) + (1 + 0)) = 4 |
| 57 | 53 | oveq1i 7441 |
. . . . 5
⊢ ((1
· 3) + 0) = (3 + 0) |
| 58 | 25 | addridi 11448 |
. . . . 5
⊢ (3 + 0) =
3 |
| 59 | 6 | dec0h 12755 |
. . . . 5
⊢ 3 = ;03 |
| 60 | 57, 58, 59 | 3eqtri 2769 |
. . . 4
⊢ ((1
· 3) + 0) = ;03 |
| 61 | 7, 7, 7, 22, 51, 52, 6, 6, 22, 56, 60 | decmac 12785 |
. . 3
⊢ ((;11 · 3) + ;10) = ;43 |
| 62 | | 0lt1 11785 |
. . . 4
⊢ 0 <
1 |
| 63 | 7, 22, 21, 62 | declt 12761 |
. . 3
⊢ ;10 < ;11 |
| 64 | 49, 6, 50, 61, 63 | ndvdsi 16449 |
. 2
⊢ ¬
;11 ∥ ;43 |
| 65 | 7, 2 | decnncl 12753 |
. . 3
⊢ ;13 ∈ ℕ |
| 66 | | eqid 2737 |
. . . 4
⊢ ;13 = ;13 |
| 67 | 1 | dec0h 12755 |
. . . 4
⊢ 4 = ;04 |
| 68 | 53, 28 | oveq12i 7443 |
. . . . 5
⊢ ((1
· 3) + (0 + 1)) = (3 + 1) |
| 69 | 68, 30 | eqtri 2765 |
. . . 4
⊢ ((1
· 3) + (0 + 1)) = 4 |
| 70 | | 3t3e9 12433 |
. . . . . 6
⊢ (3
· 3) = 9 |
| 71 | 70 | oveq1i 7441 |
. . . . 5
⊢ ((3
· 3) + 4) = (9 + 4) |
| 72 | | 9p4e13 12822 |
. . . . 5
⊢ (9 + 4) =
;13 |
| 73 | 71, 72 | eqtri 2765 |
. . . 4
⊢ ((3
· 3) + 4) = ;13 |
| 74 | 7, 6, 22, 1, 66, 67, 6, 6, 7,
69, 73 | decmac 12785 |
. . 3
⊢ ((;13 · 3) + 4) = ;43 |
| 75 | 21, 6, 1, 10 | declti 12771 |
. . 3
⊢ 4 <
;13 |
| 76 | 65, 6, 13, 74, 75 | ndvdsi 16449 |
. 2
⊢ ¬
;13 ∥ ;43 |
| 77 | 7, 43 | decnncl 12753 |
. . 3
⊢ ;17 ∈ ℕ |
| 78 | | 9nn 12364 |
. . 3
⊢ 9 ∈
ℕ |
| 79 | 43 | nnnn0i 12534 |
. . . 4
⊢ 7 ∈
ℕ0 |
| 80 | 78 | nnnn0i 12534 |
. . . 4
⊢ 9 ∈
ℕ0 |
| 81 | | eqid 2737 |
. . . 4
⊢ ;17 = ;17 |
| 82 | 80 | dec0h 12755 |
. . . 4
⊢ 9 = ;09 |
| 83 | 16 | addlidi 11449 |
. . . . . 6
⊢ (0 + 2) =
2 |
| 84 | 17, 83 | oveq12i 7443 |
. . . . 5
⊢ ((1
· 2) + (0 + 2)) = (2 + 2) |
| 85 | | 2p2e4 12401 |
. . . . 5
⊢ (2 + 2) =
4 |
| 86 | 84, 85 | eqtri 2765 |
. . . 4
⊢ ((1
· 2) + (0 + 2)) = 4 |
| 87 | | 7t2e14 12842 |
. . . . 5
⊢ (7
· 2) = ;14 |
| 88 | | 1p1e2 12391 |
. . . . 5
⊢ (1 + 1) =
2 |
| 89 | 78 | nncni 12276 |
. . . . . 6
⊢ 9 ∈
ℂ |
| 90 | 89, 34, 72 | addcomli 11453 |
. . . . 5
⊢ (4 + 9) =
;13 |
| 91 | 7, 1, 80, 87, 88, 6, 90 | decaddci 12794 |
. . . 4
⊢ ((7
· 2) + 9) = ;23 |
| 92 | 7, 79, 22, 80, 81, 82, 32, 6, 32, 86, 91 | decmac 12785 |
. . 3
⊢ ((;17 · 2) + 9) = ;43 |
| 93 | | 9lt10 12864 |
. . . 4
⊢ 9 <
;10 |
| 94 | 21, 79, 80, 93 | declti 12771 |
. . 3
⊢ 9 <
;17 |
| 95 | 77, 32, 78, 92, 94 | ndvdsi 16449 |
. 2
⊢ ¬
;17 ∥ ;43 |
| 96 | 7, 78 | decnncl 12753 |
. . 3
⊢ ;19 ∈ ℕ |
| 97 | | 5nn 12352 |
. . 3
⊢ 5 ∈
ℕ |
| 98 | 97 | nnnn0i 12534 |
. . . 4
⊢ 5 ∈
ℕ0 |
| 99 | | eqid 2737 |
. . . 4
⊢ ;19 = ;19 |
| 100 | 98 | dec0h 12755 |
. . . 4
⊢ 5 = ;05 |
| 101 | | 9t2e18 12855 |
. . . . 5
⊢ (9
· 2) = ;18 |
| 102 | | 8p5e13 12816 |
. . . . 5
⊢ (8 + 5) =
;13 |
| 103 | 7, 4, 98, 101, 88, 6, 102 | decaddci 12794 |
. . . 4
⊢ ((9
· 2) + 5) = ;23 |
| 104 | 7, 80, 22, 98, 99, 100, 32, 6, 32, 86, 103 | decmac 12785 |
. . 3
⊢ ((;19 · 2) + 5) = ;43 |
| 105 | | 5lt10 12868 |
. . . 4
⊢ 5 <
;10 |
| 106 | 21, 80, 98, 105 | declti 12771 |
. . 3
⊢ 5 <
;19 |
| 107 | 96, 32, 97, 104, 106 | ndvdsi 16449 |
. 2
⊢ ¬
;19 ∥ ;43 |
| 108 | 32, 2 | decnncl 12753 |
. . 3
⊢ ;23 ∈ ℕ |
| 109 | | 2nn 12339 |
. . . 4
⊢ 2 ∈
ℕ |
| 110 | 109 | decnncl2 12757 |
. . 3
⊢ ;20 ∈ ℕ |
| 111 | 108 | nncni 12276 |
. . . . 5
⊢ ;23 ∈ ℂ |
| 112 | 111 | mulridi 11265 |
. . . 4
⊢ (;23 · 1) = ;23 |
| 113 | | eqid 2737 |
. . . 4
⊢ ;20 = ;20 |
| 114 | 32, 6, 32, 22, 112, 113, 85, 58 | decadd 12787 |
. . 3
⊢ ((;23 · 1) + ;20) = ;43 |
| 115 | | 3pos 12371 |
. . . 4
⊢ 0 <
3 |
| 116 | 32, 22, 2, 115 | declt 12761 |
. . 3
⊢ ;20 < ;23 |
| 117 | 108, 7, 110, 114, 116 | ndvdsi 16449 |
. 2
⊢ ¬
;23 ∥ ;43 |
| 118 | 3, 12, 15, 19, 40, 42, 48, 64, 76, 95, 107, 117 | prmlem2 17157 |
1
⊢ ;43 ∈ ℙ |