| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3nn0 | Structured version Visualization version GIF version | ||
| Description: 3 is a nonnegative integer. (Contributed by Mario Carneiro, 18-Feb-2014.) |
| Ref | Expression |
|---|---|
| 3nn0 | ⊢ 3 ∈ ℕ0 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3nn 12345 | . 2 ⊢ 3 ∈ ℕ | |
| 2 | 1 | nnnn0i 12534 | 1 ⊢ 3 ∈ ℕ0 |
| Copyright terms: Public domain | W3C validator |