Proof of Theorem 43prm
Step | Hyp | Ref
| Expression |
1 | | 4nn0 11966 |
. . 3
⊢ 4 ∈
ℕ0 |
2 | | 3nn 11766 |
. . 3
⊢ 3 ∈
ℕ |
3 | 1, 2 | decnncl 12170 |
. 2
⊢ ;43 ∈ ℕ |
4 | | 8nn0 11970 |
. . . 4
⊢ 8 ∈
ℕ0 |
5 | 4, 1 | deccl 12165 |
. . 3
⊢ ;84 ∈
ℕ0 |
6 | | 3nn0 11965 |
. . 3
⊢ 3 ∈
ℕ0 |
7 | | 1nn0 11963 |
. . 3
⊢ 1 ∈
ℕ0 |
8 | | 3lt10 12287 |
. . 3
⊢ 3 <
;10 |
9 | | 8nn 11782 |
. . . 4
⊢ 8 ∈
ℕ |
10 | | 4lt10 12286 |
. . . 4
⊢ 4 <
;10 |
11 | 9, 1, 1, 10 | declti 12188 |
. . 3
⊢ 4 <
;84 |
12 | 1, 5, 6, 7, 8, 11 | decltc 12179 |
. 2
⊢ ;43 < ;;841 |
13 | | 4nn 11770 |
. . 3
⊢ 4 ∈
ℕ |
14 | | 1lt10 12289 |
. . 3
⊢ 1 <
;10 |
15 | 13, 6, 7, 14 | declti 12188 |
. 2
⊢ 1 <
;43 |
16 | | 2cn 11762 |
. . . 4
⊢ 2 ∈
ℂ |
17 | 16 | mulid2i 10697 |
. . 3
⊢ (1
· 2) = 2 |
18 | | df-3 11751 |
. . 3
⊢ 3 = (2 +
1) |
19 | 1, 7, 17, 18 | dec2dvds 16468 |
. 2
⊢ ¬ 2
∥ ;43 |
20 | 7, 1 | deccl 12165 |
. . 3
⊢ ;14 ∈
ℕ0 |
21 | | 1nn 11698 |
. . 3
⊢ 1 ∈
ℕ |
22 | | 0nn0 11962 |
. . . 4
⊢ 0 ∈
ℕ0 |
23 | | eqid 2758 |
. . . 4
⊢ ;14 = ;14 |
24 | 7 | dec0h 12172 |
. . . 4
⊢ 1 = ;01 |
25 | | 3cn 11768 |
. . . . . . 7
⊢ 3 ∈
ℂ |
26 | 25 | mulid1i 10696 |
. . . . . 6
⊢ (3
· 1) = 3 |
27 | | ax-1cn 10646 |
. . . . . . 7
⊢ 1 ∈
ℂ |
28 | 27 | addid2i 10879 |
. . . . . 6
⊢ (0 + 1) =
1 |
29 | 26, 28 | oveq12i 7168 |
. . . . 5
⊢ ((3
· 1) + (0 + 1)) = (3 + 1) |
30 | | 3p1e4 11832 |
. . . . 5
⊢ (3 + 1) =
4 |
31 | 29, 30 | eqtri 2781 |
. . . 4
⊢ ((3
· 1) + (0 + 1)) = 4 |
32 | | 2nn0 11964 |
. . . . 5
⊢ 2 ∈
ℕ0 |
33 | | 2p1e3 11829 |
. . . . 5
⊢ (2 + 1) =
3 |
34 | | 4cn 11772 |
. . . . . 6
⊢ 4 ∈
ℂ |
35 | | 4t3e12 12248 |
. . . . . 6
⊢ (4
· 3) = ;12 |
36 | 34, 25, 35 | mulcomli 10701 |
. . . . 5
⊢ (3
· 4) = ;12 |
37 | 7, 32, 33, 36 | decsuc 12181 |
. . . 4
⊢ ((3
· 4) + 1) = ;13 |
38 | 7, 1, 22, 7, 23, 24, 6, 6, 7,
31, 37 | decma2c 12203 |
. . 3
⊢ ((3
· ;14) + 1) = ;43 |
39 | | 1lt3 11860 |
. . 3
⊢ 1 <
3 |
40 | 2, 20, 21, 38, 39 | ndvdsi 15826 |
. 2
⊢ ¬ 3
∥ ;43 |
41 | | 3lt5 11865 |
. . 3
⊢ 3 <
5 |
42 | 1, 2, 41 | dec5dvds 16469 |
. 2
⊢ ¬ 5
∥ ;43 |
43 | | 7nn 11779 |
. . 3
⊢ 7 ∈
ℕ |
44 | | 6nn0 11968 |
. . 3
⊢ 6 ∈
ℕ0 |
45 | | 7t6e42 12263 |
. . . 4
⊢ (7
· 6) = ;42 |
46 | 1, 32, 33, 45 | decsuc 12181 |
. . 3
⊢ ((7
· 6) + 1) = ;43 |
47 | | 1lt7 11878 |
. . 3
⊢ 1 <
7 |
48 | 43, 44, 21, 46, 47 | ndvdsi 15826 |
. 2
⊢ ¬ 7
∥ ;43 |
49 | 7, 21 | decnncl 12170 |
. . 3
⊢ ;11 ∈ ℕ |
50 | 21 | decnncl2 12174 |
. . 3
⊢ ;10 ∈ ℕ |
51 | | eqid 2758 |
. . . 4
⊢ ;11 = ;11 |
52 | | eqid 2758 |
. . . 4
⊢ ;10 = ;10 |
53 | 25 | mulid2i 10697 |
. . . . . 6
⊢ (1
· 3) = 3 |
54 | 27 | addid1i 10878 |
. . . . . 6
⊢ (1 + 0) =
1 |
55 | 53, 54 | oveq12i 7168 |
. . . . 5
⊢ ((1
· 3) + (1 + 0)) = (3 + 1) |
56 | 55, 30 | eqtri 2781 |
. . . 4
⊢ ((1
· 3) + (1 + 0)) = 4 |
57 | 53 | oveq1i 7166 |
. . . . 5
⊢ ((1
· 3) + 0) = (3 + 0) |
58 | 25 | addid1i 10878 |
. . . . 5
⊢ (3 + 0) =
3 |
59 | 6 | dec0h 12172 |
. . . . 5
⊢ 3 = ;03 |
60 | 57, 58, 59 | 3eqtri 2785 |
. . . 4
⊢ ((1
· 3) + 0) = ;03 |
61 | 7, 7, 7, 22, 51, 52, 6, 6, 22, 56, 60 | decmac 12202 |
. . 3
⊢ ((;11 · 3) + ;10) = ;43 |
62 | | 0lt1 11213 |
. . . 4
⊢ 0 <
1 |
63 | 7, 22, 21, 62 | declt 12178 |
. . 3
⊢ ;10 < ;11 |
64 | 49, 6, 50, 61, 63 | ndvdsi 15826 |
. 2
⊢ ¬
;11 ∥ ;43 |
65 | 7, 2 | decnncl 12170 |
. . 3
⊢ ;13 ∈ ℕ |
66 | | eqid 2758 |
. . . 4
⊢ ;13 = ;13 |
67 | 1 | dec0h 12172 |
. . . 4
⊢ 4 = ;04 |
68 | 53, 28 | oveq12i 7168 |
. . . . 5
⊢ ((1
· 3) + (0 + 1)) = (3 + 1) |
69 | 68, 30 | eqtri 2781 |
. . . 4
⊢ ((1
· 3) + (0 + 1)) = 4 |
70 | | 3t3e9 11854 |
. . . . . 6
⊢ (3
· 3) = 9 |
71 | 70 | oveq1i 7166 |
. . . . 5
⊢ ((3
· 3) + 4) = (9 + 4) |
72 | | 9p4e13 12239 |
. . . . 5
⊢ (9 + 4) =
;13 |
73 | 71, 72 | eqtri 2781 |
. . . 4
⊢ ((3
· 3) + 4) = ;13 |
74 | 7, 6, 22, 1, 66, 67, 6, 6, 7,
69, 73 | decmac 12202 |
. . 3
⊢ ((;13 · 3) + 4) = ;43 |
75 | 21, 6, 1, 10 | declti 12188 |
. . 3
⊢ 4 <
;13 |
76 | 65, 6, 13, 74, 75 | ndvdsi 15826 |
. 2
⊢ ¬
;13 ∥ ;43 |
77 | 7, 43 | decnncl 12170 |
. . 3
⊢ ;17 ∈ ℕ |
78 | | 9nn 11785 |
. . 3
⊢ 9 ∈
ℕ |
79 | 43 | nnnn0i 11955 |
. . . 4
⊢ 7 ∈
ℕ0 |
80 | 78 | nnnn0i 11955 |
. . . 4
⊢ 9 ∈
ℕ0 |
81 | | eqid 2758 |
. . . 4
⊢ ;17 = ;17 |
82 | 80 | dec0h 12172 |
. . . 4
⊢ 9 = ;09 |
83 | 16 | addid2i 10879 |
. . . . . 6
⊢ (0 + 2) =
2 |
84 | 17, 83 | oveq12i 7168 |
. . . . 5
⊢ ((1
· 2) + (0 + 2)) = (2 + 2) |
85 | | 2p2e4 11822 |
. . . . 5
⊢ (2 + 2) =
4 |
86 | 84, 85 | eqtri 2781 |
. . . 4
⊢ ((1
· 2) + (0 + 2)) = 4 |
87 | | 7t2e14 12259 |
. . . . 5
⊢ (7
· 2) = ;14 |
88 | | 1p1e2 11812 |
. . . . 5
⊢ (1 + 1) =
2 |
89 | 78 | nncni 11697 |
. . . . . 6
⊢ 9 ∈
ℂ |
90 | 89, 34, 72 | addcomli 10883 |
. . . . 5
⊢ (4 + 9) =
;13 |
91 | 7, 1, 80, 87, 88, 6, 90 | decaddci 12211 |
. . . 4
⊢ ((7
· 2) + 9) = ;23 |
92 | 7, 79, 22, 80, 81, 82, 32, 6, 32, 86, 91 | decmac 12202 |
. . 3
⊢ ((;17 · 2) + 9) = ;43 |
93 | | 9lt10 12281 |
. . . 4
⊢ 9 <
;10 |
94 | 21, 79, 80, 93 | declti 12188 |
. . 3
⊢ 9 <
;17 |
95 | 77, 32, 78, 92, 94 | ndvdsi 15826 |
. 2
⊢ ¬
;17 ∥ ;43 |
96 | 7, 78 | decnncl 12170 |
. . 3
⊢ ;19 ∈ ℕ |
97 | | 5nn 11773 |
. . 3
⊢ 5 ∈
ℕ |
98 | 97 | nnnn0i 11955 |
. . . 4
⊢ 5 ∈
ℕ0 |
99 | | eqid 2758 |
. . . 4
⊢ ;19 = ;19 |
100 | 98 | dec0h 12172 |
. . . 4
⊢ 5 = ;05 |
101 | | 9t2e18 12272 |
. . . . 5
⊢ (9
· 2) = ;18 |
102 | | 8p5e13 12233 |
. . . . 5
⊢ (8 + 5) =
;13 |
103 | 7, 4, 98, 101, 88, 6, 102 | decaddci 12211 |
. . . 4
⊢ ((9
· 2) + 5) = ;23 |
104 | 7, 80, 22, 98, 99, 100, 32, 6, 32, 86, 103 | decmac 12202 |
. . 3
⊢ ((;19 · 2) + 5) = ;43 |
105 | | 5lt10 12285 |
. . . 4
⊢ 5 <
;10 |
106 | 21, 80, 98, 105 | declti 12188 |
. . 3
⊢ 5 <
;19 |
107 | 96, 32, 97, 104, 106 | ndvdsi 15826 |
. 2
⊢ ¬
;19 ∥ ;43 |
108 | 32, 2 | decnncl 12170 |
. . 3
⊢ ;23 ∈ ℕ |
109 | | 2nn 11760 |
. . . 4
⊢ 2 ∈
ℕ |
110 | 109 | decnncl2 12174 |
. . 3
⊢ ;20 ∈ ℕ |
111 | 108 | nncni 11697 |
. . . . 5
⊢ ;23 ∈ ℂ |
112 | 111 | mulid1i 10696 |
. . . 4
⊢ (;23 · 1) = ;23 |
113 | | eqid 2758 |
. . . 4
⊢ ;20 = ;20 |
114 | 32, 6, 32, 22, 112, 113, 85, 58 | decadd 12204 |
. . 3
⊢ ((;23 · 1) + ;20) = ;43 |
115 | | 3pos 11792 |
. . . 4
⊢ 0 <
3 |
116 | 32, 22, 2, 115 | declt 12178 |
. . 3
⊢ ;20 < ;23 |
117 | 108, 7, 110, 114, 116 | ndvdsi 15826 |
. 2
⊢ ¬
;23 ∥ ;43 |
118 | 3, 12, 15, 19, 40, 42, 48, 64, 76, 95, 107, 117 | prmlem2 16525 |
1
⊢ ;43 ∈ ℙ |