Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fin45 | Structured version Visualization version GIF version |
Description: Every IV-finite set is V-finite: if we can pack two copies of the set into itself, we can certainly leave space. (Contributed by Stefan O'Rear, 30-Oct-2014.) (Proof shortened by Mario Carneiro, 18-May-2015.) |
Ref | Expression |
---|---|
fin45 | ⊢ (𝐴 ∈ FinIV → 𝐴 ∈ FinV) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 483 | . . . . . . . 8 ⊢ ((𝐴 ≠ ∅ ∧ 𝐴 ≈ (𝐴 ⊔ 𝐴)) → 𝐴 ≠ ∅) | |
2 | relen 8738 | . . . . . . . . . . 11 ⊢ Rel ≈ | |
3 | 2 | brrelex1i 5643 | . . . . . . . . . 10 ⊢ (𝐴 ≈ (𝐴 ⊔ 𝐴) → 𝐴 ∈ V) |
4 | 3 | adantl 482 | . . . . . . . . 9 ⊢ ((𝐴 ≠ ∅ ∧ 𝐴 ≈ (𝐴 ⊔ 𝐴)) → 𝐴 ∈ V) |
5 | 0sdomg 8891 | . . . . . . . . 9 ⊢ (𝐴 ∈ V → (∅ ≺ 𝐴 ↔ 𝐴 ≠ ∅)) | |
6 | 4, 5 | syl 17 | . . . . . . . 8 ⊢ ((𝐴 ≠ ∅ ∧ 𝐴 ≈ (𝐴 ⊔ 𝐴)) → (∅ ≺ 𝐴 ↔ 𝐴 ≠ ∅)) |
7 | 1, 6 | mpbird 256 | . . . . . . 7 ⊢ ((𝐴 ≠ ∅ ∧ 𝐴 ≈ (𝐴 ⊔ 𝐴)) → ∅ ≺ 𝐴) |
8 | 0sdom1dom 9020 | . . . . . . 7 ⊢ (∅ ≺ 𝐴 ↔ 1o ≼ 𝐴) | |
9 | 7, 8 | sylib 217 | . . . . . 6 ⊢ ((𝐴 ≠ ∅ ∧ 𝐴 ≈ (𝐴 ⊔ 𝐴)) → 1o ≼ 𝐴) |
10 | djudom2 9939 | . . . . . 6 ⊢ ((1o ≼ 𝐴 ∧ 𝐴 ∈ V) → (𝐴 ⊔ 1o) ≼ (𝐴 ⊔ 𝐴)) | |
11 | 9, 4, 10 | syl2anc 584 | . . . . 5 ⊢ ((𝐴 ≠ ∅ ∧ 𝐴 ≈ (𝐴 ⊔ 𝐴)) → (𝐴 ⊔ 1o) ≼ (𝐴 ⊔ 𝐴)) |
12 | domen2 8907 | . . . . . 6 ⊢ (𝐴 ≈ (𝐴 ⊔ 𝐴) → ((𝐴 ⊔ 1o) ≼ 𝐴 ↔ (𝐴 ⊔ 1o) ≼ (𝐴 ⊔ 𝐴))) | |
13 | 12 | adantl 482 | . . . . 5 ⊢ ((𝐴 ≠ ∅ ∧ 𝐴 ≈ (𝐴 ⊔ 𝐴)) → ((𝐴 ⊔ 1o) ≼ 𝐴 ↔ (𝐴 ⊔ 1o) ≼ (𝐴 ⊔ 𝐴))) |
14 | 11, 13 | mpbird 256 | . . . 4 ⊢ ((𝐴 ≠ ∅ ∧ 𝐴 ≈ (𝐴 ⊔ 𝐴)) → (𝐴 ⊔ 1o) ≼ 𝐴) |
15 | domnsym 8886 | . . . 4 ⊢ ((𝐴 ⊔ 1o) ≼ 𝐴 → ¬ 𝐴 ≺ (𝐴 ⊔ 1o)) | |
16 | 14, 15 | syl 17 | . . 3 ⊢ ((𝐴 ≠ ∅ ∧ 𝐴 ≈ (𝐴 ⊔ 𝐴)) → ¬ 𝐴 ≺ (𝐴 ⊔ 1o)) |
17 | isfin4p1 10071 | . . . 4 ⊢ (𝐴 ∈ FinIV ↔ 𝐴 ≺ (𝐴 ⊔ 1o)) | |
18 | 17 | biimpi 215 | . . 3 ⊢ (𝐴 ∈ FinIV → 𝐴 ≺ (𝐴 ⊔ 1o)) |
19 | 16, 18 | nsyl3 138 | . 2 ⊢ (𝐴 ∈ FinIV → ¬ (𝐴 ≠ ∅ ∧ 𝐴 ≈ (𝐴 ⊔ 𝐴))) |
20 | isfin5-2 10147 | . 2 ⊢ (𝐴 ∈ FinIV → (𝐴 ∈ FinV ↔ ¬ (𝐴 ≠ ∅ ∧ 𝐴 ≈ (𝐴 ⊔ 𝐴)))) | |
21 | 19, 20 | mpbird 256 | 1 ⊢ (𝐴 ∈ FinIV → 𝐴 ∈ FinV) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 396 ∈ wcel 2106 ≠ wne 2943 Vcvv 3432 ∅c0 4256 class class class wbr 5074 1oc1o 8290 ≈ cen 8730 ≼ cdom 8731 ≺ csdm 8732 ⊔ cdju 9656 FinIVcfin4 10036 FinVcfin5 10038 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-ov 7278 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-dju 9659 df-fin4 10043 df-fin5 10045 |
This theorem is referenced by: fin2so 35764 |
Copyright terms: Public domain | W3C validator |