MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sdomirr Structured version   Visualization version   GIF version

Theorem sdomirr 9027
Description: Strict dominance is irreflexive. Theorem 21(i) of [Suppes] p. 97. (Contributed by NM, 4-Jun-1998.)
Assertion
Ref Expression
sdomirr ¬ 𝐴𝐴

Proof of Theorem sdomirr
StepHypRef Expression
1 sdomnen 8903 . . 3 (𝐴𝐴 → ¬ 𝐴𝐴)
2 enrefg 8906 . . 3 (𝐴 ∈ V → 𝐴𝐴)
31, 2nsyl3 138 . 2 (𝐴 ∈ V → ¬ 𝐴𝐴)
4 relsdom 8876 . . . 4 Rel ≺
54brrelex1i 5672 . . 3 (𝐴𝐴𝐴 ∈ V)
65con3i 154 . 2 𝐴 ∈ V → ¬ 𝐴𝐴)
73, 6pm2.61i 182 1 ¬ 𝐴𝐴
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wcel 2111  Vcvv 3436   class class class wbr 5091  cen 8866  csdm 8868
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-opab 5154  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-en 8870  df-dom 8871  df-sdom 8872
This theorem is referenced by:  sdomn2lp  9029  2pwuninel  9045  2pwne  9046  r111  9665  alephval2  10460  alephom  10473  csdfil  23807
  Copyright terms: Public domain W3C validator