MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sdomirr Structured version   Visualization version   GIF version

Theorem sdomirr 8958
Description: Strict dominance is irreflexive. Theorem 21(i) of [Suppes] p. 97. (Contributed by NM, 4-Jun-1998.)
Assertion
Ref Expression
sdomirr ¬ 𝐴𝐴

Proof of Theorem sdomirr
StepHypRef Expression
1 sdomnen 8821 . . 3 (𝐴𝐴 → ¬ 𝐴𝐴)
2 enrefg 8824 . . 3 (𝐴 ∈ V → 𝐴𝐴)
31, 2nsyl3 138 . 2 (𝐴 ∈ V → ¬ 𝐴𝐴)
4 relsdom 8790 . . . 4 Rel ≺
54brrelex1i 5662 . . 3 (𝐴𝐴𝐴 ∈ V)
65con3i 154 . 2 𝐴 ∈ V → ¬ 𝐴𝐴)
73, 6pm2.61i 182 1 ¬ 𝐴𝐴
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wcel 2105  Vcvv 3441   class class class wbr 5087  cen 8780  csdm 8782
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-12 2170  ax-ext 2708  ax-sep 5238  ax-nul 5245  ax-pow 5303  ax-pr 5367  ax-un 7630
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-ral 3063  df-rex 3072  df-rab 3405  df-v 3443  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4268  df-if 4472  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4851  df-br 5088  df-opab 5150  df-id 5507  df-xp 5614  df-rel 5615  df-cnv 5616  df-co 5617  df-dm 5618  df-rn 5619  df-res 5620  df-ima 5621  df-fun 6468  df-fn 6469  df-f 6470  df-f1 6471  df-fo 6472  df-f1o 6473  df-en 8784  df-dom 8785  df-sdom 8786
This theorem is referenced by:  sdomn2lp  8960  2pwuninel  8976  2pwne  8977  r111  9611  alephval2  10408  alephom  10421  csdfil  23128
  Copyright terms: Public domain W3C validator