| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > pexmidlem1N | Structured version Visualization version GIF version | ||
| Description: Lemma for pexmidN 39956. Holland's proof implicitly requires 𝑞 ≠ 𝑟, which we prove here. (Contributed by NM, 2-Feb-2012.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| pexmidlem.l | ⊢ ≤ = (le‘𝐾) |
| pexmidlem.j | ⊢ ∨ = (join‘𝐾) |
| pexmidlem.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| pexmidlem.p | ⊢ + = (+𝑃‘𝐾) |
| pexmidlem.o | ⊢ ⊥ = (⊥𝑃‘𝐾) |
| pexmidlem.m | ⊢ 𝑀 = (𝑋 + {𝑝}) |
| Ref | Expression |
|---|---|
| pexmidlem1N | ⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) ∧ (𝑟 ∈ 𝑋 ∧ 𝑞 ∈ ( ⊥ ‘𝑋))) → 𝑞 ≠ 𝑟) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | n0i 4299 | . . 3 ⊢ (𝑟 ∈ (𝑋 ∩ ( ⊥ ‘𝑋)) → ¬ (𝑋 ∩ ( ⊥ ‘𝑋)) = ∅) | |
| 2 | pexmidlem.a | . . . . 5 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 3 | pexmidlem.o | . . . . 5 ⊢ ⊥ = (⊥𝑃‘𝐾) | |
| 4 | 2, 3 | pnonsingN 39920 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) → (𝑋 ∩ ( ⊥ ‘𝑋)) = ∅) |
| 5 | 4 | adantr 480 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) ∧ (𝑟 ∈ 𝑋 ∧ 𝑞 ∈ ( ⊥ ‘𝑋))) → (𝑋 ∩ ( ⊥ ‘𝑋)) = ∅) |
| 6 | 1, 5 | nsyl3 138 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) ∧ (𝑟 ∈ 𝑋 ∧ 𝑞 ∈ ( ⊥ ‘𝑋))) → ¬ 𝑟 ∈ (𝑋 ∩ ( ⊥ ‘𝑋))) |
| 7 | simprr 772 | . . . . . 6 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) ∧ (𝑟 ∈ 𝑋 ∧ 𝑞 ∈ ( ⊥ ‘𝑋))) → 𝑞 ∈ ( ⊥ ‘𝑋)) | |
| 8 | eleq1w 2811 | . . . . . 6 ⊢ (𝑞 = 𝑟 → (𝑞 ∈ ( ⊥ ‘𝑋) ↔ 𝑟 ∈ ( ⊥ ‘𝑋))) | |
| 9 | 7, 8 | syl5ibcom 245 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) ∧ (𝑟 ∈ 𝑋 ∧ 𝑞 ∈ ( ⊥ ‘𝑋))) → (𝑞 = 𝑟 → 𝑟 ∈ ( ⊥ ‘𝑋))) |
| 10 | simprl 770 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) ∧ (𝑟 ∈ 𝑋 ∧ 𝑞 ∈ ( ⊥ ‘𝑋))) → 𝑟 ∈ 𝑋) | |
| 11 | 9, 10 | jctild 525 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) ∧ (𝑟 ∈ 𝑋 ∧ 𝑞 ∈ ( ⊥ ‘𝑋))) → (𝑞 = 𝑟 → (𝑟 ∈ 𝑋 ∧ 𝑟 ∈ ( ⊥ ‘𝑋)))) |
| 12 | elin 3927 | . . . 4 ⊢ (𝑟 ∈ (𝑋 ∩ ( ⊥ ‘𝑋)) ↔ (𝑟 ∈ 𝑋 ∧ 𝑟 ∈ ( ⊥ ‘𝑋))) | |
| 13 | 11, 12 | imbitrrdi 252 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) ∧ (𝑟 ∈ 𝑋 ∧ 𝑞 ∈ ( ⊥ ‘𝑋))) → (𝑞 = 𝑟 → 𝑟 ∈ (𝑋 ∩ ( ⊥ ‘𝑋)))) |
| 14 | 13 | necon3bd 2939 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) ∧ (𝑟 ∈ 𝑋 ∧ 𝑞 ∈ ( ⊥ ‘𝑋))) → (¬ 𝑟 ∈ (𝑋 ∩ ( ⊥ ‘𝑋)) → 𝑞 ≠ 𝑟)) |
| 15 | 6, 14 | mpd 15 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) ∧ (𝑟 ∈ 𝑋 ∧ 𝑞 ∈ ( ⊥ ‘𝑋))) → 𝑞 ≠ 𝑟) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∩ cin 3910 ⊆ wss 3911 ∅c0 4292 {csn 4585 ‘cfv 6499 (class class class)co 7369 lecple 17203 joincjn 18252 Atomscatm 39249 HLchlt 39336 +𝑃cpadd 39782 ⊥𝑃cpolN 39889 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-iin 4954 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-proset 18235 df-poset 18254 df-plt 18269 df-lub 18285 df-glb 18286 df-join 18287 df-meet 18288 df-p0 18364 df-p1 18365 df-lat 18373 df-clat 18440 df-oposet 39162 df-ol 39164 df-oml 39165 df-covers 39252 df-ats 39253 df-atl 39284 df-cvlat 39308 df-hlat 39337 df-pmap 39491 df-polarityN 39890 |
| This theorem is referenced by: pexmidlem3N 39959 |
| Copyright terms: Public domain | W3C validator |