| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > pexmidlem1N | Structured version Visualization version GIF version | ||
| Description: Lemma for pexmidN 40078. Holland's proof implicitly requires 𝑞 ≠ 𝑟, which we prove here. (Contributed by NM, 2-Feb-2012.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| pexmidlem.l | ⊢ ≤ = (le‘𝐾) |
| pexmidlem.j | ⊢ ∨ = (join‘𝐾) |
| pexmidlem.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| pexmidlem.p | ⊢ + = (+𝑃‘𝐾) |
| pexmidlem.o | ⊢ ⊥ = (⊥𝑃‘𝐾) |
| pexmidlem.m | ⊢ 𝑀 = (𝑋 + {𝑝}) |
| Ref | Expression |
|---|---|
| pexmidlem1N | ⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) ∧ (𝑟 ∈ 𝑋 ∧ 𝑞 ∈ ( ⊥ ‘𝑋))) → 𝑞 ≠ 𝑟) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | n0i 4287 | . . 3 ⊢ (𝑟 ∈ (𝑋 ∩ ( ⊥ ‘𝑋)) → ¬ (𝑋 ∩ ( ⊥ ‘𝑋)) = ∅) | |
| 2 | pexmidlem.a | . . . . 5 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 3 | pexmidlem.o | . . . . 5 ⊢ ⊥ = (⊥𝑃‘𝐾) | |
| 4 | 2, 3 | pnonsingN 40042 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) → (𝑋 ∩ ( ⊥ ‘𝑋)) = ∅) |
| 5 | 4 | adantr 480 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) ∧ (𝑟 ∈ 𝑋 ∧ 𝑞 ∈ ( ⊥ ‘𝑋))) → (𝑋 ∩ ( ⊥ ‘𝑋)) = ∅) |
| 6 | 1, 5 | nsyl3 138 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) ∧ (𝑟 ∈ 𝑋 ∧ 𝑞 ∈ ( ⊥ ‘𝑋))) → ¬ 𝑟 ∈ (𝑋 ∩ ( ⊥ ‘𝑋))) |
| 7 | simprr 772 | . . . . . 6 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) ∧ (𝑟 ∈ 𝑋 ∧ 𝑞 ∈ ( ⊥ ‘𝑋))) → 𝑞 ∈ ( ⊥ ‘𝑋)) | |
| 8 | eleq1w 2814 | . . . . . 6 ⊢ (𝑞 = 𝑟 → (𝑞 ∈ ( ⊥ ‘𝑋) ↔ 𝑟 ∈ ( ⊥ ‘𝑋))) | |
| 9 | 7, 8 | syl5ibcom 245 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) ∧ (𝑟 ∈ 𝑋 ∧ 𝑞 ∈ ( ⊥ ‘𝑋))) → (𝑞 = 𝑟 → 𝑟 ∈ ( ⊥ ‘𝑋))) |
| 10 | simprl 770 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) ∧ (𝑟 ∈ 𝑋 ∧ 𝑞 ∈ ( ⊥ ‘𝑋))) → 𝑟 ∈ 𝑋) | |
| 11 | 9, 10 | jctild 525 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) ∧ (𝑟 ∈ 𝑋 ∧ 𝑞 ∈ ( ⊥ ‘𝑋))) → (𝑞 = 𝑟 → (𝑟 ∈ 𝑋 ∧ 𝑟 ∈ ( ⊥ ‘𝑋)))) |
| 12 | elin 3913 | . . . 4 ⊢ (𝑟 ∈ (𝑋 ∩ ( ⊥ ‘𝑋)) ↔ (𝑟 ∈ 𝑋 ∧ 𝑟 ∈ ( ⊥ ‘𝑋))) | |
| 13 | 11, 12 | imbitrrdi 252 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) ∧ (𝑟 ∈ 𝑋 ∧ 𝑞 ∈ ( ⊥ ‘𝑋))) → (𝑞 = 𝑟 → 𝑟 ∈ (𝑋 ∩ ( ⊥ ‘𝑋)))) |
| 14 | 13 | necon3bd 2942 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) ∧ (𝑟 ∈ 𝑋 ∧ 𝑞 ∈ ( ⊥ ‘𝑋))) → (¬ 𝑟 ∈ (𝑋 ∩ ( ⊥ ‘𝑋)) → 𝑞 ≠ 𝑟)) |
| 15 | 6, 14 | mpd 15 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) ∧ (𝑟 ∈ 𝑋 ∧ 𝑞 ∈ ( ⊥ ‘𝑋))) → 𝑞 ≠ 𝑟) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 ∩ cin 3896 ⊆ wss 3897 ∅c0 4280 {csn 4573 ‘cfv 6481 (class class class)co 7346 lecple 17168 joincjn 18217 Atomscatm 39372 HLchlt 39459 +𝑃cpadd 39904 ⊥𝑃cpolN 40011 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-iin 4942 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-proset 18200 df-poset 18219 df-plt 18234 df-lub 18250 df-glb 18251 df-join 18252 df-meet 18253 df-p0 18329 df-p1 18330 df-lat 18338 df-clat 18405 df-oposet 39285 df-ol 39287 df-oml 39288 df-covers 39375 df-ats 39376 df-atl 39407 df-cvlat 39431 df-hlat 39460 df-pmap 39613 df-polarityN 40012 |
| This theorem is referenced by: pexmidlem3N 40081 |
| Copyright terms: Public domain | W3C validator |