| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sdomirr | Structured version Visualization version GIF version | ||
| Description: Strict dominance is irreflexive. Theorem 21(i) of [Suppes] p. 97. (Contributed by NM, 4-Jun-1998.) |
| Ref | Expression |
|---|---|
| sdomirr | ⊢ ¬ 𝐴 ≺ 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sdomnen 8903 | . . 3 ⊢ (𝐴 ≺ 𝐴 → ¬ 𝐴 ≈ 𝐴) | |
| 2 | enrefg 8906 | . . 3 ⊢ (𝐴 ∈ V → 𝐴 ≈ 𝐴) | |
| 3 | 1, 2 | nsyl3 138 | . 2 ⊢ (𝐴 ∈ V → ¬ 𝐴 ≺ 𝐴) |
| 4 | relsdom 8876 | . . . 4 ⊢ Rel ≺ | |
| 5 | 4 | brrelex1i 5672 | . . 3 ⊢ (𝐴 ≺ 𝐴 → 𝐴 ∈ V) |
| 6 | 5 | con3i 154 | . 2 ⊢ (¬ 𝐴 ∈ V → ¬ 𝐴 ≺ 𝐴) |
| 7 | 3, 6 | pm2.61i 182 | 1 ⊢ ¬ 𝐴 ≺ 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∈ wcel 2111 Vcvv 3436 class class class wbr 5091 ≈ cen 8866 ≺ csdm 8868 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-en 8870 df-dom 8871 df-sdom 8872 |
| This theorem is referenced by: sdomn2lp 9029 2pwuninel 9045 2pwne 9046 r111 9665 alephval2 10460 alephom 10473 csdfil 23807 |
| Copyright terms: Public domain | W3C validator |