Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > pexmidlem1N | Structured version Visualization version GIF version |
Description: Lemma for pexmidN 37910. Holland's proof implicitly requires 𝑞 ≠ 𝑟, which we prove here. (Contributed by NM, 2-Feb-2012.) (New usage is discouraged.) |
Ref | Expression |
---|---|
pexmidlem.l | ⊢ ≤ = (le‘𝐾) |
pexmidlem.j | ⊢ ∨ = (join‘𝐾) |
pexmidlem.a | ⊢ 𝐴 = (Atoms‘𝐾) |
pexmidlem.p | ⊢ + = (+𝑃‘𝐾) |
pexmidlem.o | ⊢ ⊥ = (⊥𝑃‘𝐾) |
pexmidlem.m | ⊢ 𝑀 = (𝑋 + {𝑝}) |
Ref | Expression |
---|---|
pexmidlem1N | ⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) ∧ (𝑟 ∈ 𝑋 ∧ 𝑞 ∈ ( ⊥ ‘𝑋))) → 𝑞 ≠ 𝑟) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | n0i 4264 | . . 3 ⊢ (𝑟 ∈ (𝑋 ∩ ( ⊥ ‘𝑋)) → ¬ (𝑋 ∩ ( ⊥ ‘𝑋)) = ∅) | |
2 | pexmidlem.a | . . . . 5 ⊢ 𝐴 = (Atoms‘𝐾) | |
3 | pexmidlem.o | . . . . 5 ⊢ ⊥ = (⊥𝑃‘𝐾) | |
4 | 2, 3 | pnonsingN 37874 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) → (𝑋 ∩ ( ⊥ ‘𝑋)) = ∅) |
5 | 4 | adantr 480 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) ∧ (𝑟 ∈ 𝑋 ∧ 𝑞 ∈ ( ⊥ ‘𝑋))) → (𝑋 ∩ ( ⊥ ‘𝑋)) = ∅) |
6 | 1, 5 | nsyl3 138 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) ∧ (𝑟 ∈ 𝑋 ∧ 𝑞 ∈ ( ⊥ ‘𝑋))) → ¬ 𝑟 ∈ (𝑋 ∩ ( ⊥ ‘𝑋))) |
7 | simprr 769 | . . . . . 6 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) ∧ (𝑟 ∈ 𝑋 ∧ 𝑞 ∈ ( ⊥ ‘𝑋))) → 𝑞 ∈ ( ⊥ ‘𝑋)) | |
8 | eleq1w 2821 | . . . . . 6 ⊢ (𝑞 = 𝑟 → (𝑞 ∈ ( ⊥ ‘𝑋) ↔ 𝑟 ∈ ( ⊥ ‘𝑋))) | |
9 | 7, 8 | syl5ibcom 244 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) ∧ (𝑟 ∈ 𝑋 ∧ 𝑞 ∈ ( ⊥ ‘𝑋))) → (𝑞 = 𝑟 → 𝑟 ∈ ( ⊥ ‘𝑋))) |
10 | simprl 767 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) ∧ (𝑟 ∈ 𝑋 ∧ 𝑞 ∈ ( ⊥ ‘𝑋))) → 𝑟 ∈ 𝑋) | |
11 | 9, 10 | jctild 525 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) ∧ (𝑟 ∈ 𝑋 ∧ 𝑞 ∈ ( ⊥ ‘𝑋))) → (𝑞 = 𝑟 → (𝑟 ∈ 𝑋 ∧ 𝑟 ∈ ( ⊥ ‘𝑋)))) |
12 | elin 3899 | . . . 4 ⊢ (𝑟 ∈ (𝑋 ∩ ( ⊥ ‘𝑋)) ↔ (𝑟 ∈ 𝑋 ∧ 𝑟 ∈ ( ⊥ ‘𝑋))) | |
13 | 11, 12 | syl6ibr 251 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) ∧ (𝑟 ∈ 𝑋 ∧ 𝑞 ∈ ( ⊥ ‘𝑋))) → (𝑞 = 𝑟 → 𝑟 ∈ (𝑋 ∩ ( ⊥ ‘𝑋)))) |
14 | 13 | necon3bd 2956 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) ∧ (𝑟 ∈ 𝑋 ∧ 𝑞 ∈ ( ⊥ ‘𝑋))) → (¬ 𝑟 ∈ (𝑋 ∩ ( ⊥ ‘𝑋)) → 𝑞 ≠ 𝑟)) |
15 | 6, 14 | mpd 15 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) ∧ (𝑟 ∈ 𝑋 ∧ 𝑞 ∈ ( ⊥ ‘𝑋))) → 𝑞 ≠ 𝑟) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 ∩ cin 3882 ⊆ wss 3883 ∅c0 4253 {csn 4558 ‘cfv 6418 (class class class)co 7255 lecple 16895 joincjn 17944 Atomscatm 37204 HLchlt 37291 +𝑃cpadd 37736 ⊥𝑃cpolN 37843 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-riotaBAD 36894 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-iin 4924 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-undef 8060 df-proset 17928 df-poset 17946 df-plt 17963 df-lub 17979 df-glb 17980 df-join 17981 df-meet 17982 df-p0 18058 df-p1 18059 df-lat 18065 df-clat 18132 df-oposet 37117 df-ol 37119 df-oml 37120 df-covers 37207 df-ats 37208 df-atl 37239 df-cvlat 37263 df-hlat 37292 df-pmap 37445 df-polarityN 37844 |
This theorem is referenced by: pexmidlem3N 37913 |
Copyright terms: Public domain | W3C validator |