MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sdomirr Structured version   Visualization version   GIF version

Theorem sdomirr 9038
Description: Strict dominance is irreflexive. Theorem 21(i) of [Suppes] p. 97. (Contributed by NM, 4-Jun-1998.)
Assertion
Ref Expression
sdomirr ¬ 𝐴𝐴

Proof of Theorem sdomirr
StepHypRef Expression
1 sdomnen 8913 . . 3 (𝐴𝐴 → ¬ 𝐴𝐴)
2 enrefg 8916 . . 3 (𝐴 ∈ V → 𝐴𝐴)
31, 2nsyl3 138 . 2 (𝐴 ∈ V → ¬ 𝐴𝐴)
4 relsdom 8886 . . . 4 Rel ≺
54brrelex1i 5679 . . 3 (𝐴𝐴𝐴 ∈ V)
65con3i 154 . 2 𝐴 ∈ V → ¬ 𝐴𝐴)
73, 6pm2.61i 182 1 ¬ 𝐴𝐴
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wcel 2109  Vcvv 3438   class class class wbr 5095  cen 8876  csdm 8878
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-en 8880  df-dom 8881  df-sdom 8882
This theorem is referenced by:  sdomn2lp  9040  2pwuninel  9056  2pwne  9057  r111  9690  alephval2  10485  alephom  10498  csdfil  23797
  Copyright terms: Public domain W3C validator