MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fin45 Structured version   Visualization version   GIF version

Theorem fin45 10391
Description: Every IV-finite set is V-finite: if we can pack two copies of the set into itself, we can certainly leave space. (Contributed by Stefan O'Rear, 30-Oct-2014.) (Proof shortened by Mario Carneiro, 18-May-2015.)
Assertion
Ref Expression
fin45 (𝐴 ∈ FinIV𝐴 ∈ FinV)

Proof of Theorem fin45
StepHypRef Expression
1 simpl 481 . . . . . . . 8 ((𝐴 ≠ ∅ ∧ 𝐴 ≈ (𝐴𝐴)) → 𝐴 ≠ ∅)
2 relen 8948 . . . . . . . . . . 11 Rel ≈
32brrelex1i 5733 . . . . . . . . . 10 (𝐴 ≈ (𝐴𝐴) → 𝐴 ∈ V)
43adantl 480 . . . . . . . . 9 ((𝐴 ≠ ∅ ∧ 𝐴 ≈ (𝐴𝐴)) → 𝐴 ∈ V)
5 0sdomg 9108 . . . . . . . . 9 (𝐴 ∈ V → (∅ ≺ 𝐴𝐴 ≠ ∅))
64, 5syl 17 . . . . . . . 8 ((𝐴 ≠ ∅ ∧ 𝐴 ≈ (𝐴𝐴)) → (∅ ≺ 𝐴𝐴 ≠ ∅))
71, 6mpbird 256 . . . . . . 7 ((𝐴 ≠ ∅ ∧ 𝐴 ≈ (𝐴𝐴)) → ∅ ≺ 𝐴)
8 0sdom1dom 9242 . . . . . . 7 (∅ ≺ 𝐴 ↔ 1o𝐴)
97, 8sylib 217 . . . . . 6 ((𝐴 ≠ ∅ ∧ 𝐴 ≈ (𝐴𝐴)) → 1o𝐴)
10 djudom2 10182 . . . . . 6 ((1o𝐴𝐴 ∈ V) → (𝐴 ⊔ 1o) ≼ (𝐴𝐴))
119, 4, 10syl2anc 582 . . . . 5 ((𝐴 ≠ ∅ ∧ 𝐴 ≈ (𝐴𝐴)) → (𝐴 ⊔ 1o) ≼ (𝐴𝐴))
12 domen2 9124 . . . . . 6 (𝐴 ≈ (𝐴𝐴) → ((𝐴 ⊔ 1o) ≼ 𝐴 ↔ (𝐴 ⊔ 1o) ≼ (𝐴𝐴)))
1312adantl 480 . . . . 5 ((𝐴 ≠ ∅ ∧ 𝐴 ≈ (𝐴𝐴)) → ((𝐴 ⊔ 1o) ≼ 𝐴 ↔ (𝐴 ⊔ 1o) ≼ (𝐴𝐴)))
1411, 13mpbird 256 . . . 4 ((𝐴 ≠ ∅ ∧ 𝐴 ≈ (𝐴𝐴)) → (𝐴 ⊔ 1o) ≼ 𝐴)
15 domnsym 9103 . . . 4 ((𝐴 ⊔ 1o) ≼ 𝐴 → ¬ 𝐴 ≺ (𝐴 ⊔ 1o))
1614, 15syl 17 . . 3 ((𝐴 ≠ ∅ ∧ 𝐴 ≈ (𝐴𝐴)) → ¬ 𝐴 ≺ (𝐴 ⊔ 1o))
17 isfin4p1 10314 . . . 4 (𝐴 ∈ FinIV𝐴 ≺ (𝐴 ⊔ 1o))
1817biimpi 215 . . 3 (𝐴 ∈ FinIV𝐴 ≺ (𝐴 ⊔ 1o))
1916, 18nsyl3 138 . 2 (𝐴 ∈ FinIV → ¬ (𝐴 ≠ ∅ ∧ 𝐴 ≈ (𝐴𝐴)))
20 isfin5-2 10390 . 2 (𝐴 ∈ FinIV → (𝐴 ∈ FinV ↔ ¬ (𝐴 ≠ ∅ ∧ 𝐴 ≈ (𝐴𝐴))))
2119, 20mpbird 256 1 (𝐴 ∈ FinIV𝐴 ∈ FinV)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 394  wcel 2104  wne 2938  Vcvv 3472  c0 4323   class class class wbr 5149  1oc1o 8463  cen 8940  cdom 8941  csdm 8942  cdju 9897  FinIVcfin4 10279  FinVcfin5 10281
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7729
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3375  df-rab 3431  df-v 3474  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-int 4952  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-ov 7416  df-om 7860  df-1st 7979  df-2nd 7980  df-frecs 8270  df-wrecs 8301  df-recs 8375  df-rdg 8414  df-1o 8470  df-er 8707  df-en 8944  df-dom 8945  df-sdom 8946  df-dju 9900  df-fin4 10286  df-fin5 10288
This theorem is referenced by:  fin2so  36780
  Copyright terms: Public domain W3C validator