Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  fin45 Structured version   Visualization version   GIF version

Theorem fin45 9806
 Description: Every IV-finite set is V-finite: if we can pack two copies of the set into itself, we can certainly leave space. (Contributed by Stefan O'Rear, 30-Oct-2014.) (Proof shortened by Mario Carneiro, 18-May-2015.)
Assertion
Ref Expression
fin45 (𝐴 ∈ FinIV𝐴 ∈ FinV)

Proof of Theorem fin45
StepHypRef Expression
1 simpl 485 . . . . . . . 8 ((𝐴 ≠ ∅ ∧ 𝐴 ≈ (𝐴𝐴)) → 𝐴 ≠ ∅)
2 relen 8506 . . . . . . . . . . 11 Rel ≈
32brrelex1i 5601 . . . . . . . . . 10 (𝐴 ≈ (𝐴𝐴) → 𝐴 ∈ V)
43adantl 484 . . . . . . . . 9 ((𝐴 ≠ ∅ ∧ 𝐴 ≈ (𝐴𝐴)) → 𝐴 ∈ V)
5 0sdomg 8638 . . . . . . . . 9 (𝐴 ∈ V → (∅ ≺ 𝐴𝐴 ≠ ∅))
64, 5syl 17 . . . . . . . 8 ((𝐴 ≠ ∅ ∧ 𝐴 ≈ (𝐴𝐴)) → (∅ ≺ 𝐴𝐴 ≠ ∅))
71, 6mpbird 259 . . . . . . 7 ((𝐴 ≠ ∅ ∧ 𝐴 ≈ (𝐴𝐴)) → ∅ ≺ 𝐴)
8 0sdom1dom 8708 . . . . . . 7 (∅ ≺ 𝐴 ↔ 1o𝐴)
97, 8sylib 220 . . . . . 6 ((𝐴 ≠ ∅ ∧ 𝐴 ≈ (𝐴𝐴)) → 1o𝐴)
10 djudom2 9601 . . . . . 6 ((1o𝐴𝐴 ∈ V) → (𝐴 ⊔ 1o) ≼ (𝐴𝐴))
119, 4, 10syl2anc 586 . . . . 5 ((𝐴 ≠ ∅ ∧ 𝐴 ≈ (𝐴𝐴)) → (𝐴 ⊔ 1o) ≼ (𝐴𝐴))
12 domen2 8652 . . . . . 6 (𝐴 ≈ (𝐴𝐴) → ((𝐴 ⊔ 1o) ≼ 𝐴 ↔ (𝐴 ⊔ 1o) ≼ (𝐴𝐴)))
1312adantl 484 . . . . 5 ((𝐴 ≠ ∅ ∧ 𝐴 ≈ (𝐴𝐴)) → ((𝐴 ⊔ 1o) ≼ 𝐴 ↔ (𝐴 ⊔ 1o) ≼ (𝐴𝐴)))
1411, 13mpbird 259 . . . 4 ((𝐴 ≠ ∅ ∧ 𝐴 ≈ (𝐴𝐴)) → (𝐴 ⊔ 1o) ≼ 𝐴)
15 domnsym 8635 . . . 4 ((𝐴 ⊔ 1o) ≼ 𝐴 → ¬ 𝐴 ≺ (𝐴 ⊔ 1o))
1614, 15syl 17 . . 3 ((𝐴 ≠ ∅ ∧ 𝐴 ≈ (𝐴𝐴)) → ¬ 𝐴 ≺ (𝐴 ⊔ 1o))
17 isfin4p1 9729 . . . 4 (𝐴 ∈ FinIV𝐴 ≺ (𝐴 ⊔ 1o))
1817biimpi 218 . . 3 (𝐴 ∈ FinIV𝐴 ≺ (𝐴 ⊔ 1o))
1916, 18nsyl3 140 . 2 (𝐴 ∈ FinIV → ¬ (𝐴 ≠ ∅ ∧ 𝐴 ≈ (𝐴𝐴)))
20 isfin5-2 9805 . 2 (𝐴 ∈ FinIV → (𝐴 ∈ FinV ↔ ¬ (𝐴 ≠ ∅ ∧ 𝐴 ≈ (𝐴𝐴))))
2119, 20mpbird 259 1 (𝐴 ∈ FinIV𝐴 ∈ FinV)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 208   ∧ wa 398   ∈ wcel 2107   ≠ wne 3014  Vcvv 3493  ∅c0 4289   class class class wbr 5057  1oc1o 8087   ≈ cen 8498   ≼ cdom 8499   ≺ csdm 8500   ⊔ cdju 9319  FinIVcfin4 9694  FinVcfin5 9696 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2791  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453 This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-ral 3141  df-rex 3142  df-reu 3143  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-pss 3952  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-tp 4564  df-op 4566  df-uni 4831  df-int 4868  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-om 7573  df-1st 7681  df-2nd 7682  df-wrecs 7939  df-recs 8000  df-rdg 8038  df-1o 8094  df-er 8281  df-en 8502  df-dom 8503  df-sdom 8504  df-fin 8505  df-dju 9322  df-fin4 9701  df-fin5 9703 This theorem is referenced by:  fin2so  34866
 Copyright terms: Public domain W3C validator