![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fin45 | Structured version Visualization version GIF version |
Description: Every IV-finite set is V-finite: if we can pack two copies of the set into itself, we can certainly leave space. (Contributed by Stefan O'Rear, 30-Oct-2014.) (Proof shortened by Mario Carneiro, 18-May-2015.) |
Ref | Expression |
---|---|
fin45 | ⊢ (𝐴 ∈ FinIV → 𝐴 ∈ FinV) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 482 | . . . . . . . 8 ⊢ ((𝐴 ≠ ∅ ∧ 𝐴 ≈ (𝐴 ⊔ 𝐴)) → 𝐴 ≠ ∅) | |
2 | relen 8950 | . . . . . . . . . . 11 ⊢ Rel ≈ | |
3 | 2 | brrelex1i 5732 | . . . . . . . . . 10 ⊢ (𝐴 ≈ (𝐴 ⊔ 𝐴) → 𝐴 ∈ V) |
4 | 3 | adantl 481 | . . . . . . . . 9 ⊢ ((𝐴 ≠ ∅ ∧ 𝐴 ≈ (𝐴 ⊔ 𝐴)) → 𝐴 ∈ V) |
5 | 0sdomg 9110 | . . . . . . . . 9 ⊢ (𝐴 ∈ V → (∅ ≺ 𝐴 ↔ 𝐴 ≠ ∅)) | |
6 | 4, 5 | syl 17 | . . . . . . . 8 ⊢ ((𝐴 ≠ ∅ ∧ 𝐴 ≈ (𝐴 ⊔ 𝐴)) → (∅ ≺ 𝐴 ↔ 𝐴 ≠ ∅)) |
7 | 1, 6 | mpbird 257 | . . . . . . 7 ⊢ ((𝐴 ≠ ∅ ∧ 𝐴 ≈ (𝐴 ⊔ 𝐴)) → ∅ ≺ 𝐴) |
8 | 0sdom1dom 9244 | . . . . . . 7 ⊢ (∅ ≺ 𝐴 ↔ 1o ≼ 𝐴) | |
9 | 7, 8 | sylib 217 | . . . . . 6 ⊢ ((𝐴 ≠ ∅ ∧ 𝐴 ≈ (𝐴 ⊔ 𝐴)) → 1o ≼ 𝐴) |
10 | djudom2 10184 | . . . . . 6 ⊢ ((1o ≼ 𝐴 ∧ 𝐴 ∈ V) → (𝐴 ⊔ 1o) ≼ (𝐴 ⊔ 𝐴)) | |
11 | 9, 4, 10 | syl2anc 583 | . . . . 5 ⊢ ((𝐴 ≠ ∅ ∧ 𝐴 ≈ (𝐴 ⊔ 𝐴)) → (𝐴 ⊔ 1o) ≼ (𝐴 ⊔ 𝐴)) |
12 | domen2 9126 | . . . . . 6 ⊢ (𝐴 ≈ (𝐴 ⊔ 𝐴) → ((𝐴 ⊔ 1o) ≼ 𝐴 ↔ (𝐴 ⊔ 1o) ≼ (𝐴 ⊔ 𝐴))) | |
13 | 12 | adantl 481 | . . . . 5 ⊢ ((𝐴 ≠ ∅ ∧ 𝐴 ≈ (𝐴 ⊔ 𝐴)) → ((𝐴 ⊔ 1o) ≼ 𝐴 ↔ (𝐴 ⊔ 1o) ≼ (𝐴 ⊔ 𝐴))) |
14 | 11, 13 | mpbird 257 | . . . 4 ⊢ ((𝐴 ≠ ∅ ∧ 𝐴 ≈ (𝐴 ⊔ 𝐴)) → (𝐴 ⊔ 1o) ≼ 𝐴) |
15 | domnsym 9105 | . . . 4 ⊢ ((𝐴 ⊔ 1o) ≼ 𝐴 → ¬ 𝐴 ≺ (𝐴 ⊔ 1o)) | |
16 | 14, 15 | syl 17 | . . 3 ⊢ ((𝐴 ≠ ∅ ∧ 𝐴 ≈ (𝐴 ⊔ 𝐴)) → ¬ 𝐴 ≺ (𝐴 ⊔ 1o)) |
17 | isfin4p1 10316 | . . . 4 ⊢ (𝐴 ∈ FinIV ↔ 𝐴 ≺ (𝐴 ⊔ 1o)) | |
18 | 17 | biimpi 215 | . . 3 ⊢ (𝐴 ∈ FinIV → 𝐴 ≺ (𝐴 ⊔ 1o)) |
19 | 16, 18 | nsyl3 138 | . 2 ⊢ (𝐴 ∈ FinIV → ¬ (𝐴 ≠ ∅ ∧ 𝐴 ≈ (𝐴 ⊔ 𝐴))) |
20 | isfin5-2 10392 | . 2 ⊢ (𝐴 ∈ FinIV → (𝐴 ∈ FinV ↔ ¬ (𝐴 ≠ ∅ ∧ 𝐴 ≈ (𝐴 ⊔ 𝐴)))) | |
21 | 19, 20 | mpbird 257 | 1 ⊢ (𝐴 ∈ FinIV → 𝐴 ∈ FinV) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 ∈ wcel 2105 ≠ wne 2939 Vcvv 3473 ∅c0 4322 class class class wbr 5148 1oc1o 8465 ≈ cen 8942 ≼ cdom 8943 ≺ csdm 8944 ⊔ cdju 9899 FinIVcfin4 10281 FinVcfin5 10283 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7415 df-om 7860 df-1st 7979 df-2nd 7980 df-frecs 8272 df-wrecs 8303 df-recs 8377 df-rdg 8416 df-1o 8472 df-er 8709 df-en 8946 df-dom 8947 df-sdom 8948 df-dju 9902 df-fin4 10288 df-fin5 10290 |
This theorem is referenced by: fin2so 36942 |
Copyright terms: Public domain | W3C validator |