Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sdomirr | Structured version Visualization version GIF version |
Description: Strict dominance is irreflexive. Theorem 21(i) of [Suppes] p. 97. (Contributed by NM, 4-Jun-1998.) |
Ref | Expression |
---|---|
sdomirr | ⊢ ¬ 𝐴 ≺ 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sdomnen 8821 | . . 3 ⊢ (𝐴 ≺ 𝐴 → ¬ 𝐴 ≈ 𝐴) | |
2 | enrefg 8824 | . . 3 ⊢ (𝐴 ∈ V → 𝐴 ≈ 𝐴) | |
3 | 1, 2 | nsyl3 138 | . 2 ⊢ (𝐴 ∈ V → ¬ 𝐴 ≺ 𝐴) |
4 | relsdom 8790 | . . . 4 ⊢ Rel ≺ | |
5 | 4 | brrelex1i 5662 | . . 3 ⊢ (𝐴 ≺ 𝐴 → 𝐴 ∈ V) |
6 | 5 | con3i 154 | . 2 ⊢ (¬ 𝐴 ∈ V → ¬ 𝐴 ≺ 𝐴) |
7 | 3, 6 | pm2.61i 182 | 1 ⊢ ¬ 𝐴 ≺ 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∈ wcel 2105 Vcvv 3441 class class class wbr 5087 ≈ cen 8780 ≺ csdm 8782 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-12 2170 ax-ext 2708 ax-sep 5238 ax-nul 5245 ax-pow 5303 ax-pr 5367 ax-un 7630 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-ral 3063 df-rex 3072 df-rab 3405 df-v 3443 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4268 df-if 4472 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4851 df-br 5088 df-opab 5150 df-id 5507 df-xp 5614 df-rel 5615 df-cnv 5616 df-co 5617 df-dm 5618 df-rn 5619 df-res 5620 df-ima 5621 df-fun 6468 df-fn 6469 df-f 6470 df-f1 6471 df-fo 6472 df-f1o 6473 df-en 8784 df-dom 8785 df-sdom 8786 |
This theorem is referenced by: sdomn2lp 8960 2pwuninel 8976 2pwne 8977 r111 9611 alephval2 10408 alephom 10421 csdfil 23128 |
Copyright terms: Public domain | W3C validator |