Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 3nn0 | Structured version Visualization version GIF version |
Description: 3 is a nonnegative integer. (Contributed by Mario Carneiro, 18-Feb-2014.) |
Ref | Expression |
---|---|
3nn0 | ⊢ 3 ∈ ℕ0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3nn 11982 | . 2 ⊢ 3 ∈ ℕ | |
2 | 1 | nnnn0i 12171 | 1 ⊢ 3 ∈ ℕ0 |
Copyright terms: Public domain | W3C validator |