Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fin45 | Structured version Visualization version GIF version |
Description: Every IV-finite set is V-finite: if we can pack two copies of the set into itself, we can certainly leave space. (Contributed by Stefan O'Rear, 30-Oct-2014.) (Proof shortened by Mario Carneiro, 18-May-2015.) |
Ref | Expression |
---|---|
fin45 | ⊢ (𝐴 ∈ FinIV → 𝐴 ∈ FinV) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 482 | . . . . . . . 8 ⊢ ((𝐴 ≠ ∅ ∧ 𝐴 ≈ (𝐴 ⊔ 𝐴)) → 𝐴 ≠ ∅) | |
2 | relen 8696 | . . . . . . . . . . 11 ⊢ Rel ≈ | |
3 | 2 | brrelex1i 5634 | . . . . . . . . . 10 ⊢ (𝐴 ≈ (𝐴 ⊔ 𝐴) → 𝐴 ∈ V) |
4 | 3 | adantl 481 | . . . . . . . . 9 ⊢ ((𝐴 ≠ ∅ ∧ 𝐴 ≈ (𝐴 ⊔ 𝐴)) → 𝐴 ∈ V) |
5 | 0sdomg 8842 | . . . . . . . . 9 ⊢ (𝐴 ∈ V → (∅ ≺ 𝐴 ↔ 𝐴 ≠ ∅)) | |
6 | 4, 5 | syl 17 | . . . . . . . 8 ⊢ ((𝐴 ≠ ∅ ∧ 𝐴 ≈ (𝐴 ⊔ 𝐴)) → (∅ ≺ 𝐴 ↔ 𝐴 ≠ ∅)) |
7 | 1, 6 | mpbird 256 | . . . . . . 7 ⊢ ((𝐴 ≠ ∅ ∧ 𝐴 ≈ (𝐴 ⊔ 𝐴)) → ∅ ≺ 𝐴) |
8 | 0sdom1dom 8950 | . . . . . . 7 ⊢ (∅ ≺ 𝐴 ↔ 1o ≼ 𝐴) | |
9 | 7, 8 | sylib 217 | . . . . . 6 ⊢ ((𝐴 ≠ ∅ ∧ 𝐴 ≈ (𝐴 ⊔ 𝐴)) → 1o ≼ 𝐴) |
10 | djudom2 9870 | . . . . . 6 ⊢ ((1o ≼ 𝐴 ∧ 𝐴 ∈ V) → (𝐴 ⊔ 1o) ≼ (𝐴 ⊔ 𝐴)) | |
11 | 9, 4, 10 | syl2anc 583 | . . . . 5 ⊢ ((𝐴 ≠ ∅ ∧ 𝐴 ≈ (𝐴 ⊔ 𝐴)) → (𝐴 ⊔ 1o) ≼ (𝐴 ⊔ 𝐴)) |
12 | domen2 8856 | . . . . . 6 ⊢ (𝐴 ≈ (𝐴 ⊔ 𝐴) → ((𝐴 ⊔ 1o) ≼ 𝐴 ↔ (𝐴 ⊔ 1o) ≼ (𝐴 ⊔ 𝐴))) | |
13 | 12 | adantl 481 | . . . . 5 ⊢ ((𝐴 ≠ ∅ ∧ 𝐴 ≈ (𝐴 ⊔ 𝐴)) → ((𝐴 ⊔ 1o) ≼ 𝐴 ↔ (𝐴 ⊔ 1o) ≼ (𝐴 ⊔ 𝐴))) |
14 | 11, 13 | mpbird 256 | . . . 4 ⊢ ((𝐴 ≠ ∅ ∧ 𝐴 ≈ (𝐴 ⊔ 𝐴)) → (𝐴 ⊔ 1o) ≼ 𝐴) |
15 | domnsym 8839 | . . . 4 ⊢ ((𝐴 ⊔ 1o) ≼ 𝐴 → ¬ 𝐴 ≺ (𝐴 ⊔ 1o)) | |
16 | 14, 15 | syl 17 | . . 3 ⊢ ((𝐴 ≠ ∅ ∧ 𝐴 ≈ (𝐴 ⊔ 𝐴)) → ¬ 𝐴 ≺ (𝐴 ⊔ 1o)) |
17 | isfin4p1 10002 | . . . 4 ⊢ (𝐴 ∈ FinIV ↔ 𝐴 ≺ (𝐴 ⊔ 1o)) | |
18 | 17 | biimpi 215 | . . 3 ⊢ (𝐴 ∈ FinIV → 𝐴 ≺ (𝐴 ⊔ 1o)) |
19 | 16, 18 | nsyl3 138 | . 2 ⊢ (𝐴 ∈ FinIV → ¬ (𝐴 ≠ ∅ ∧ 𝐴 ≈ (𝐴 ⊔ 𝐴))) |
20 | isfin5-2 10078 | . 2 ⊢ (𝐴 ∈ FinIV → (𝐴 ∈ FinV ↔ ¬ (𝐴 ≠ ∅ ∧ 𝐴 ≈ (𝐴 ⊔ 𝐴)))) | |
21 | 19, 20 | mpbird 256 | 1 ⊢ (𝐴 ∈ FinIV → 𝐴 ∈ FinV) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 ∈ wcel 2108 ≠ wne 2942 Vcvv 3422 ∅c0 4253 class class class wbr 5070 1oc1o 8260 ≈ cen 8688 ≼ cdom 8689 ≺ csdm 8690 ⊔ cdju 9587 FinIVcfin4 9967 FinVcfin5 9969 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-dju 9590 df-fin4 9974 df-fin5 9976 |
This theorem is referenced by: fin2so 35691 |
Copyright terms: Public domain | W3C validator |