MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lgamucov Structured version   Visualization version   GIF version

Theorem lgamucov 25778
Description: The 𝑈 regions used in the proof of lgamgulm 25775 have interiors which cover the entire domain of the Gamma function. (Contributed by Mario Carneiro, 6-Jul-2017.)
Hypotheses
Ref Expression
lgamucov.u 𝑈 = {𝑥 ∈ ℂ ∣ ((abs‘𝑥) ≤ 𝑟 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑟) ≤ (abs‘(𝑥 + 𝑘)))}
lgamucov.a (𝜑𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ)))
lgamucov.j 𝐽 = (TopOpen‘ℂfld)
Assertion
Ref Expression
lgamucov (𝜑 → ∃𝑟 ∈ ℕ 𝐴 ∈ ((int‘𝐽)‘𝑈))
Distinct variable groups:   𝑘,𝑟,𝑥,𝐴   𝜑,𝑘,𝑟,𝑥
Allowed substitution hints:   𝑈(𝑥,𝑘,𝑟)   𝐽(𝑥,𝑘,𝑟)

Proof of Theorem lgamucov
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 cnxmet 23528 . . 3 (abs ∘ − ) ∈ (∞Met‘ℂ)
2 difss 4023 . . . . 5 (ℤ ∖ ℕ) ⊆ ℤ
3 lgamucov.j . . . . . 6 𝐽 = (TopOpen‘ℂfld)
43sszcld 23572 . . . . 5 ((ℤ ∖ ℕ) ⊆ ℤ → (ℤ ∖ ℕ) ∈ (Clsd‘𝐽))
53cnfldtopon 23538 . . . . . . 7 𝐽 ∈ (TopOn‘ℂ)
65toponunii 21670 . . . . . 6 ℂ = 𝐽
76cldopn 21785 . . . . 5 ((ℤ ∖ ℕ) ∈ (Clsd‘𝐽) → (ℂ ∖ (ℤ ∖ ℕ)) ∈ 𝐽)
82, 4, 7mp2b 10 . . . 4 (ℂ ∖ (ℤ ∖ ℕ)) ∈ 𝐽
98a1i 11 . . 3 (𝜑 → (ℂ ∖ (ℤ ∖ ℕ)) ∈ 𝐽)
10 lgamucov.a . . 3 (𝜑𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ)))
113cnfldtopn 23537 . . . 4 𝐽 = (MetOpen‘(abs ∘ − ))
1211mopni2 23249 . . 3 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ (ℂ ∖ (ℤ ∖ ℕ)) ∈ 𝐽𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ))) → ∃𝑎 ∈ ℝ+ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))
131, 9, 10, 12mp3an2i 1467 . 2 (𝜑 → ∃𝑎 ∈ ℝ+ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))
1410eldifad 3856 . . . . . . . 8 (𝜑𝐴 ∈ ℂ)
1514adantr 484 . . . . . . 7 ((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) → 𝐴 ∈ ℂ)
1615abscld 14889 . . . . . 6 ((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) → (abs‘𝐴) ∈ ℝ)
17 simprl 771 . . . . . . 7 ((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) → 𝑎 ∈ ℝ+)
1817rpred 12517 . . . . . 6 ((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) → 𝑎 ∈ ℝ)
1916, 18readdcld 10751 . . . . 5 ((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) → ((abs‘𝐴) + 𝑎) ∈ ℝ)
20 2re 11793 . . . . . . 7 2 ∈ ℝ
2120a1i 11 . . . . . 6 ((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) → 2 ∈ ℝ)
2221, 17rerpdivcld 12548 . . . . 5 ((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) → (2 / 𝑎) ∈ ℝ)
2319, 22readdcld 10751 . . . 4 ((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) → (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) ∈ ℝ)
24 arch 11976 . . . 4 ((((abs‘𝐴) + 𝑎) + (2 / 𝑎)) ∈ ℝ → ∃𝑟 ∈ ℕ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟)
2523, 24syl 17 . . 3 ((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) → ∃𝑟 ∈ ℕ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟)
263cnfldtop 23539 . . . . . . . 8 𝐽 ∈ Top
2726a1i 11 . . . . . . 7 ((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) → 𝐽 ∈ Top)
28 lgamucov.u . . . . . . . . 9 𝑈 = {𝑥 ∈ ℂ ∣ ((abs‘𝑥) ≤ 𝑟 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑟) ≤ (abs‘(𝑥 + 𝑘)))}
2928ssrab3 3972 . . . . . . . 8 𝑈 ⊆ ℂ
3029a1i 11 . . . . . . 7 ((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) → 𝑈 ⊆ ℂ)
3115ad2antrr 726 . . . . . . . 8 ((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) → 𝐴 ∈ ℂ)
3217ad2antrr 726 . . . . . . . . . 10 ((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) → 𝑎 ∈ ℝ+)
3332rphalfcld 12529 . . . . . . . . 9 ((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) → (𝑎 / 2) ∈ ℝ+)
3433rpxrd 12518 . . . . . . . 8 ((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) → (𝑎 / 2) ∈ ℝ*)
3511blopn 23256 . . . . . . . 8 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝐴 ∈ ℂ ∧ (𝑎 / 2) ∈ ℝ*) → (𝐴(ball‘(abs ∘ − ))(𝑎 / 2)) ∈ 𝐽)
361, 31, 34, 35mp3an2i 1467 . . . . . . 7 ((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) → (𝐴(ball‘(abs ∘ − ))(𝑎 / 2)) ∈ 𝐽)
37 simplr 769 . . . . . . . . . . . . 13 ((((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) ∧ 𝑥 ∈ ℂ) ∧ (𝐴(abs ∘ − )𝑥) < (𝑎 / 2)) → 𝑥 ∈ ℂ)
3837abscld 14889 . . . . . . . . . . . 12 ((((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) ∧ 𝑥 ∈ ℂ) ∧ (𝐴(abs ∘ − )𝑥) < (𝑎 / 2)) → (abs‘𝑥) ∈ ℝ)
39 simp-4r 784 . . . . . . . . . . . . 13 ((((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) ∧ 𝑥 ∈ ℂ) ∧ (𝐴(abs ∘ − )𝑥) < (𝑎 / 2)) → 𝑟 ∈ ℕ)
4039nnred 11734 . . . . . . . . . . . 12 ((((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) ∧ 𝑥 ∈ ℂ) ∧ (𝐴(abs ∘ − )𝑥) < (𝑎 / 2)) → 𝑟 ∈ ℝ)
4123ad4antr 732 . . . . . . . . . . . . 13 ((((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) ∧ 𝑥 ∈ ℂ) ∧ (𝐴(abs ∘ − )𝑥) < (𝑎 / 2)) → (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) ∈ ℝ)
4219ad4antr 732 . . . . . . . . . . . . . 14 ((((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) ∧ 𝑥 ∈ ℂ) ∧ (𝐴(abs ∘ − )𝑥) < (𝑎 / 2)) → ((abs‘𝐴) + 𝑎) ∈ ℝ)
4316ad4antr 732 . . . . . . . . . . . . . . . . 17 ((((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) ∧ 𝑥 ∈ ℂ) ∧ (𝐴(abs ∘ − )𝑥) < (𝑎 / 2)) → (abs‘𝐴) ∈ ℝ)
4438, 43resubcld 11149 . . . . . . . . . . . . . . . 16 ((((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) ∧ 𝑥 ∈ ℂ) ∧ (𝐴(abs ∘ − )𝑥) < (𝑎 / 2)) → ((abs‘𝑥) − (abs‘𝐴)) ∈ ℝ)
4518ad4antr 732 . . . . . . . . . . . . . . . . 17 ((((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) ∧ 𝑥 ∈ ℂ) ∧ (𝐴(abs ∘ − )𝑥) < (𝑎 / 2)) → 𝑎 ∈ ℝ)
4645rehalfcld 11966 . . . . . . . . . . . . . . . 16 ((((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) ∧ 𝑥 ∈ ℂ) ∧ (𝐴(abs ∘ − )𝑥) < (𝑎 / 2)) → (𝑎 / 2) ∈ ℝ)
4731ad2antrr 726 . . . . . . . . . . . . . . . . . . 19 ((((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) ∧ 𝑥 ∈ ℂ) ∧ (𝐴(abs ∘ − )𝑥) < (𝑎 / 2)) → 𝐴 ∈ ℂ)
4837, 47subcld 11078 . . . . . . . . . . . . . . . . . 18 ((((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) ∧ 𝑥 ∈ ℂ) ∧ (𝐴(abs ∘ − )𝑥) < (𝑎 / 2)) → (𝑥𝐴) ∈ ℂ)
4948abscld 14889 . . . . . . . . . . . . . . . . 17 ((((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) ∧ 𝑥 ∈ ℂ) ∧ (𝐴(abs ∘ − )𝑥) < (𝑎 / 2)) → (abs‘(𝑥𝐴)) ∈ ℝ)
5037, 47abs2difd 14910 . . . . . . . . . . . . . . . . 17 ((((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) ∧ 𝑥 ∈ ℂ) ∧ (𝐴(abs ∘ − )𝑥) < (𝑎 / 2)) → ((abs‘𝑥) − (abs‘𝐴)) ≤ (abs‘(𝑥𝐴)))
51 eqid 2739 . . . . . . . . . . . . . . . . . . . . 21 (abs ∘ − ) = (abs ∘ − )
5251cnmetdval 23526 . . . . . . . . . . . . . . . . . . . 20 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (𝐴(abs ∘ − )𝑥) = (abs‘(𝐴𝑥)))
5347, 37, 52syl2anc 587 . . . . . . . . . . . . . . . . . . 19 ((((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) ∧ 𝑥 ∈ ℂ) ∧ (𝐴(abs ∘ − )𝑥) < (𝑎 / 2)) → (𝐴(abs ∘ − )𝑥) = (abs‘(𝐴𝑥)))
5447, 37abssubd 14906 . . . . . . . . . . . . . . . . . . 19 ((((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) ∧ 𝑥 ∈ ℂ) ∧ (𝐴(abs ∘ − )𝑥) < (𝑎 / 2)) → (abs‘(𝐴𝑥)) = (abs‘(𝑥𝐴)))
5553, 54eqtrd 2774 . . . . . . . . . . . . . . . . . 18 ((((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) ∧ 𝑥 ∈ ℂ) ∧ (𝐴(abs ∘ − )𝑥) < (𝑎 / 2)) → (𝐴(abs ∘ − )𝑥) = (abs‘(𝑥𝐴)))
56 simpr 488 . . . . . . . . . . . . . . . . . 18 ((((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) ∧ 𝑥 ∈ ℂ) ∧ (𝐴(abs ∘ − )𝑥) < (𝑎 / 2)) → (𝐴(abs ∘ − )𝑥) < (𝑎 / 2))
5755, 56eqbrtrrd 5055 . . . . . . . . . . . . . . . . 17 ((((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) ∧ 𝑥 ∈ ℂ) ∧ (𝐴(abs ∘ − )𝑥) < (𝑎 / 2)) → (abs‘(𝑥𝐴)) < (𝑎 / 2))
5844, 49, 46, 50, 57lelttrd 10879 . . . . . . . . . . . . . . . 16 ((((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) ∧ 𝑥 ∈ ℂ) ∧ (𝐴(abs ∘ − )𝑥) < (𝑎 / 2)) → ((abs‘𝑥) − (abs‘𝐴)) < (𝑎 / 2))
5932ad2antrr 726 . . . . . . . . . . . . . . . . 17 ((((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) ∧ 𝑥 ∈ ℂ) ∧ (𝐴(abs ∘ − )𝑥) < (𝑎 / 2)) → 𝑎 ∈ ℝ+)
60 rphalflt 12504 . . . . . . . . . . . . . . . . 17 (𝑎 ∈ ℝ+ → (𝑎 / 2) < 𝑎)
6159, 60syl 17 . . . . . . . . . . . . . . . 16 ((((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) ∧ 𝑥 ∈ ℂ) ∧ (𝐴(abs ∘ − )𝑥) < (𝑎 / 2)) → (𝑎 / 2) < 𝑎)
6244, 46, 45, 58, 61lttrd 10882 . . . . . . . . . . . . . . 15 ((((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) ∧ 𝑥 ∈ ℂ) ∧ (𝐴(abs ∘ − )𝑥) < (𝑎 / 2)) → ((abs‘𝑥) − (abs‘𝐴)) < 𝑎)
6338, 43, 45ltsubadd2d 11319 . . . . . . . . . . . . . . 15 ((((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) ∧ 𝑥 ∈ ℂ) ∧ (𝐴(abs ∘ − )𝑥) < (𝑎 / 2)) → (((abs‘𝑥) − (abs‘𝐴)) < 𝑎 ↔ (abs‘𝑥) < ((abs‘𝐴) + 𝑎)))
6462, 63mpbid 235 . . . . . . . . . . . . . 14 ((((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) ∧ 𝑥 ∈ ℂ) ∧ (𝐴(abs ∘ − )𝑥) < (𝑎 / 2)) → (abs‘𝑥) < ((abs‘𝐴) + 𝑎))
65 2rp 12480 . . . . . . . . . . . . . . . . 17 2 ∈ ℝ+
6665a1i 11 . . . . . . . . . . . . . . . 16 ((((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) ∧ 𝑥 ∈ ℂ) ∧ (𝐴(abs ∘ − )𝑥) < (𝑎 / 2)) → 2 ∈ ℝ+)
6766, 59rpdivcld 12534 . . . . . . . . . . . . . . 15 ((((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) ∧ 𝑥 ∈ ℂ) ∧ (𝐴(abs ∘ − )𝑥) < (𝑎 / 2)) → (2 / 𝑎) ∈ ℝ+)
6842, 67ltaddrpd 12550 . . . . . . . . . . . . . 14 ((((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) ∧ 𝑥 ∈ ℂ) ∧ (𝐴(abs ∘ − )𝑥) < (𝑎 / 2)) → ((abs‘𝐴) + 𝑎) < (((abs‘𝐴) + 𝑎) + (2 / 𝑎)))
6938, 42, 41, 64, 68lttrd 10882 . . . . . . . . . . . . 13 ((((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) ∧ 𝑥 ∈ ℂ) ∧ (𝐴(abs ∘ − )𝑥) < (𝑎 / 2)) → (abs‘𝑥) < (((abs‘𝐴) + 𝑎) + (2 / 𝑎)))
70 simpllr 776 . . . . . . . . . . . . 13 ((((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) ∧ 𝑥 ∈ ℂ) ∧ (𝐴(abs ∘ − )𝑥) < (𝑎 / 2)) → (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟)
7138, 41, 40, 69, 70lttrd 10882 . . . . . . . . . . . 12 ((((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) ∧ 𝑥 ∈ ℂ) ∧ (𝐴(abs ∘ − )𝑥) < (𝑎 / 2)) → (abs‘𝑥) < 𝑟)
7238, 40, 71ltled 10869 . . . . . . . . . . 11 ((((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) ∧ 𝑥 ∈ ℂ) ∧ (𝐴(abs ∘ − )𝑥) < (𝑎 / 2)) → (abs‘𝑥) ≤ 𝑟)
7339adantr 484 . . . . . . . . . . . . . 14 (((((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) ∧ 𝑥 ∈ ℂ) ∧ (𝐴(abs ∘ − )𝑥) < (𝑎 / 2)) ∧ 𝑘 ∈ ℕ0) → 𝑟 ∈ ℕ)
7473nnrecred 11770 . . . . . . . . . . . . 13 (((((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) ∧ 𝑥 ∈ ℂ) ∧ (𝐴(abs ∘ − )𝑥) < (𝑎 / 2)) ∧ 𝑘 ∈ ℕ0) → (1 / 𝑟) ∈ ℝ)
75 simpllr 776 . . . . . . . . . . . . . . 15 (((((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) ∧ 𝑥 ∈ ℂ) ∧ (𝐴(abs ∘ − )𝑥) < (𝑎 / 2)) ∧ 𝑘 ∈ ℕ0) → 𝑥 ∈ ℂ)
76 simpr 488 . . . . . . . . . . . . . . . 16 (((((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) ∧ 𝑥 ∈ ℂ) ∧ (𝐴(abs ∘ − )𝑥) < (𝑎 / 2)) ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈ ℕ0)
7776nn0cnd 12041 . . . . . . . . . . . . . . 15 (((((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) ∧ 𝑥 ∈ ℂ) ∧ (𝐴(abs ∘ − )𝑥) < (𝑎 / 2)) ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈ ℂ)
7875, 77addcld 10741 . . . . . . . . . . . . . 14 (((((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) ∧ 𝑥 ∈ ℂ) ∧ (𝐴(abs ∘ − )𝑥) < (𝑎 / 2)) ∧ 𝑘 ∈ ℕ0) → (𝑥 + 𝑘) ∈ ℂ)
7978abscld 14889 . . . . . . . . . . . . 13 (((((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) ∧ 𝑥 ∈ ℂ) ∧ (𝐴(abs ∘ − )𝑥) < (𝑎 / 2)) ∧ 𝑘 ∈ ℕ0) → (abs‘(𝑥 + 𝑘)) ∈ ℝ)
8046adantr 484 . . . . . . . . . . . . . 14 (((((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) ∧ 𝑥 ∈ ℂ) ∧ (𝐴(abs ∘ − )𝑥) < (𝑎 / 2)) ∧ 𝑘 ∈ ℕ0) → (𝑎 / 2) ∈ ℝ)
8122ad5antr 734 . . . . . . . . . . . . . . . . 17 (((((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) ∧ 𝑥 ∈ ℂ) ∧ (𝐴(abs ∘ − )𝑥) < (𝑎 / 2)) ∧ 𝑘 ∈ ℕ0) → (2 / 𝑎) ∈ ℝ)
8241adantr 484 . . . . . . . . . . . . . . . . 17 (((((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) ∧ 𝑥 ∈ ℂ) ∧ (𝐴(abs ∘ − )𝑥) < (𝑎 / 2)) ∧ 𝑘 ∈ ℕ0) → (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) ∈ ℝ)
8340adantr 484 . . . . . . . . . . . . . . . . 17 (((((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) ∧ 𝑥 ∈ ℂ) ∧ (𝐴(abs ∘ − )𝑥) < (𝑎 / 2)) ∧ 𝑘 ∈ ℕ0) → 𝑟 ∈ ℝ)
8447adantr 484 . . . . . . . . . . . . . . . . . . . 20 (((((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) ∧ 𝑥 ∈ ℂ) ∧ (𝐴(abs ∘ − )𝑥) < (𝑎 / 2)) ∧ 𝑘 ∈ ℕ0) → 𝐴 ∈ ℂ)
8510ad6antr 736 . . . . . . . . . . . . . . . . . . . . 21 (((((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) ∧ 𝑥 ∈ ℂ) ∧ (𝐴(abs ∘ − )𝑥) < (𝑎 / 2)) ∧ 𝑘 ∈ ℕ0) → 𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ)))
8685dmgmn0 25766 . . . . . . . . . . . . . . . . . . . 20 (((((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) ∧ 𝑥 ∈ ℂ) ∧ (𝐴(abs ∘ − )𝑥) < (𝑎 / 2)) ∧ 𝑘 ∈ ℕ0) → 𝐴 ≠ 0)
8784, 86absrpcld 14901 . . . . . . . . . . . . . . . . . . 19 (((((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) ∧ 𝑥 ∈ ℂ) ∧ (𝐴(abs ∘ − )𝑥) < (𝑎 / 2)) ∧ 𝑘 ∈ ℕ0) → (abs‘𝐴) ∈ ℝ+)
8859adantr 484 . . . . . . . . . . . . . . . . . . 19 (((((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) ∧ 𝑥 ∈ ℂ) ∧ (𝐴(abs ∘ − )𝑥) < (𝑎 / 2)) ∧ 𝑘 ∈ ℕ0) → 𝑎 ∈ ℝ+)
8987, 88rpaddcld 12532 . . . . . . . . . . . . . . . . . 18 (((((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) ∧ 𝑥 ∈ ℂ) ∧ (𝐴(abs ∘ − )𝑥) < (𝑎 / 2)) ∧ 𝑘 ∈ ℕ0) → ((abs‘𝐴) + 𝑎) ∈ ℝ+)
9081, 89ltaddrp2d 12551 . . . . . . . . . . . . . . . . 17 (((((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) ∧ 𝑥 ∈ ℂ) ∧ (𝐴(abs ∘ − )𝑥) < (𝑎 / 2)) ∧ 𝑘 ∈ ℕ0) → (2 / 𝑎) < (((abs‘𝐴) + 𝑎) + (2 / 𝑎)))
91 simp-4r 784 . . . . . . . . . . . . . . . . 17 (((((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) ∧ 𝑥 ∈ ℂ) ∧ (𝐴(abs ∘ − )𝑥) < (𝑎 / 2)) ∧ 𝑘 ∈ ℕ0) → (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟)
9281, 82, 83, 90, 91lttrd 10882 . . . . . . . . . . . . . . . 16 (((((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) ∧ 𝑥 ∈ ℂ) ∧ (𝐴(abs ∘ − )𝑥) < (𝑎 / 2)) ∧ 𝑘 ∈ ℕ0) → (2 / 𝑎) < 𝑟)
9367adantr 484 . . . . . . . . . . . . . . . . 17 (((((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) ∧ 𝑥 ∈ ℂ) ∧ (𝐴(abs ∘ − )𝑥) < (𝑎 / 2)) ∧ 𝑘 ∈ ℕ0) → (2 / 𝑎) ∈ ℝ+)
9473nnrpd 12515 . . . . . . . . . . . . . . . . 17 (((((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) ∧ 𝑥 ∈ ℂ) ∧ (𝐴(abs ∘ − )𝑥) < (𝑎 / 2)) ∧ 𝑘 ∈ ℕ0) → 𝑟 ∈ ℝ+)
9593, 94ltrecd 12535 . . . . . . . . . . . . . . . 16 (((((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) ∧ 𝑥 ∈ ℂ) ∧ (𝐴(abs ∘ − )𝑥) < (𝑎 / 2)) ∧ 𝑘 ∈ ℕ0) → ((2 / 𝑎) < 𝑟 ↔ (1 / 𝑟) < (1 / (2 / 𝑎))))
9692, 95mpbid 235 . . . . . . . . . . . . . . 15 (((((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) ∧ 𝑥 ∈ ℂ) ∧ (𝐴(abs ∘ − )𝑥) < (𝑎 / 2)) ∧ 𝑘 ∈ ℕ0) → (1 / 𝑟) < (1 / (2 / 𝑎)))
97 2cnd 11797 . . . . . . . . . . . . . . . 16 (((((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) ∧ 𝑥 ∈ ℂ) ∧ (𝐴(abs ∘ − )𝑥) < (𝑎 / 2)) ∧ 𝑘 ∈ ℕ0) → 2 ∈ ℂ)
9888rpcnd 12519 . . . . . . . . . . . . . . . 16 (((((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) ∧ 𝑥 ∈ ℂ) ∧ (𝐴(abs ∘ − )𝑥) < (𝑎 / 2)) ∧ 𝑘 ∈ ℕ0) → 𝑎 ∈ ℂ)
99 2ne0 11823 . . . . . . . . . . . . . . . . 17 2 ≠ 0
10099a1i 11 . . . . . . . . . . . . . . . 16 (((((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) ∧ 𝑥 ∈ ℂ) ∧ (𝐴(abs ∘ − )𝑥) < (𝑎 / 2)) ∧ 𝑘 ∈ ℕ0) → 2 ≠ 0)
10188rpne0d 12522 . . . . . . . . . . . . . . . 16 (((((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) ∧ 𝑥 ∈ ℂ) ∧ (𝐴(abs ∘ − )𝑥) < (𝑎 / 2)) ∧ 𝑘 ∈ ℕ0) → 𝑎 ≠ 0)
10297, 98, 100, 101recdivd 11514 . . . . . . . . . . . . . . 15 (((((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) ∧ 𝑥 ∈ ℂ) ∧ (𝐴(abs ∘ − )𝑥) < (𝑎 / 2)) ∧ 𝑘 ∈ ℕ0) → (1 / (2 / 𝑎)) = (𝑎 / 2))
10396, 102breqtrd 5057 . . . . . . . . . . . . . 14 (((((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) ∧ 𝑥 ∈ ℂ) ∧ (𝐴(abs ∘ − )𝑥) < (𝑎 / 2)) ∧ 𝑘 ∈ ℕ0) → (1 / 𝑟) < (𝑎 / 2))
104 eldmgm 25762 . . . . . . . . . . . . . . . . 17 (-𝑘 ∈ (ℂ ∖ (ℤ ∖ ℕ)) ↔ (-𝑘 ∈ ℂ ∧ ¬ --𝑘 ∈ ℕ0))
105104simprbi 500 . . . . . . . . . . . . . . . 16 (-𝑘 ∈ (ℂ ∖ (ℤ ∖ ℕ)) → ¬ --𝑘 ∈ ℕ0)
10677negnegd 11069 . . . . . . . . . . . . . . . . 17 (((((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) ∧ 𝑥 ∈ ℂ) ∧ (𝐴(abs ∘ − )𝑥) < (𝑎 / 2)) ∧ 𝑘 ∈ ℕ0) → --𝑘 = 𝑘)
107106, 76eqeltrd 2834 . . . . . . . . . . . . . . . 16 (((((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) ∧ 𝑥 ∈ ℂ) ∧ (𝐴(abs ∘ − )𝑥) < (𝑎 / 2)) ∧ 𝑘 ∈ ℕ0) → --𝑘 ∈ ℕ0)
108105, 107nsyl3 140 . . . . . . . . . . . . . . 15 (((((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) ∧ 𝑥 ∈ ℂ) ∧ (𝐴(abs ∘ − )𝑥) < (𝑎 / 2)) ∧ 𝑘 ∈ ℕ0) → ¬ -𝑘 ∈ (ℂ ∖ (ℤ ∖ ℕ)))
1091a1i 11 . . . . . . . . . . . . . . . . . 18 (((((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) ∧ 𝑥 ∈ ℂ) ∧ (𝐴(abs ∘ − )𝑥) < (𝑎 / 2)) ∧ 𝑘 ∈ ℕ0) → (abs ∘ − ) ∈ (∞Met‘ℂ))
11034ad3antrrr 730 . . . . . . . . . . . . . . . . . 18 (((((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) ∧ 𝑥 ∈ ℂ) ∧ (𝐴(abs ∘ − )𝑥) < (𝑎 / 2)) ∧ 𝑘 ∈ ℕ0) → (𝑎 / 2) ∈ ℝ*)
11177negcld 11065 . . . . . . . . . . . . . . . . . 18 (((((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) ∧ 𝑥 ∈ ℂ) ∧ (𝐴(abs ∘ − )𝑥) < (𝑎 / 2)) ∧ 𝑘 ∈ ℕ0) → -𝑘 ∈ ℂ)
112 elbl2 23146 . . . . . . . . . . . . . . . . . 18 ((((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ (𝑎 / 2) ∈ ℝ*) ∧ (𝑥 ∈ ℂ ∧ -𝑘 ∈ ℂ)) → (-𝑘 ∈ (𝑥(ball‘(abs ∘ − ))(𝑎 / 2)) ↔ (𝑥(abs ∘ − )-𝑘) < (𝑎 / 2)))
113109, 110, 75, 111, 112syl22anc 838 . . . . . . . . . . . . . . . . 17 (((((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) ∧ 𝑥 ∈ ℂ) ∧ (𝐴(abs ∘ − )𝑥) < (𝑎 / 2)) ∧ 𝑘 ∈ ℕ0) → (-𝑘 ∈ (𝑥(ball‘(abs ∘ − ))(𝑎 / 2)) ↔ (𝑥(abs ∘ − )-𝑘) < (𝑎 / 2)))
11451cnmetdval 23526 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 ∈ ℂ ∧ -𝑘 ∈ ℂ) → (𝑥(abs ∘ − )-𝑘) = (abs‘(𝑥 − -𝑘)))
11575, 111, 114syl2anc 587 . . . . . . . . . . . . . . . . . . 19 (((((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) ∧ 𝑥 ∈ ℂ) ∧ (𝐴(abs ∘ − )𝑥) < (𝑎 / 2)) ∧ 𝑘 ∈ ℕ0) → (𝑥(abs ∘ − )-𝑘) = (abs‘(𝑥 − -𝑘)))
11675, 77subnegd 11085 . . . . . . . . . . . . . . . . . . . 20 (((((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) ∧ 𝑥 ∈ ℂ) ∧ (𝐴(abs ∘ − )𝑥) < (𝑎 / 2)) ∧ 𝑘 ∈ ℕ0) → (𝑥 − -𝑘) = (𝑥 + 𝑘))
117116fveq2d 6681 . . . . . . . . . . . . . . . . . . 19 (((((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) ∧ 𝑥 ∈ ℂ) ∧ (𝐴(abs ∘ − )𝑥) < (𝑎 / 2)) ∧ 𝑘 ∈ ℕ0) → (abs‘(𝑥 − -𝑘)) = (abs‘(𝑥 + 𝑘)))
118115, 117eqtrd 2774 . . . . . . . . . . . . . . . . . 18 (((((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) ∧ 𝑥 ∈ ℂ) ∧ (𝐴(abs ∘ − )𝑥) < (𝑎 / 2)) ∧ 𝑘 ∈ ℕ0) → (𝑥(abs ∘ − )-𝑘) = (abs‘(𝑥 + 𝑘)))
119118breq1d 5041 . . . . . . . . . . . . . . . . 17 (((((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) ∧ 𝑥 ∈ ℂ) ∧ (𝐴(abs ∘ − )𝑥) < (𝑎 / 2)) ∧ 𝑘 ∈ ℕ0) → ((𝑥(abs ∘ − )-𝑘) < (𝑎 / 2) ↔ (abs‘(𝑥 + 𝑘)) < (𝑎 / 2)))
12079, 80ltnled 10868 . . . . . . . . . . . . . . . . 17 (((((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) ∧ 𝑥 ∈ ℂ) ∧ (𝐴(abs ∘ − )𝑥) < (𝑎 / 2)) ∧ 𝑘 ∈ ℕ0) → ((abs‘(𝑥 + 𝑘)) < (𝑎 / 2) ↔ ¬ (𝑎 / 2) ≤ (abs‘(𝑥 + 𝑘))))
121113, 119, 1203bitrd 308 . . . . . . . . . . . . . . . 16 (((((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) ∧ 𝑥 ∈ ℂ) ∧ (𝐴(abs ∘ − )𝑥) < (𝑎 / 2)) ∧ 𝑘 ∈ ℕ0) → (-𝑘 ∈ (𝑥(ball‘(abs ∘ − ))(𝑎 / 2)) ↔ ¬ (𝑎 / 2) ≤ (abs‘(𝑥 + 𝑘))))
12245adantr 484 . . . . . . . . . . . . . . . . . . 19 (((((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) ∧ 𝑥 ∈ ℂ) ∧ (𝐴(abs ∘ − )𝑥) < (𝑎 / 2)) ∧ 𝑘 ∈ ℕ0) → 𝑎 ∈ ℝ)
123 simplr 769 . . . . . . . . . . . . . . . . . . . 20 (((((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) ∧ 𝑥 ∈ ℂ) ∧ (𝐴(abs ∘ − )𝑥) < (𝑎 / 2)) ∧ 𝑘 ∈ ℕ0) → (𝐴(abs ∘ − )𝑥) < (𝑎 / 2))
124 elbl3 23148 . . . . . . . . . . . . . . . . . . . . 21 ((((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ (𝑎 / 2) ∈ ℝ*) ∧ (𝑥 ∈ ℂ ∧ 𝐴 ∈ ℂ)) → (𝐴 ∈ (𝑥(ball‘(abs ∘ − ))(𝑎 / 2)) ↔ (𝐴(abs ∘ − )𝑥) < (𝑎 / 2)))
125109, 110, 75, 84, 124syl22anc 838 . . . . . . . . . . . . . . . . . . . 20 (((((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) ∧ 𝑥 ∈ ℂ) ∧ (𝐴(abs ∘ − )𝑥) < (𝑎 / 2)) ∧ 𝑘 ∈ ℕ0) → (𝐴 ∈ (𝑥(ball‘(abs ∘ − ))(𝑎 / 2)) ↔ (𝐴(abs ∘ − )𝑥) < (𝑎 / 2)))
126123, 125mpbird 260 . . . . . . . . . . . . . . . . . . 19 (((((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) ∧ 𝑥 ∈ ℂ) ∧ (𝐴(abs ∘ − )𝑥) < (𝑎 / 2)) ∧ 𝑘 ∈ ℕ0) → 𝐴 ∈ (𝑥(ball‘(abs ∘ − ))(𝑎 / 2)))
127 blhalf 23161 . . . . . . . . . . . . . . . . . . 19 ((((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝑥 ∈ ℂ) ∧ (𝑎 ∈ ℝ ∧ 𝐴 ∈ (𝑥(ball‘(abs ∘ − ))(𝑎 / 2)))) → (𝑥(ball‘(abs ∘ − ))(𝑎 / 2)) ⊆ (𝐴(ball‘(abs ∘ − ))𝑎))
128109, 75, 122, 126, 127syl22anc 838 . . . . . . . . . . . . . . . . . 18 (((((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) ∧ 𝑥 ∈ ℂ) ∧ (𝐴(abs ∘ − )𝑥) < (𝑎 / 2)) ∧ 𝑘 ∈ ℕ0) → (𝑥(ball‘(abs ∘ − ))(𝑎 / 2)) ⊆ (𝐴(ball‘(abs ∘ − ))𝑎))
129 simprr 773 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) → (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))
130129ad5antr 734 . . . . . . . . . . . . . . . . . 18 (((((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) ∧ 𝑥 ∈ ℂ) ∧ (𝐴(abs ∘ − )𝑥) < (𝑎 / 2)) ∧ 𝑘 ∈ ℕ0) → (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))
131128, 130sstrd 3888 . . . . . . . . . . . . . . . . 17 (((((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) ∧ 𝑥 ∈ ℂ) ∧ (𝐴(abs ∘ − )𝑥) < (𝑎 / 2)) ∧ 𝑘 ∈ ℕ0) → (𝑥(ball‘(abs ∘ − ))(𝑎 / 2)) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))
132131sseld 3877 . . . . . . . . . . . . . . . 16 (((((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) ∧ 𝑥 ∈ ℂ) ∧ (𝐴(abs ∘ − )𝑥) < (𝑎 / 2)) ∧ 𝑘 ∈ ℕ0) → (-𝑘 ∈ (𝑥(ball‘(abs ∘ − ))(𝑎 / 2)) → -𝑘 ∈ (ℂ ∖ (ℤ ∖ ℕ))))
133121, 132sylbird 263 . . . . . . . . . . . . . . 15 (((((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) ∧ 𝑥 ∈ ℂ) ∧ (𝐴(abs ∘ − )𝑥) < (𝑎 / 2)) ∧ 𝑘 ∈ ℕ0) → (¬ (𝑎 / 2) ≤ (abs‘(𝑥 + 𝑘)) → -𝑘 ∈ (ℂ ∖ (ℤ ∖ ℕ))))
134108, 133mt3d 150 . . . . . . . . . . . . . 14 (((((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) ∧ 𝑥 ∈ ℂ) ∧ (𝐴(abs ∘ − )𝑥) < (𝑎 / 2)) ∧ 𝑘 ∈ ℕ0) → (𝑎 / 2) ≤ (abs‘(𝑥 + 𝑘)))
13574, 80, 79, 103, 134ltletrd 10881 . . . . . . . . . . . . 13 (((((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) ∧ 𝑥 ∈ ℂ) ∧ (𝐴(abs ∘ − )𝑥) < (𝑎 / 2)) ∧ 𝑘 ∈ ℕ0) → (1 / 𝑟) < (abs‘(𝑥 + 𝑘)))
13674, 79, 135ltled 10869 . . . . . . . . . . . 12 (((((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) ∧ 𝑥 ∈ ℂ) ∧ (𝐴(abs ∘ − )𝑥) < (𝑎 / 2)) ∧ 𝑘 ∈ ℕ0) → (1 / 𝑟) ≤ (abs‘(𝑥 + 𝑘)))
137136ralrimiva 3097 . . . . . . . . . . 11 ((((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) ∧ 𝑥 ∈ ℂ) ∧ (𝐴(abs ∘ − )𝑥) < (𝑎 / 2)) → ∀𝑘 ∈ ℕ0 (1 / 𝑟) ≤ (abs‘(𝑥 + 𝑘)))
13872, 137jca 515 . . . . . . . . . 10 ((((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) ∧ 𝑥 ∈ ℂ) ∧ (𝐴(abs ∘ − )𝑥) < (𝑎 / 2)) → ((abs‘𝑥) ≤ 𝑟 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑟) ≤ (abs‘(𝑥 + 𝑘))))
139138ex 416 . . . . . . . . 9 (((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) ∧ 𝑥 ∈ ℂ) → ((𝐴(abs ∘ − )𝑥) < (𝑎 / 2) → ((abs‘𝑥) ≤ 𝑟 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑟) ≤ (abs‘(𝑥 + 𝑘)))))
140139ss2rabdv 3966 . . . . . . . 8 ((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) → {𝑥 ∈ ℂ ∣ (𝐴(abs ∘ − )𝑥) < (𝑎 / 2)} ⊆ {𝑥 ∈ ℂ ∣ ((abs‘𝑥) ≤ 𝑟 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑟) ≤ (abs‘(𝑥 + 𝑘)))})
141 blval 23142 . . . . . . . . 9 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝐴 ∈ ℂ ∧ (𝑎 / 2) ∈ ℝ*) → (𝐴(ball‘(abs ∘ − ))(𝑎 / 2)) = {𝑥 ∈ ℂ ∣ (𝐴(abs ∘ − )𝑥) < (𝑎 / 2)})
1421, 31, 34, 141mp3an2i 1467 . . . . . . . 8 ((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) → (𝐴(ball‘(abs ∘ − ))(𝑎 / 2)) = {𝑥 ∈ ℂ ∣ (𝐴(abs ∘ − )𝑥) < (𝑎 / 2)})
14328a1i 11 . . . . . . . 8 ((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) → 𝑈 = {𝑥 ∈ ℂ ∣ ((abs‘𝑥) ≤ 𝑟 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑟) ≤ (abs‘(𝑥 + 𝑘)))})
144140, 142, 1433sstr4d 3925 . . . . . . 7 ((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) → (𝐴(ball‘(abs ∘ − ))(𝑎 / 2)) ⊆ 𝑈)
1456ssntr 21812 . . . . . . 7 (((𝐽 ∈ Top ∧ 𝑈 ⊆ ℂ) ∧ ((𝐴(ball‘(abs ∘ − ))(𝑎 / 2)) ∈ 𝐽 ∧ (𝐴(ball‘(abs ∘ − ))(𝑎 / 2)) ⊆ 𝑈)) → (𝐴(ball‘(abs ∘ − ))(𝑎 / 2)) ⊆ ((int‘𝐽)‘𝑈))
14627, 30, 36, 144, 145syl22anc 838 . . . . . 6 ((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) → (𝐴(ball‘(abs ∘ − ))(𝑎 / 2)) ⊆ ((int‘𝐽)‘𝑈))
147 blcntr 23169 . . . . . . 7 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝐴 ∈ ℂ ∧ (𝑎 / 2) ∈ ℝ+) → 𝐴 ∈ (𝐴(ball‘(abs ∘ − ))(𝑎 / 2)))
1481, 31, 33, 147mp3an2i 1467 . . . . . 6 ((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) → 𝐴 ∈ (𝐴(ball‘(abs ∘ − ))(𝑎 / 2)))
149146, 148sseldd 3879 . . . . 5 ((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) → 𝐴 ∈ ((int‘𝐽)‘𝑈))
150149ex 416 . . . 4 (((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) → ((((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟𝐴 ∈ ((int‘𝐽)‘𝑈)))
151150reximdva 3185 . . 3 ((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) → (∃𝑟 ∈ ℕ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟 → ∃𝑟 ∈ ℕ 𝐴 ∈ ((int‘𝐽)‘𝑈)))
15225, 151mpd 15 . 2 ((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) → ∃𝑟 ∈ ℕ 𝐴 ∈ ((int‘𝐽)‘𝑈))
15313, 152rexlimddv 3202 1 (𝜑 → ∃𝑟 ∈ ℕ 𝐴 ∈ ((int‘𝐽)‘𝑈))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399   = wceq 1542  wcel 2114  wne 2935  wral 3054  wrex 3055  {crab 3058  cdif 3841  wss 3844   class class class wbr 5031  ccom 5530  cfv 6340  (class class class)co 7173  cc 10616  cr 10617  0cc0 10618  1c1 10619   + caddc 10621  *cxr 10755   < clt 10756  cle 10757  cmin 10951  -cneg 10952   / cdiv 11378  cn 11719  2c2 11774  0cn0 11979  cz 12065  +crp 12475  abscabs 14686  TopOpenctopn 16801  ∞Metcxmet 20205  ballcbl 20207  fldccnfld 20220  Topctop 21647  Clsdccld 21770  intcnt 21771
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2711  ax-rep 5155  ax-sep 5168  ax-nul 5175  ax-pow 5233  ax-pr 5297  ax-un 7482  ax-cnex 10674  ax-resscn 10675  ax-1cn 10676  ax-icn 10677  ax-addcl 10678  ax-addrcl 10679  ax-mulcl 10680  ax-mulrcl 10681  ax-mulcom 10682  ax-addass 10683  ax-mulass 10684  ax-distr 10685  ax-i2m1 10686  ax-1ne0 10687  ax-1rid 10688  ax-rnegex 10689  ax-rrecex 10690  ax-cnre 10691  ax-pre-lttri 10692  ax-pre-lttrn 10693  ax-pre-ltadd 10694  ax-pre-mulgt0 10695  ax-pre-sup 10696
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2541  df-eu 2571  df-clab 2718  df-cleq 2731  df-clel 2812  df-nfc 2882  df-ne 2936  df-nel 3040  df-ral 3059  df-rex 3060  df-reu 3061  df-rmo 3062  df-rab 3063  df-v 3401  df-sbc 3682  df-csb 3792  df-dif 3847  df-un 3849  df-in 3851  df-ss 3861  df-pss 3863  df-nul 4213  df-if 4416  df-pw 4491  df-sn 4518  df-pr 4520  df-tp 4522  df-op 4524  df-uni 4798  df-int 4838  df-iun 4884  df-iin 4885  df-br 5032  df-opab 5094  df-mpt 5112  df-tr 5138  df-id 5430  df-eprel 5435  df-po 5443  df-so 5444  df-fr 5484  df-we 5486  df-xp 5532  df-rel 5533  df-cnv 5534  df-co 5535  df-dm 5536  df-rn 5537  df-res 5538  df-ima 5539  df-pred 6130  df-ord 6176  df-on 6177  df-lim 6178  df-suc 6179  df-iota 6298  df-fun 6342  df-fn 6343  df-f 6344  df-f1 6345  df-fo 6346  df-f1o 6347  df-fv 6348  df-riota 7130  df-ov 7176  df-oprab 7177  df-mpo 7178  df-om 7603  df-1st 7717  df-2nd 7718  df-wrecs 7979  df-recs 8040  df-rdg 8078  df-1o 8134  df-er 8323  df-map 8442  df-en 8559  df-dom 8560  df-sdom 8561  df-fin 8562  df-fi 8951  df-sup 8982  df-inf 8983  df-pnf 10758  df-mnf 10759  df-xr 10760  df-ltxr 10761  df-le 10762  df-sub 10953  df-neg 10954  df-div 11379  df-nn 11720  df-2 11782  df-3 11783  df-4 11784  df-5 11785  df-6 11786  df-7 11787  df-8 11788  df-9 11789  df-n0 11980  df-z 12066  df-dec 12183  df-uz 12328  df-q 12434  df-rp 12476  df-xneg 12593  df-xadd 12594  df-xmul 12595  df-ioo 12828  df-fz 12985  df-fl 13256  df-seq 13464  df-exp 13525  df-cj 14551  df-re 14552  df-im 14553  df-sqrt 14687  df-abs 14688  df-struct 16591  df-ndx 16592  df-slot 16593  df-base 16595  df-plusg 16684  df-mulr 16685  df-starv 16686  df-tset 16690  df-ple 16691  df-ds 16693  df-unif 16694  df-rest 16802  df-topn 16803  df-topgen 16823  df-psmet 20212  df-xmet 20213  df-met 20214  df-bl 20215  df-mopn 20216  df-cnfld 20221  df-top 21648  df-topon 21665  df-topsp 21687  df-bases 21700  df-cld 21773  df-ntr 21774  df-xms 23076  df-ms 23077
This theorem is referenced by:  lgamucov2  25779
  Copyright terms: Public domain W3C validator