![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3nn0 | Structured version Visualization version GIF version |
Description: 3 is a nonnegative integer. (Contributed by Mario Carneiro, 18-Feb-2014.) |
Ref | Expression |
---|---|
3nn0 | ⊢ 3 ∈ ℕ0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3nn 11454 | . 2 ⊢ 3 ∈ ℕ | |
2 | 1 | nnnn0i 11651 | 1 ⊢ 3 ∈ ℕ0 |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2107 3c3 11431 ℕ0cn0 11642 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-8 2109 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-sep 5017 ax-nul 5025 ax-pow 5077 ax-pr 5138 ax-un 7226 ax-1cn 10330 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3or 1072 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ne 2970 df-ral 3095 df-rex 3096 df-reu 3097 df-rab 3099 df-v 3400 df-sbc 3653 df-csb 3752 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-pss 3808 df-nul 4142 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-tp 4403 df-op 4405 df-uni 4672 df-iun 4755 df-br 4887 df-opab 4949 df-mpt 4966 df-tr 4988 df-id 5261 df-eprel 5266 df-po 5274 df-so 5275 df-fr 5314 df-we 5316 df-xp 5361 df-rel 5362 df-cnv 5363 df-co 5364 df-dm 5365 df-rn 5366 df-res 5367 df-ima 5368 df-pred 5933 df-ord 5979 df-on 5980 df-lim 5981 df-suc 5982 df-iota 6099 df-fun 6137 df-fn 6138 df-f 6139 df-f1 6140 df-fo 6141 df-f1o 6142 df-fv 6143 df-ov 6925 df-om 7344 df-wrecs 7689 df-recs 7751 df-rdg 7789 df-nn 11375 df-2 11438 df-3 11439 df-n0 11643 |
This theorem is referenced by: 7p4e11 11923 7p7e14 11926 8p4e12 11929 8p6e14 11931 9p4e13 11936 9p5e14 11937 4t4e16 11946 5t4e20 11949 6t4e24 11953 6t6e36 11955 7t4e28 11958 7t6e42 11960 8t4e32 11964 8t5e40 11965 9t4e36 11971 9t5e45 11972 9t7e63 11974 9t8e72 11975 fz0to3un2pr 12760 4fvwrd4 12778 fldiv4p1lem1div2 12955 expnass 13289 binom3 13304 fac4 13386 4bc2eq6 13434 hash3tr 13586 bpoly3 15191 bpoly4 15192 fsumcube 15193 ef4p 15245 efi4p 15269 resin4p 15270 recos4p 15271 ef01bndlem 15316 sin01bnd 15317 sin01gt0 15322 2exp6 16194 2exp8 16195 2exp16 16196 3exp3 16197 7prm 16216 11prm 16220 13prm 16221 17prm 16222 23prm 16224 prmlem2 16225 37prm 16226 43prm 16227 83prm 16228 139prm 16229 163prm 16230 317prm 16231 631prm 16232 1259lem1 16236 1259lem2 16237 1259lem3 16238 1259lem4 16239 1259lem5 16240 1259prm 16241 2503lem1 16242 2503lem2 16243 2503lem3 16244 2503prm 16245 4001lem1 16246 4001lem2 16247 4001lem3 16248 4001lem4 16249 4001prm 16250 cnfldfun 20154 ressunif 22474 tuslem 22479 tangtx 24695 1cubrlem 25019 dcubic1lem 25021 dcubic2 25022 dcubic1 25023 dcubic 25024 mcubic 25025 cubic2 25026 cubic 25027 binom4 25028 dquartlem2 25030 quart1cl 25032 quart1lem 25033 quart1 25034 quartlem1 25035 quartlem2 25036 quart 25039 log2ublem1 25125 log2ublem3 25127 log2ub 25128 log2le1 25129 birthday 25133 ppiublem2 25380 bclbnd 25457 bpos1 25460 bposlem8 25468 gausslemma2dlem4 25546 2lgslem3b 25574 2lgslem3d 25576 pntlemd 25735 pntlema 25737 pntlemb 25738 pntlemf 25746 pntlemo 25748 pntlem3 25750 tgcgr4 25882 iscgra 26157 isinag 26187 isleag 26196 iseqlg 26216 usgrexmplef 26606 upgr3v3e3cycl 27583 upgr4cycl4dv4e 27588 konigsbergiedgw 27654 konigsberglem1 27658 konigsberglem2 27659 konigsberglem3 27660 konigsberglem4 27661 ex-prmo 27891 threehalves 30185 circlemethhgt 31323 hgt750lemd 31328 hgt750lem 31331 hgt750lem2 31332 hgt750lemb 31336 hgt750lema 31337 hgt750leme 31338 tgoldbachgtde 31340 tgoldbachgtda 31341 tgoldbachgt 31343 kur14lem8 31794 235t711 38159 ex-decpmul 38160 jm2.23 38526 jm2.20nn 38527 rmydioph 38544 rmxdioph 38546 expdiophlem2 38552 expdioph 38553 amgm3d 39462 lhe4.4ex1a 39488 fmtno3 42488 fmtno4 42489 fmtno5lem1 42490 fmtno5lem2 42491 fmtno5lem3 42492 fmtno5lem4 42493 fmtno5 42494 257prm 42498 fmtnoprmfac2lem1 42503 fmtno4prmfac 42509 fmtno4prmfac193 42510 fmtno4nprmfac193 42511 fmtno5faclem2 42517 2exp5 42532 139prmALT 42536 31prm 42537 m5prm 42538 127prm 42540 2exp11 42542 m11nprm 42543 mod42tp1mod8 42544 tgoldbachlt 42733 tgoldbach 42734 zlmodzxzldeplem1 43308 |
Copyright terms: Public domain | W3C validator |