![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fin45 | Structured version Visualization version GIF version |
Description: Every IV-finite set is V-finite: if we can pack two copies of the set into itself, we can certainly leave space. (Contributed by Stefan O'Rear, 30-Oct-2014.) (Proof shortened by Mario Carneiro, 18-May-2015.) |
Ref | Expression |
---|---|
fin45 | ⊢ (𝐴 ∈ FinIV → 𝐴 ∈ FinV) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 481 | . . . . . . . 8 ⊢ ((𝐴 ≠ ∅ ∧ 𝐴 ≈ (𝐴 ⊔ 𝐴)) → 𝐴 ≠ ∅) | |
2 | relen 8948 | . . . . . . . . . . 11 ⊢ Rel ≈ | |
3 | 2 | brrelex1i 5733 | . . . . . . . . . 10 ⊢ (𝐴 ≈ (𝐴 ⊔ 𝐴) → 𝐴 ∈ V) |
4 | 3 | adantl 480 | . . . . . . . . 9 ⊢ ((𝐴 ≠ ∅ ∧ 𝐴 ≈ (𝐴 ⊔ 𝐴)) → 𝐴 ∈ V) |
5 | 0sdomg 9108 | . . . . . . . . 9 ⊢ (𝐴 ∈ V → (∅ ≺ 𝐴 ↔ 𝐴 ≠ ∅)) | |
6 | 4, 5 | syl 17 | . . . . . . . 8 ⊢ ((𝐴 ≠ ∅ ∧ 𝐴 ≈ (𝐴 ⊔ 𝐴)) → (∅ ≺ 𝐴 ↔ 𝐴 ≠ ∅)) |
7 | 1, 6 | mpbird 256 | . . . . . . 7 ⊢ ((𝐴 ≠ ∅ ∧ 𝐴 ≈ (𝐴 ⊔ 𝐴)) → ∅ ≺ 𝐴) |
8 | 0sdom1dom 9242 | . . . . . . 7 ⊢ (∅ ≺ 𝐴 ↔ 1o ≼ 𝐴) | |
9 | 7, 8 | sylib 217 | . . . . . 6 ⊢ ((𝐴 ≠ ∅ ∧ 𝐴 ≈ (𝐴 ⊔ 𝐴)) → 1o ≼ 𝐴) |
10 | djudom2 10182 | . . . . . 6 ⊢ ((1o ≼ 𝐴 ∧ 𝐴 ∈ V) → (𝐴 ⊔ 1o) ≼ (𝐴 ⊔ 𝐴)) | |
11 | 9, 4, 10 | syl2anc 582 | . . . . 5 ⊢ ((𝐴 ≠ ∅ ∧ 𝐴 ≈ (𝐴 ⊔ 𝐴)) → (𝐴 ⊔ 1o) ≼ (𝐴 ⊔ 𝐴)) |
12 | domen2 9124 | . . . . . 6 ⊢ (𝐴 ≈ (𝐴 ⊔ 𝐴) → ((𝐴 ⊔ 1o) ≼ 𝐴 ↔ (𝐴 ⊔ 1o) ≼ (𝐴 ⊔ 𝐴))) | |
13 | 12 | adantl 480 | . . . . 5 ⊢ ((𝐴 ≠ ∅ ∧ 𝐴 ≈ (𝐴 ⊔ 𝐴)) → ((𝐴 ⊔ 1o) ≼ 𝐴 ↔ (𝐴 ⊔ 1o) ≼ (𝐴 ⊔ 𝐴))) |
14 | 11, 13 | mpbird 256 | . . . 4 ⊢ ((𝐴 ≠ ∅ ∧ 𝐴 ≈ (𝐴 ⊔ 𝐴)) → (𝐴 ⊔ 1o) ≼ 𝐴) |
15 | domnsym 9103 | . . . 4 ⊢ ((𝐴 ⊔ 1o) ≼ 𝐴 → ¬ 𝐴 ≺ (𝐴 ⊔ 1o)) | |
16 | 14, 15 | syl 17 | . . 3 ⊢ ((𝐴 ≠ ∅ ∧ 𝐴 ≈ (𝐴 ⊔ 𝐴)) → ¬ 𝐴 ≺ (𝐴 ⊔ 1o)) |
17 | isfin4p1 10314 | . . . 4 ⊢ (𝐴 ∈ FinIV ↔ 𝐴 ≺ (𝐴 ⊔ 1o)) | |
18 | 17 | biimpi 215 | . . 3 ⊢ (𝐴 ∈ FinIV → 𝐴 ≺ (𝐴 ⊔ 1o)) |
19 | 16, 18 | nsyl3 138 | . 2 ⊢ (𝐴 ∈ FinIV → ¬ (𝐴 ≠ ∅ ∧ 𝐴 ≈ (𝐴 ⊔ 𝐴))) |
20 | isfin5-2 10390 | . 2 ⊢ (𝐴 ∈ FinIV → (𝐴 ∈ FinV ↔ ¬ (𝐴 ≠ ∅ ∧ 𝐴 ≈ (𝐴 ⊔ 𝐴)))) | |
21 | 19, 20 | mpbird 256 | 1 ⊢ (𝐴 ∈ FinIV → 𝐴 ∈ FinV) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 394 ∈ wcel 2104 ≠ wne 2938 Vcvv 3472 ∅c0 4323 class class class wbr 5149 1oc1o 8463 ≈ cen 8940 ≼ cdom 8941 ≺ csdm 8942 ⊔ cdju 9897 FinIVcfin4 10279 FinVcfin5 10281 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7729 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-ral 3060 df-rex 3069 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-int 4952 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-ov 7416 df-om 7860 df-1st 7979 df-2nd 7980 df-frecs 8270 df-wrecs 8301 df-recs 8375 df-rdg 8414 df-1o 8470 df-er 8707 df-en 8944 df-dom 8945 df-sdom 8946 df-dju 9900 df-fin4 10286 df-fin5 10288 |
This theorem is referenced by: fin2so 36780 |
Copyright terms: Public domain | W3C validator |