![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sdomirr | Structured version Visualization version GIF version |
Description: Strict dominance is irreflexive. Theorem 21(i) of [Suppes] p. 97. (Contributed by NM, 4-Jun-1998.) |
Ref | Expression |
---|---|
sdomirr | ⊢ ¬ 𝐴 ≺ 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sdomnen 9041 | . . 3 ⊢ (𝐴 ≺ 𝐴 → ¬ 𝐴 ≈ 𝐴) | |
2 | enrefg 9044 | . . 3 ⊢ (𝐴 ∈ V → 𝐴 ≈ 𝐴) | |
3 | 1, 2 | nsyl3 138 | . 2 ⊢ (𝐴 ∈ V → ¬ 𝐴 ≺ 𝐴) |
4 | relsdom 9010 | . . . 4 ⊢ Rel ≺ | |
5 | 4 | brrelex1i 5756 | . . 3 ⊢ (𝐴 ≺ 𝐴 → 𝐴 ∈ V) |
6 | 5 | con3i 154 | . 2 ⊢ (¬ 𝐴 ∈ V → ¬ 𝐴 ≺ 𝐴) |
7 | 3, 6 | pm2.61i 182 | 1 ⊢ ¬ 𝐴 ≺ 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∈ wcel 2108 Vcvv 3488 class class class wbr 5166 ≈ cen 9000 ≺ csdm 9002 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-en 9004 df-dom 9005 df-sdom 9006 |
This theorem is referenced by: sdomn2lp 9182 2pwuninel 9198 2pwne 9199 r111 9844 alephval2 10641 alephom 10654 csdfil 23923 |
Copyright terms: Public domain | W3C validator |