![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > pexmidlem1N | Structured version Visualization version GIF version |
Description: Lemma for pexmidN 39144. Holland's proof implicitly requires π β π, which we prove here. (Contributed by NM, 2-Feb-2012.) (New usage is discouraged.) |
Ref | Expression |
---|---|
pexmidlem.l | β’ β€ = (leβπΎ) |
pexmidlem.j | β’ β¨ = (joinβπΎ) |
pexmidlem.a | β’ π΄ = (AtomsβπΎ) |
pexmidlem.p | β’ + = (+πβπΎ) |
pexmidlem.o | β’ β₯ = (β₯πβπΎ) |
pexmidlem.m | β’ π = (π + {π}) |
Ref | Expression |
---|---|
pexmidlem1N | β’ (((πΎ β HL β§ π β π΄) β§ (π β π β§ π β ( β₯ βπ))) β π β π) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | n0i 4334 | . . 3 β’ (π β (π β© ( β₯ βπ)) β Β¬ (π β© ( β₯ βπ)) = β ) | |
2 | pexmidlem.a | . . . . 5 β’ π΄ = (AtomsβπΎ) | |
3 | pexmidlem.o | . . . . 5 β’ β₯ = (β₯πβπΎ) | |
4 | 2, 3 | pnonsingN 39108 | . . . 4 β’ ((πΎ β HL β§ π β π΄) β (π β© ( β₯ βπ)) = β ) |
5 | 4 | adantr 480 | . . 3 β’ (((πΎ β HL β§ π β π΄) β§ (π β π β§ π β ( β₯ βπ))) β (π β© ( β₯ βπ)) = β ) |
6 | 1, 5 | nsyl3 138 | . 2 β’ (((πΎ β HL β§ π β π΄) β§ (π β π β§ π β ( β₯ βπ))) β Β¬ π β (π β© ( β₯ βπ))) |
7 | simprr 770 | . . . . . 6 β’ (((πΎ β HL β§ π β π΄) β§ (π β π β§ π β ( β₯ βπ))) β π β ( β₯ βπ)) | |
8 | eleq1w 2815 | . . . . . 6 β’ (π = π β (π β ( β₯ βπ) β π β ( β₯ βπ))) | |
9 | 7, 8 | syl5ibcom 244 | . . . . 5 β’ (((πΎ β HL β§ π β π΄) β§ (π β π β§ π β ( β₯ βπ))) β (π = π β π β ( β₯ βπ))) |
10 | simprl 768 | . . . . 5 β’ (((πΎ β HL β§ π β π΄) β§ (π β π β§ π β ( β₯ βπ))) β π β π) | |
11 | 9, 10 | jctild 525 | . . . 4 β’ (((πΎ β HL β§ π β π΄) β§ (π β π β§ π β ( β₯ βπ))) β (π = π β (π β π β§ π β ( β₯ βπ)))) |
12 | elin 3965 | . . . 4 β’ (π β (π β© ( β₯ βπ)) β (π β π β§ π β ( β₯ βπ))) | |
13 | 11, 12 | imbitrrdi 251 | . . 3 β’ (((πΎ β HL β§ π β π΄) β§ (π β π β§ π β ( β₯ βπ))) β (π = π β π β (π β© ( β₯ βπ)))) |
14 | 13 | necon3bd 2953 | . 2 β’ (((πΎ β HL β§ π β π΄) β§ (π β π β§ π β ( β₯ βπ))) β (Β¬ π β (π β© ( β₯ βπ)) β π β π)) |
15 | 6, 14 | mpd 15 | 1 β’ (((πΎ β HL β§ π β π΄) β§ (π β π β§ π β ( β₯ βπ))) β π β π) |
Colors of variables: wff setvar class |
Syntax hints: Β¬ wn 3 β wi 4 β§ wa 395 = wceq 1540 β wcel 2105 β wne 2939 β© cin 3948 β wss 3949 β c0 4323 {csn 4629 βcfv 6544 (class class class)co 7412 lecple 17209 joincjn 18269 Atomscatm 38437 HLchlt 38524 +πcpadd 38970 β₯πcpolN 39077 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7728 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-iin 5001 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7368 df-ov 7415 df-oprab 7416 df-proset 18253 df-poset 18271 df-plt 18288 df-lub 18304 df-glb 18305 df-join 18306 df-meet 18307 df-p0 18383 df-p1 18384 df-lat 18390 df-clat 18457 df-oposet 38350 df-ol 38352 df-oml 38353 df-covers 38440 df-ats 38441 df-atl 38472 df-cvlat 38496 df-hlat 38525 df-pmap 38679 df-polarityN 39078 |
This theorem is referenced by: pexmidlem3N 39147 |
Copyright terms: Public domain | W3C validator |