| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sdomirr | Structured version Visualization version GIF version | ||
| Description: Strict dominance is irreflexive. Theorem 21(i) of [Suppes] p. 97. (Contributed by NM, 4-Jun-1998.) |
| Ref | Expression |
|---|---|
| sdomirr | ⊢ ¬ 𝐴 ≺ 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sdomnen 8952 | . . 3 ⊢ (𝐴 ≺ 𝐴 → ¬ 𝐴 ≈ 𝐴) | |
| 2 | enrefg 8955 | . . 3 ⊢ (𝐴 ∈ V → 𝐴 ≈ 𝐴) | |
| 3 | 1, 2 | nsyl3 138 | . 2 ⊢ (𝐴 ∈ V → ¬ 𝐴 ≺ 𝐴) |
| 4 | relsdom 8925 | . . . 4 ⊢ Rel ≺ | |
| 5 | 4 | brrelex1i 5694 | . . 3 ⊢ (𝐴 ≺ 𝐴 → 𝐴 ∈ V) |
| 6 | 5 | con3i 154 | . 2 ⊢ (¬ 𝐴 ∈ V → ¬ 𝐴 ≺ 𝐴) |
| 7 | 3, 6 | pm2.61i 182 | 1 ⊢ ¬ 𝐴 ≺ 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∈ wcel 2109 Vcvv 3447 class class class wbr 5107 ≈ cen 8915 ≺ csdm 8917 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-en 8919 df-dom 8920 df-sdom 8921 |
| This theorem is referenced by: sdomn2lp 9080 2pwuninel 9096 2pwne 9097 r111 9728 alephval2 10525 alephom 10538 csdfil 23781 |
| Copyright terms: Public domain | W3C validator |