| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sdomirr | Structured version Visualization version GIF version | ||
| Description: Strict dominance is irreflexive. Theorem 21(i) of [Suppes] p. 97. (Contributed by NM, 4-Jun-1998.) |
| Ref | Expression |
|---|---|
| sdomirr | ⊢ ¬ 𝐴 ≺ 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sdomnen 8955 | . . 3 ⊢ (𝐴 ≺ 𝐴 → ¬ 𝐴 ≈ 𝐴) | |
| 2 | enrefg 8958 | . . 3 ⊢ (𝐴 ∈ V → 𝐴 ≈ 𝐴) | |
| 3 | 1, 2 | nsyl3 138 | . 2 ⊢ (𝐴 ∈ V → ¬ 𝐴 ≺ 𝐴) |
| 4 | relsdom 8928 | . . . 4 ⊢ Rel ≺ | |
| 5 | 4 | brrelex1i 5697 | . . 3 ⊢ (𝐴 ≺ 𝐴 → 𝐴 ∈ V) |
| 6 | 5 | con3i 154 | . 2 ⊢ (¬ 𝐴 ∈ V → ¬ 𝐴 ≺ 𝐴) |
| 7 | 3, 6 | pm2.61i 182 | 1 ⊢ ¬ 𝐴 ≺ 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∈ wcel 2109 Vcvv 3450 class class class wbr 5110 ≈ cen 8918 ≺ csdm 8920 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-en 8922 df-dom 8923 df-sdom 8924 |
| This theorem is referenced by: sdomn2lp 9086 2pwuninel 9102 2pwne 9103 r111 9735 alephval2 10532 alephom 10545 csdfil 23788 |
| Copyright terms: Public domain | W3C validator |