MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lgamucov Structured version   Visualization version   GIF version

Theorem lgamucov 24977
Description: The 𝑈 regions used in the proof of lgamgulm 24974 have interiors which cover the entire domain of the Gamma function. (Contributed by Mario Carneiro, 6-Jul-2017.)
Hypotheses
Ref Expression
lgamucov.u 𝑈 = {𝑥 ∈ ℂ ∣ ((abs‘𝑥) ≤ 𝑟 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑟) ≤ (abs‘(𝑥 + 𝑘)))}
lgamucov.a (𝜑𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ)))
lgamucov.j 𝐽 = (TopOpen‘ℂfld)
Assertion
Ref Expression
lgamucov (𝜑 → ∃𝑟 ∈ ℕ 𝐴 ∈ ((int‘𝐽)‘𝑈))
Distinct variable groups:   𝑘,𝑟,𝑥,𝐴   𝜑,𝑘,𝑟,𝑥
Allowed substitution hints:   𝑈(𝑥,𝑘,𝑟)   𝐽(𝑥,𝑘,𝑟)

Proof of Theorem lgamucov
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 cnxmet 22786 . . . 4 (abs ∘ − ) ∈ (∞Met‘ℂ)
21a1i 11 . . 3 (𝜑 → (abs ∘ − ) ∈ (∞Met‘ℂ))
3 difss 3936 . . . . 5 (ℤ ∖ ℕ) ⊆ ℤ
4 lgamucov.j . . . . . 6 𝐽 = (TopOpen‘ℂfld)
54sszcld 22830 . . . . 5 ((ℤ ∖ ℕ) ⊆ ℤ → (ℤ ∖ ℕ) ∈ (Clsd‘𝐽))
64cnfldtopon 22796 . . . . . . 7 𝐽 ∈ (TopOn‘ℂ)
76toponunii 20931 . . . . . 6 ℂ = 𝐽
87cldopn 21046 . . . . 5 ((ℤ ∖ ℕ) ∈ (Clsd‘𝐽) → (ℂ ∖ (ℤ ∖ ℕ)) ∈ 𝐽)
93, 5, 8mp2b 10 . . . 4 (ℂ ∖ (ℤ ∖ ℕ)) ∈ 𝐽
109a1i 11 . . 3 (𝜑 → (ℂ ∖ (ℤ ∖ ℕ)) ∈ 𝐽)
11 lgamucov.a . . 3 (𝜑𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ)))
124cnfldtopn 22795 . . . 4 𝐽 = (MetOpen‘(abs ∘ − ))
1312mopni2 22508 . . 3 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ (ℂ ∖ (ℤ ∖ ℕ)) ∈ 𝐽𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ))) → ∃𝑎 ∈ ℝ+ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))
142, 10, 11, 13syl3anc 1483 . 2 (𝜑 → ∃𝑎 ∈ ℝ+ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))
1511eldifad 3781 . . . . . . . 8 (𝜑𝐴 ∈ ℂ)
1615adantr 468 . . . . . . 7 ((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) → 𝐴 ∈ ℂ)
1716abscld 14394 . . . . . 6 ((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) → (abs‘𝐴) ∈ ℝ)
18 simprl 778 . . . . . . 7 ((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) → 𝑎 ∈ ℝ+)
1918rpred 12082 . . . . . 6 ((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) → 𝑎 ∈ ℝ)
2017, 19readdcld 10350 . . . . 5 ((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) → ((abs‘𝐴) + 𝑎) ∈ ℝ)
21 2re 11370 . . . . . . 7 2 ∈ ℝ
2221a1i 11 . . . . . 6 ((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) → 2 ∈ ℝ)
2322, 18rerpdivcld 12113 . . . . 5 ((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) → (2 / 𝑎) ∈ ℝ)
2420, 23readdcld 10350 . . . 4 ((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) → (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) ∈ ℝ)
25 arch 11552 . . . 4 ((((abs‘𝐴) + 𝑎) + (2 / 𝑎)) ∈ ℝ → ∃𝑟 ∈ ℕ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟)
2624, 25syl 17 . . 3 ((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) → ∃𝑟 ∈ ℕ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟)
274cnfldtop 22797 . . . . . . . 8 𝐽 ∈ Top
2827a1i 11 . . . . . . 7 ((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) → 𝐽 ∈ Top)
29 lgamucov.u . . . . . . . . 9 𝑈 = {𝑥 ∈ ℂ ∣ ((abs‘𝑥) ≤ 𝑟 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑟) ≤ (abs‘(𝑥 + 𝑘)))}
30 ssrab2 3884 . . . . . . . . 9 {𝑥 ∈ ℂ ∣ ((abs‘𝑥) ≤ 𝑟 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑟) ≤ (abs‘(𝑥 + 𝑘)))} ⊆ ℂ
3129, 30eqsstri 3832 . . . . . . . 8 𝑈 ⊆ ℂ
3231a1i 11 . . . . . . 7 ((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) → 𝑈 ⊆ ℂ)
331a1i 11 . . . . . . . 8 ((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) → (abs ∘ − ) ∈ (∞Met‘ℂ))
3416ad2antrr 708 . . . . . . . 8 ((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) → 𝐴 ∈ ℂ)
3518ad2antrr 708 . . . . . . . . . 10 ((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) → 𝑎 ∈ ℝ+)
3635rphalfcld 12094 . . . . . . . . 9 ((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) → (𝑎 / 2) ∈ ℝ+)
3736rpxrd 12083 . . . . . . . 8 ((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) → (𝑎 / 2) ∈ ℝ*)
3812blopn 22515 . . . . . . . 8 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝐴 ∈ ℂ ∧ (𝑎 / 2) ∈ ℝ*) → (𝐴(ball‘(abs ∘ − ))(𝑎 / 2)) ∈ 𝐽)
3933, 34, 37, 38syl3anc 1483 . . . . . . 7 ((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) → (𝐴(ball‘(abs ∘ − ))(𝑎 / 2)) ∈ 𝐽)
40 simplr 776 . . . . . . . . . . . . 13 ((((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) ∧ 𝑥 ∈ ℂ) ∧ (𝐴(abs ∘ − )𝑥) < (𝑎 / 2)) → 𝑥 ∈ ℂ)
4140abscld 14394 . . . . . . . . . . . 12 ((((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) ∧ 𝑥 ∈ ℂ) ∧ (𝐴(abs ∘ − )𝑥) < (𝑎 / 2)) → (abs‘𝑥) ∈ ℝ)
42 simp-4r 794 . . . . . . . . . . . . 13 ((((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) ∧ 𝑥 ∈ ℂ) ∧ (𝐴(abs ∘ − )𝑥) < (𝑎 / 2)) → 𝑟 ∈ ℕ)
4342nnred 11316 . . . . . . . . . . . 12 ((((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) ∧ 𝑥 ∈ ℂ) ∧ (𝐴(abs ∘ − )𝑥) < (𝑎 / 2)) → 𝑟 ∈ ℝ)
4424ad4antr 715 . . . . . . . . . . . . 13 ((((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) ∧ 𝑥 ∈ ℂ) ∧ (𝐴(abs ∘ − )𝑥) < (𝑎 / 2)) → (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) ∈ ℝ)
4520ad4antr 715 . . . . . . . . . . . . . 14 ((((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) ∧ 𝑥 ∈ ℂ) ∧ (𝐴(abs ∘ − )𝑥) < (𝑎 / 2)) → ((abs‘𝐴) + 𝑎) ∈ ℝ)
4617ad4antr 715 . . . . . . . . . . . . . . . . 17 ((((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) ∧ 𝑥 ∈ ℂ) ∧ (𝐴(abs ∘ − )𝑥) < (𝑎 / 2)) → (abs‘𝐴) ∈ ℝ)
4741, 46resubcld 10739 . . . . . . . . . . . . . . . 16 ((((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) ∧ 𝑥 ∈ ℂ) ∧ (𝐴(abs ∘ − )𝑥) < (𝑎 / 2)) → ((abs‘𝑥) − (abs‘𝐴)) ∈ ℝ)
4819ad4antr 715 . . . . . . . . . . . . . . . . 17 ((((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) ∧ 𝑥 ∈ ℂ) ∧ (𝐴(abs ∘ − )𝑥) < (𝑎 / 2)) → 𝑎 ∈ ℝ)
4948rehalfcld 11542 . . . . . . . . . . . . . . . 16 ((((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) ∧ 𝑥 ∈ ℂ) ∧ (𝐴(abs ∘ − )𝑥) < (𝑎 / 2)) → (𝑎 / 2) ∈ ℝ)
5034ad2antrr 708 . . . . . . . . . . . . . . . . . . 19 ((((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) ∧ 𝑥 ∈ ℂ) ∧ (𝐴(abs ∘ − )𝑥) < (𝑎 / 2)) → 𝐴 ∈ ℂ)
5140, 50subcld 10673 . . . . . . . . . . . . . . . . . 18 ((((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) ∧ 𝑥 ∈ ℂ) ∧ (𝐴(abs ∘ − )𝑥) < (𝑎 / 2)) → (𝑥𝐴) ∈ ℂ)
5251abscld 14394 . . . . . . . . . . . . . . . . 17 ((((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) ∧ 𝑥 ∈ ℂ) ∧ (𝐴(abs ∘ − )𝑥) < (𝑎 / 2)) → (abs‘(𝑥𝐴)) ∈ ℝ)
5340, 50abs2difd 14415 . . . . . . . . . . . . . . . . 17 ((((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) ∧ 𝑥 ∈ ℂ) ∧ (𝐴(abs ∘ − )𝑥) < (𝑎 / 2)) → ((abs‘𝑥) − (abs‘𝐴)) ≤ (abs‘(𝑥𝐴)))
54 eqid 2806 . . . . . . . . . . . . . . . . . . . . 21 (abs ∘ − ) = (abs ∘ − )
5554cnmetdval 22784 . . . . . . . . . . . . . . . . . . . 20 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (𝐴(abs ∘ − )𝑥) = (abs‘(𝐴𝑥)))
5650, 40, 55syl2anc 575 . . . . . . . . . . . . . . . . . . 19 ((((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) ∧ 𝑥 ∈ ℂ) ∧ (𝐴(abs ∘ − )𝑥) < (𝑎 / 2)) → (𝐴(abs ∘ − )𝑥) = (abs‘(𝐴𝑥)))
5750, 40abssubd 14411 . . . . . . . . . . . . . . . . . . 19 ((((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) ∧ 𝑥 ∈ ℂ) ∧ (𝐴(abs ∘ − )𝑥) < (𝑎 / 2)) → (abs‘(𝐴𝑥)) = (abs‘(𝑥𝐴)))
5856, 57eqtrd 2840 . . . . . . . . . . . . . . . . . 18 ((((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) ∧ 𝑥 ∈ ℂ) ∧ (𝐴(abs ∘ − )𝑥) < (𝑎 / 2)) → (𝐴(abs ∘ − )𝑥) = (abs‘(𝑥𝐴)))
59 simpr 473 . . . . . . . . . . . . . . . . . 18 ((((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) ∧ 𝑥 ∈ ℂ) ∧ (𝐴(abs ∘ − )𝑥) < (𝑎 / 2)) → (𝐴(abs ∘ − )𝑥) < (𝑎 / 2))
6058, 59eqbrtrrd 4868 . . . . . . . . . . . . . . . . 17 ((((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) ∧ 𝑥 ∈ ℂ) ∧ (𝐴(abs ∘ − )𝑥) < (𝑎 / 2)) → (abs‘(𝑥𝐴)) < (𝑎 / 2))
6147, 52, 49, 53, 60lelttrd 10476 . . . . . . . . . . . . . . . 16 ((((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) ∧ 𝑥 ∈ ℂ) ∧ (𝐴(abs ∘ − )𝑥) < (𝑎 / 2)) → ((abs‘𝑥) − (abs‘𝐴)) < (𝑎 / 2))
6235ad2antrr 708 . . . . . . . . . . . . . . . . 17 ((((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) ∧ 𝑥 ∈ ℂ) ∧ (𝐴(abs ∘ − )𝑥) < (𝑎 / 2)) → 𝑎 ∈ ℝ+)
63 rphalflt 12070 . . . . . . . . . . . . . . . . 17 (𝑎 ∈ ℝ+ → (𝑎 / 2) < 𝑎)
6462, 63syl 17 . . . . . . . . . . . . . . . 16 ((((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) ∧ 𝑥 ∈ ℂ) ∧ (𝐴(abs ∘ − )𝑥) < (𝑎 / 2)) → (𝑎 / 2) < 𝑎)
6547, 49, 48, 61, 64lttrd 10479 . . . . . . . . . . . . . . 15 ((((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) ∧ 𝑥 ∈ ℂ) ∧ (𝐴(abs ∘ − )𝑥) < (𝑎 / 2)) → ((abs‘𝑥) − (abs‘𝐴)) < 𝑎)
6641, 46, 48ltsubadd2d 10906 . . . . . . . . . . . . . . 15 ((((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) ∧ 𝑥 ∈ ℂ) ∧ (𝐴(abs ∘ − )𝑥) < (𝑎 / 2)) → (((abs‘𝑥) − (abs‘𝐴)) < 𝑎 ↔ (abs‘𝑥) < ((abs‘𝐴) + 𝑎)))
6765, 66mpbid 223 . . . . . . . . . . . . . 14 ((((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) ∧ 𝑥 ∈ ℂ) ∧ (𝐴(abs ∘ − )𝑥) < (𝑎 / 2)) → (abs‘𝑥) < ((abs‘𝐴) + 𝑎))
68 2rp 12047 . . . . . . . . . . . . . . . . 17 2 ∈ ℝ+
6968a1i 11 . . . . . . . . . . . . . . . 16 ((((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) ∧ 𝑥 ∈ ℂ) ∧ (𝐴(abs ∘ − )𝑥) < (𝑎 / 2)) → 2 ∈ ℝ+)
7069, 62rpdivcld 12099 . . . . . . . . . . . . . . 15 ((((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) ∧ 𝑥 ∈ ℂ) ∧ (𝐴(abs ∘ − )𝑥) < (𝑎 / 2)) → (2 / 𝑎) ∈ ℝ+)
7145, 70ltaddrpd 12115 . . . . . . . . . . . . . 14 ((((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) ∧ 𝑥 ∈ ℂ) ∧ (𝐴(abs ∘ − )𝑥) < (𝑎 / 2)) → ((abs‘𝐴) + 𝑎) < (((abs‘𝐴) + 𝑎) + (2 / 𝑎)))
7241, 45, 44, 67, 71lttrd 10479 . . . . . . . . . . . . 13 ((((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) ∧ 𝑥 ∈ ℂ) ∧ (𝐴(abs ∘ − )𝑥) < (𝑎 / 2)) → (abs‘𝑥) < (((abs‘𝐴) + 𝑎) + (2 / 𝑎)))
73 simpllr 784 . . . . . . . . . . . . 13 ((((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) ∧ 𝑥 ∈ ℂ) ∧ (𝐴(abs ∘ − )𝑥) < (𝑎 / 2)) → (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟)
7441, 44, 43, 72, 73lttrd 10479 . . . . . . . . . . . 12 ((((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) ∧ 𝑥 ∈ ℂ) ∧ (𝐴(abs ∘ − )𝑥) < (𝑎 / 2)) → (abs‘𝑥) < 𝑟)
7541, 43, 74ltled 10466 . . . . . . . . . . 11 ((((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) ∧ 𝑥 ∈ ℂ) ∧ (𝐴(abs ∘ − )𝑥) < (𝑎 / 2)) → (abs‘𝑥) ≤ 𝑟)
7642adantr 468 . . . . . . . . . . . . . 14 (((((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) ∧ 𝑥 ∈ ℂ) ∧ (𝐴(abs ∘ − )𝑥) < (𝑎 / 2)) ∧ 𝑘 ∈ ℕ0) → 𝑟 ∈ ℕ)
7776nnrecred 11348 . . . . . . . . . . . . 13 (((((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) ∧ 𝑥 ∈ ℂ) ∧ (𝐴(abs ∘ − )𝑥) < (𝑎 / 2)) ∧ 𝑘 ∈ ℕ0) → (1 / 𝑟) ∈ ℝ)
78 simpllr 784 . . . . . . . . . . . . . . 15 (((((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) ∧ 𝑥 ∈ ℂ) ∧ (𝐴(abs ∘ − )𝑥) < (𝑎 / 2)) ∧ 𝑘 ∈ ℕ0) → 𝑥 ∈ ℂ)
79 simpr 473 . . . . . . . . . . . . . . . 16 (((((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) ∧ 𝑥 ∈ ℂ) ∧ (𝐴(abs ∘ − )𝑥) < (𝑎 / 2)) ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈ ℕ0)
8079nn0cnd 11615 . . . . . . . . . . . . . . 15 (((((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) ∧ 𝑥 ∈ ℂ) ∧ (𝐴(abs ∘ − )𝑥) < (𝑎 / 2)) ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈ ℂ)
8178, 80addcld 10340 . . . . . . . . . . . . . 14 (((((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) ∧ 𝑥 ∈ ℂ) ∧ (𝐴(abs ∘ − )𝑥) < (𝑎 / 2)) ∧ 𝑘 ∈ ℕ0) → (𝑥 + 𝑘) ∈ ℂ)
8281abscld 14394 . . . . . . . . . . . . 13 (((((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) ∧ 𝑥 ∈ ℂ) ∧ (𝐴(abs ∘ − )𝑥) < (𝑎 / 2)) ∧ 𝑘 ∈ ℕ0) → (abs‘(𝑥 + 𝑘)) ∈ ℝ)
8349adantr 468 . . . . . . . . . . . . . 14 (((((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) ∧ 𝑥 ∈ ℂ) ∧ (𝐴(abs ∘ − )𝑥) < (𝑎 / 2)) ∧ 𝑘 ∈ ℕ0) → (𝑎 / 2) ∈ ℝ)
8423ad5antr 719 . . . . . . . . . . . . . . . . 17 (((((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) ∧ 𝑥 ∈ ℂ) ∧ (𝐴(abs ∘ − )𝑥) < (𝑎 / 2)) ∧ 𝑘 ∈ ℕ0) → (2 / 𝑎) ∈ ℝ)
8544adantr 468 . . . . . . . . . . . . . . . . 17 (((((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) ∧ 𝑥 ∈ ℂ) ∧ (𝐴(abs ∘ − )𝑥) < (𝑎 / 2)) ∧ 𝑘 ∈ ℕ0) → (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) ∈ ℝ)
8643adantr 468 . . . . . . . . . . . . . . . . 17 (((((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) ∧ 𝑥 ∈ ℂ) ∧ (𝐴(abs ∘ − )𝑥) < (𝑎 / 2)) ∧ 𝑘 ∈ ℕ0) → 𝑟 ∈ ℝ)
8750adantr 468 . . . . . . . . . . . . . . . . . . . 20 (((((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) ∧ 𝑥 ∈ ℂ) ∧ (𝐴(abs ∘ − )𝑥) < (𝑎 / 2)) ∧ 𝑘 ∈ ℕ0) → 𝐴 ∈ ℂ)
8811ad6antr 723 . . . . . . . . . . . . . . . . . . . . 21 (((((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) ∧ 𝑥 ∈ ℂ) ∧ (𝐴(abs ∘ − )𝑥) < (𝑎 / 2)) ∧ 𝑘 ∈ ℕ0) → 𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ)))
8988dmgmn0 24965 . . . . . . . . . . . . . . . . . . . 20 (((((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) ∧ 𝑥 ∈ ℂ) ∧ (𝐴(abs ∘ − )𝑥) < (𝑎 / 2)) ∧ 𝑘 ∈ ℕ0) → 𝐴 ≠ 0)
9087, 89absrpcld 14406 . . . . . . . . . . . . . . . . . . 19 (((((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) ∧ 𝑥 ∈ ℂ) ∧ (𝐴(abs ∘ − )𝑥) < (𝑎 / 2)) ∧ 𝑘 ∈ ℕ0) → (abs‘𝐴) ∈ ℝ+)
9162adantr 468 . . . . . . . . . . . . . . . . . . 19 (((((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) ∧ 𝑥 ∈ ℂ) ∧ (𝐴(abs ∘ − )𝑥) < (𝑎 / 2)) ∧ 𝑘 ∈ ℕ0) → 𝑎 ∈ ℝ+)
9290, 91rpaddcld 12097 . . . . . . . . . . . . . . . . . 18 (((((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) ∧ 𝑥 ∈ ℂ) ∧ (𝐴(abs ∘ − )𝑥) < (𝑎 / 2)) ∧ 𝑘 ∈ ℕ0) → ((abs‘𝐴) + 𝑎) ∈ ℝ+)
9384, 92ltaddrp2d 12116 . . . . . . . . . . . . . . . . 17 (((((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) ∧ 𝑥 ∈ ℂ) ∧ (𝐴(abs ∘ − )𝑥) < (𝑎 / 2)) ∧ 𝑘 ∈ ℕ0) → (2 / 𝑎) < (((abs‘𝐴) + 𝑎) + (2 / 𝑎)))
94 simp-4r 794 . . . . . . . . . . . . . . . . 17 (((((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) ∧ 𝑥 ∈ ℂ) ∧ (𝐴(abs ∘ − )𝑥) < (𝑎 / 2)) ∧ 𝑘 ∈ ℕ0) → (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟)
9584, 85, 86, 93, 94lttrd 10479 . . . . . . . . . . . . . . . 16 (((((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) ∧ 𝑥 ∈ ℂ) ∧ (𝐴(abs ∘ − )𝑥) < (𝑎 / 2)) ∧ 𝑘 ∈ ℕ0) → (2 / 𝑎) < 𝑟)
9670adantr 468 . . . . . . . . . . . . . . . . 17 (((((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) ∧ 𝑥 ∈ ℂ) ∧ (𝐴(abs ∘ − )𝑥) < (𝑎 / 2)) ∧ 𝑘 ∈ ℕ0) → (2 / 𝑎) ∈ ℝ+)
9776nnrpd 12080 . . . . . . . . . . . . . . . . 17 (((((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) ∧ 𝑥 ∈ ℂ) ∧ (𝐴(abs ∘ − )𝑥) < (𝑎 / 2)) ∧ 𝑘 ∈ ℕ0) → 𝑟 ∈ ℝ+)
9896, 97ltrecd 12100 . . . . . . . . . . . . . . . 16 (((((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) ∧ 𝑥 ∈ ℂ) ∧ (𝐴(abs ∘ − )𝑥) < (𝑎 / 2)) ∧ 𝑘 ∈ ℕ0) → ((2 / 𝑎) < 𝑟 ↔ (1 / 𝑟) < (1 / (2 / 𝑎))))
9995, 98mpbid 223 . . . . . . . . . . . . . . 15 (((((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) ∧ 𝑥 ∈ ℂ) ∧ (𝐴(abs ∘ − )𝑥) < (𝑎 / 2)) ∧ 𝑘 ∈ ℕ0) → (1 / 𝑟) < (1 / (2 / 𝑎)))
100 2cnd 11373 . . . . . . . . . . . . . . . 16 (((((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) ∧ 𝑥 ∈ ℂ) ∧ (𝐴(abs ∘ − )𝑥) < (𝑎 / 2)) ∧ 𝑘 ∈ ℕ0) → 2 ∈ ℂ)
10191rpcnd 12084 . . . . . . . . . . . . . . . 16 (((((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) ∧ 𝑥 ∈ ℂ) ∧ (𝐴(abs ∘ − )𝑥) < (𝑎 / 2)) ∧ 𝑘 ∈ ℕ0) → 𝑎 ∈ ℂ)
102 2ne0 11392 . . . . . . . . . . . . . . . . 17 2 ≠ 0
103102a1i 11 . . . . . . . . . . . . . . . 16 (((((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) ∧ 𝑥 ∈ ℂ) ∧ (𝐴(abs ∘ − )𝑥) < (𝑎 / 2)) ∧ 𝑘 ∈ ℕ0) → 2 ≠ 0)
10491rpne0d 12087 . . . . . . . . . . . . . . . 16 (((((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) ∧ 𝑥 ∈ ℂ) ∧ (𝐴(abs ∘ − )𝑥) < (𝑎 / 2)) ∧ 𝑘 ∈ ℕ0) → 𝑎 ≠ 0)
105100, 101, 103, 104recdivd 11099 . . . . . . . . . . . . . . 15 (((((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) ∧ 𝑥 ∈ ℂ) ∧ (𝐴(abs ∘ − )𝑥) < (𝑎 / 2)) ∧ 𝑘 ∈ ℕ0) → (1 / (2 / 𝑎)) = (𝑎 / 2))
10699, 105breqtrd 4870 . . . . . . . . . . . . . 14 (((((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) ∧ 𝑥 ∈ ℂ) ∧ (𝐴(abs ∘ − )𝑥) < (𝑎 / 2)) ∧ 𝑘 ∈ ℕ0) → (1 / 𝑟) < (𝑎 / 2))
107 eldmgm 24961 . . . . . . . . . . . . . . . . 17 (-𝑘 ∈ (ℂ ∖ (ℤ ∖ ℕ)) ↔ (-𝑘 ∈ ℂ ∧ ¬ --𝑘 ∈ ℕ0))
108107simprbi 486 . . . . . . . . . . . . . . . 16 (-𝑘 ∈ (ℂ ∖ (ℤ ∖ ℕ)) → ¬ --𝑘 ∈ ℕ0)
10980negnegd 10664 . . . . . . . . . . . . . . . . 17 (((((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) ∧ 𝑥 ∈ ℂ) ∧ (𝐴(abs ∘ − )𝑥) < (𝑎 / 2)) ∧ 𝑘 ∈ ℕ0) → --𝑘 = 𝑘)
110109, 79eqeltrd 2885 . . . . . . . . . . . . . . . 16 (((((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) ∧ 𝑥 ∈ ℂ) ∧ (𝐴(abs ∘ − )𝑥) < (𝑎 / 2)) ∧ 𝑘 ∈ ℕ0) → --𝑘 ∈ ℕ0)
111108, 110nsyl3 135 . . . . . . . . . . . . . . 15 (((((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) ∧ 𝑥 ∈ ℂ) ∧ (𝐴(abs ∘ − )𝑥) < (𝑎 / 2)) ∧ 𝑘 ∈ ℕ0) → ¬ -𝑘 ∈ (ℂ ∖ (ℤ ∖ ℕ)))
1121a1i 11 . . . . . . . . . . . . . . . . . 18 (((((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) ∧ 𝑥 ∈ ℂ) ∧ (𝐴(abs ∘ − )𝑥) < (𝑎 / 2)) ∧ 𝑘 ∈ ℕ0) → (abs ∘ − ) ∈ (∞Met‘ℂ))
11337ad3antrrr 712 . . . . . . . . . . . . . . . . . 18 (((((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) ∧ 𝑥 ∈ ℂ) ∧ (𝐴(abs ∘ − )𝑥) < (𝑎 / 2)) ∧ 𝑘 ∈ ℕ0) → (𝑎 / 2) ∈ ℝ*)
11480negcld 10660 . . . . . . . . . . . . . . . . . 18 (((((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) ∧ 𝑥 ∈ ℂ) ∧ (𝐴(abs ∘ − )𝑥) < (𝑎 / 2)) ∧ 𝑘 ∈ ℕ0) → -𝑘 ∈ ℂ)
115 elbl2 22405 . . . . . . . . . . . . . . . . . 18 ((((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ (𝑎 / 2) ∈ ℝ*) ∧ (𝑥 ∈ ℂ ∧ -𝑘 ∈ ℂ)) → (-𝑘 ∈ (𝑥(ball‘(abs ∘ − ))(𝑎 / 2)) ↔ (𝑥(abs ∘ − )-𝑘) < (𝑎 / 2)))
116112, 113, 78, 114, 115syl22anc 858 . . . . . . . . . . . . . . . . 17 (((((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) ∧ 𝑥 ∈ ℂ) ∧ (𝐴(abs ∘ − )𝑥) < (𝑎 / 2)) ∧ 𝑘 ∈ ℕ0) → (-𝑘 ∈ (𝑥(ball‘(abs ∘ − ))(𝑎 / 2)) ↔ (𝑥(abs ∘ − )-𝑘) < (𝑎 / 2)))
11754cnmetdval 22784 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 ∈ ℂ ∧ -𝑘 ∈ ℂ) → (𝑥(abs ∘ − )-𝑘) = (abs‘(𝑥 − -𝑘)))
11878, 114, 117syl2anc 575 . . . . . . . . . . . . . . . . . . 19 (((((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) ∧ 𝑥 ∈ ℂ) ∧ (𝐴(abs ∘ − )𝑥) < (𝑎 / 2)) ∧ 𝑘 ∈ ℕ0) → (𝑥(abs ∘ − )-𝑘) = (abs‘(𝑥 − -𝑘)))
11978, 80subnegd 10680 . . . . . . . . . . . . . . . . . . . 20 (((((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) ∧ 𝑥 ∈ ℂ) ∧ (𝐴(abs ∘ − )𝑥) < (𝑎 / 2)) ∧ 𝑘 ∈ ℕ0) → (𝑥 − -𝑘) = (𝑥 + 𝑘))
120119fveq2d 6408 . . . . . . . . . . . . . . . . . . 19 (((((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) ∧ 𝑥 ∈ ℂ) ∧ (𝐴(abs ∘ − )𝑥) < (𝑎 / 2)) ∧ 𝑘 ∈ ℕ0) → (abs‘(𝑥 − -𝑘)) = (abs‘(𝑥 + 𝑘)))
121118, 120eqtrd 2840 . . . . . . . . . . . . . . . . . 18 (((((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) ∧ 𝑥 ∈ ℂ) ∧ (𝐴(abs ∘ − )𝑥) < (𝑎 / 2)) ∧ 𝑘 ∈ ℕ0) → (𝑥(abs ∘ − )-𝑘) = (abs‘(𝑥 + 𝑘)))
122121breq1d 4854 . . . . . . . . . . . . . . . . 17 (((((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) ∧ 𝑥 ∈ ℂ) ∧ (𝐴(abs ∘ − )𝑥) < (𝑎 / 2)) ∧ 𝑘 ∈ ℕ0) → ((𝑥(abs ∘ − )-𝑘) < (𝑎 / 2) ↔ (abs‘(𝑥 + 𝑘)) < (𝑎 / 2)))
12382, 83ltnled 10465 . . . . . . . . . . . . . . . . 17 (((((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) ∧ 𝑥 ∈ ℂ) ∧ (𝐴(abs ∘ − )𝑥) < (𝑎 / 2)) ∧ 𝑘 ∈ ℕ0) → ((abs‘(𝑥 + 𝑘)) < (𝑎 / 2) ↔ ¬ (𝑎 / 2) ≤ (abs‘(𝑥 + 𝑘))))
124116, 122, 1233bitrd 296 . . . . . . . . . . . . . . . 16 (((((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) ∧ 𝑥 ∈ ℂ) ∧ (𝐴(abs ∘ − )𝑥) < (𝑎 / 2)) ∧ 𝑘 ∈ ℕ0) → (-𝑘 ∈ (𝑥(ball‘(abs ∘ − ))(𝑎 / 2)) ↔ ¬ (𝑎 / 2) ≤ (abs‘(𝑥 + 𝑘))))
12548adantr 468 . . . . . . . . . . . . . . . . . . 19 (((((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) ∧ 𝑥 ∈ ℂ) ∧ (𝐴(abs ∘ − )𝑥) < (𝑎 / 2)) ∧ 𝑘 ∈ ℕ0) → 𝑎 ∈ ℝ)
126 simplr 776 . . . . . . . . . . . . . . . . . . . 20 (((((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) ∧ 𝑥 ∈ ℂ) ∧ (𝐴(abs ∘ − )𝑥) < (𝑎 / 2)) ∧ 𝑘 ∈ ℕ0) → (𝐴(abs ∘ − )𝑥) < (𝑎 / 2))
127 elbl3 22407 . . . . . . . . . . . . . . . . . . . . 21 ((((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ (𝑎 / 2) ∈ ℝ*) ∧ (𝑥 ∈ ℂ ∧ 𝐴 ∈ ℂ)) → (𝐴 ∈ (𝑥(ball‘(abs ∘ − ))(𝑎 / 2)) ↔ (𝐴(abs ∘ − )𝑥) < (𝑎 / 2)))
128112, 113, 78, 87, 127syl22anc 858 . . . . . . . . . . . . . . . . . . . 20 (((((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) ∧ 𝑥 ∈ ℂ) ∧ (𝐴(abs ∘ − )𝑥) < (𝑎 / 2)) ∧ 𝑘 ∈ ℕ0) → (𝐴 ∈ (𝑥(ball‘(abs ∘ − ))(𝑎 / 2)) ↔ (𝐴(abs ∘ − )𝑥) < (𝑎 / 2)))
129126, 128mpbird 248 . . . . . . . . . . . . . . . . . . 19 (((((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) ∧ 𝑥 ∈ ℂ) ∧ (𝐴(abs ∘ − )𝑥) < (𝑎 / 2)) ∧ 𝑘 ∈ ℕ0) → 𝐴 ∈ (𝑥(ball‘(abs ∘ − ))(𝑎 / 2)))
130 blhalf 22420 . . . . . . . . . . . . . . . . . . 19 ((((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝑥 ∈ ℂ) ∧ (𝑎 ∈ ℝ ∧ 𝐴 ∈ (𝑥(ball‘(abs ∘ − ))(𝑎 / 2)))) → (𝑥(ball‘(abs ∘ − ))(𝑎 / 2)) ⊆ (𝐴(ball‘(abs ∘ − ))𝑎))
131112, 78, 125, 129, 130syl22anc 858 . . . . . . . . . . . . . . . . . 18 (((((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) ∧ 𝑥 ∈ ℂ) ∧ (𝐴(abs ∘ − )𝑥) < (𝑎 / 2)) ∧ 𝑘 ∈ ℕ0) → (𝑥(ball‘(abs ∘ − ))(𝑎 / 2)) ⊆ (𝐴(ball‘(abs ∘ − ))𝑎))
132 simprr 780 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) → (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))
133132ad5antr 719 . . . . . . . . . . . . . . . . . 18 (((((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) ∧ 𝑥 ∈ ℂ) ∧ (𝐴(abs ∘ − )𝑥) < (𝑎 / 2)) ∧ 𝑘 ∈ ℕ0) → (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))
134131, 133sstrd 3808 . . . . . . . . . . . . . . . . 17 (((((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) ∧ 𝑥 ∈ ℂ) ∧ (𝐴(abs ∘ − )𝑥) < (𝑎 / 2)) ∧ 𝑘 ∈ ℕ0) → (𝑥(ball‘(abs ∘ − ))(𝑎 / 2)) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))
135134sseld 3797 . . . . . . . . . . . . . . . 16 (((((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) ∧ 𝑥 ∈ ℂ) ∧ (𝐴(abs ∘ − )𝑥) < (𝑎 / 2)) ∧ 𝑘 ∈ ℕ0) → (-𝑘 ∈ (𝑥(ball‘(abs ∘ − ))(𝑎 / 2)) → -𝑘 ∈ (ℂ ∖ (ℤ ∖ ℕ))))
136124, 135sylbird 251 . . . . . . . . . . . . . . 15 (((((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) ∧ 𝑥 ∈ ℂ) ∧ (𝐴(abs ∘ − )𝑥) < (𝑎 / 2)) ∧ 𝑘 ∈ ℕ0) → (¬ (𝑎 / 2) ≤ (abs‘(𝑥 + 𝑘)) → -𝑘 ∈ (ℂ ∖ (ℤ ∖ ℕ))))
137111, 136mt3d 142 . . . . . . . . . . . . . 14 (((((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) ∧ 𝑥 ∈ ℂ) ∧ (𝐴(abs ∘ − )𝑥) < (𝑎 / 2)) ∧ 𝑘 ∈ ℕ0) → (𝑎 / 2) ≤ (abs‘(𝑥 + 𝑘)))
13877, 83, 82, 106, 137ltletrd 10478 . . . . . . . . . . . . 13 (((((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) ∧ 𝑥 ∈ ℂ) ∧ (𝐴(abs ∘ − )𝑥) < (𝑎 / 2)) ∧ 𝑘 ∈ ℕ0) → (1 / 𝑟) < (abs‘(𝑥 + 𝑘)))
13977, 82, 138ltled 10466 . . . . . . . . . . . 12 (((((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) ∧ 𝑥 ∈ ℂ) ∧ (𝐴(abs ∘ − )𝑥) < (𝑎 / 2)) ∧ 𝑘 ∈ ℕ0) → (1 / 𝑟) ≤ (abs‘(𝑥 + 𝑘)))
140139ralrimiva 3154 . . . . . . . . . . 11 ((((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) ∧ 𝑥 ∈ ℂ) ∧ (𝐴(abs ∘ − )𝑥) < (𝑎 / 2)) → ∀𝑘 ∈ ℕ0 (1 / 𝑟) ≤ (abs‘(𝑥 + 𝑘)))
14175, 140jca 503 . . . . . . . . . 10 ((((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) ∧ 𝑥 ∈ ℂ) ∧ (𝐴(abs ∘ − )𝑥) < (𝑎 / 2)) → ((abs‘𝑥) ≤ 𝑟 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑟) ≤ (abs‘(𝑥 + 𝑘))))
142141ex 399 . . . . . . . . 9 (((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) ∧ 𝑥 ∈ ℂ) → ((𝐴(abs ∘ − )𝑥) < (𝑎 / 2) → ((abs‘𝑥) ≤ 𝑟 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑟) ≤ (abs‘(𝑥 + 𝑘)))))
143142ss2rabdv 3880 . . . . . . . 8 ((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) → {𝑥 ∈ ℂ ∣ (𝐴(abs ∘ − )𝑥) < (𝑎 / 2)} ⊆ {𝑥 ∈ ℂ ∣ ((abs‘𝑥) ≤ 𝑟 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑟) ≤ (abs‘(𝑥 + 𝑘)))})
144 blval 22401 . . . . . . . . 9 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝐴 ∈ ℂ ∧ (𝑎 / 2) ∈ ℝ*) → (𝐴(ball‘(abs ∘ − ))(𝑎 / 2)) = {𝑥 ∈ ℂ ∣ (𝐴(abs ∘ − )𝑥) < (𝑎 / 2)})
14533, 34, 37, 144syl3anc 1483 . . . . . . . 8 ((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) → (𝐴(ball‘(abs ∘ − ))(𝑎 / 2)) = {𝑥 ∈ ℂ ∣ (𝐴(abs ∘ − )𝑥) < (𝑎 / 2)})
14629a1i 11 . . . . . . . 8 ((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) → 𝑈 = {𝑥 ∈ ℂ ∣ ((abs‘𝑥) ≤ 𝑟 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑟) ≤ (abs‘(𝑥 + 𝑘)))})
147143, 145, 1463sstr4d 3845 . . . . . . 7 ((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) → (𝐴(ball‘(abs ∘ − ))(𝑎 / 2)) ⊆ 𝑈)
1487ssntr 21073 . . . . . . 7 (((𝐽 ∈ Top ∧ 𝑈 ⊆ ℂ) ∧ ((𝐴(ball‘(abs ∘ − ))(𝑎 / 2)) ∈ 𝐽 ∧ (𝐴(ball‘(abs ∘ − ))(𝑎 / 2)) ⊆ 𝑈)) → (𝐴(ball‘(abs ∘ − ))(𝑎 / 2)) ⊆ ((int‘𝐽)‘𝑈))
14928, 32, 39, 147, 148syl22anc 858 . . . . . 6 ((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) → (𝐴(ball‘(abs ∘ − ))(𝑎 / 2)) ⊆ ((int‘𝐽)‘𝑈))
150 blcntr 22428 . . . . . . 7 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝐴 ∈ ℂ ∧ (𝑎 / 2) ∈ ℝ+) → 𝐴 ∈ (𝐴(ball‘(abs ∘ − ))(𝑎 / 2)))
15133, 34, 36, 150syl3anc 1483 . . . . . 6 ((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) → 𝐴 ∈ (𝐴(ball‘(abs ∘ − ))(𝑎 / 2)))
152149, 151sseldd 3799 . . . . 5 ((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) ∧ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟) → 𝐴 ∈ ((int‘𝐽)‘𝑈))
153152ex 399 . . . 4 (((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) ∧ 𝑟 ∈ ℕ) → ((((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟𝐴 ∈ ((int‘𝐽)‘𝑈)))
154153reximdva 3204 . . 3 ((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) → (∃𝑟 ∈ ℕ (((abs‘𝐴) + 𝑎) + (2 / 𝑎)) < 𝑟 → ∃𝑟 ∈ ℕ 𝐴 ∈ ((int‘𝐽)‘𝑈)))
15526, 154mpd 15 . 2 ((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ (𝐴(ball‘(abs ∘ − ))𝑎) ⊆ (ℂ ∖ (ℤ ∖ ℕ)))) → ∃𝑟 ∈ ℕ 𝐴 ∈ ((int‘𝐽)‘𝑈))
15614, 155rexlimddv 3223 1 (𝜑 → ∃𝑟 ∈ ℕ 𝐴 ∈ ((int‘𝐽)‘𝑈))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 197  wa 384   = wceq 1637  wcel 2156  wne 2978  wral 3096  wrex 3097  {crab 3100  cdif 3766  wss 3769   class class class wbr 4844  ccom 5315  cfv 6097  (class class class)co 6870  cc 10215  cr 10216  0cc0 10217  1c1 10218   + caddc 10220  *cxr 10354   < clt 10355  cle 10356  cmin 10547  -cneg 10548   / cdiv 10965  cn 11301  2c2 11352  0cn0 11555  cz 11639  +crp 12042  abscabs 14193  TopOpenctopn 16283  ∞Metcxmt 19935  ballcbl 19937  fldccnfld 19950  Topctop 20908  Clsdccld 21031  intcnt 21032
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1877  ax-4 1894  ax-5 2001  ax-6 2068  ax-7 2104  ax-8 2158  ax-9 2165  ax-10 2185  ax-11 2201  ax-12 2214  ax-13 2420  ax-ext 2784  ax-rep 4964  ax-sep 4975  ax-nul 4983  ax-pow 5035  ax-pr 5096  ax-un 7175  ax-cnex 10273  ax-resscn 10274  ax-1cn 10275  ax-icn 10276  ax-addcl 10277  ax-addrcl 10278  ax-mulcl 10279  ax-mulrcl 10280  ax-mulcom 10281  ax-addass 10282  ax-mulass 10283  ax-distr 10284  ax-i2m1 10285  ax-1ne0 10286  ax-1rid 10287  ax-rnegex 10288  ax-rrecex 10289  ax-cnre 10290  ax-pre-lttri 10291  ax-pre-lttrn 10292  ax-pre-ltadd 10293  ax-pre-mulgt0 10294  ax-pre-sup 10295
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 866  df-3or 1101  df-3an 1102  df-tru 1641  df-ex 1860  df-nf 1864  df-sb 2061  df-eu 2634  df-mo 2635  df-clab 2793  df-cleq 2799  df-clel 2802  df-nfc 2937  df-ne 2979  df-nel 3082  df-ral 3101  df-rex 3102  df-reu 3103  df-rmo 3104  df-rab 3105  df-v 3393  df-sbc 3634  df-csb 3729  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-pss 3785  df-nul 4117  df-if 4280  df-pw 4353  df-sn 4371  df-pr 4373  df-tp 4375  df-op 4377  df-uni 4631  df-int 4670  df-iun 4714  df-iin 4715  df-br 4845  df-opab 4907  df-mpt 4924  df-tr 4947  df-id 5219  df-eprel 5224  df-po 5232  df-so 5233  df-fr 5270  df-we 5272  df-xp 5317  df-rel 5318  df-cnv 5319  df-co 5320  df-dm 5321  df-rn 5322  df-res 5323  df-ima 5324  df-pred 5893  df-ord 5939  df-on 5940  df-lim 5941  df-suc 5942  df-iota 6060  df-fun 6099  df-fn 6100  df-f 6101  df-f1 6102  df-fo 6103  df-f1o 6104  df-fv 6105  df-riota 6831  df-ov 6873  df-oprab 6874  df-mpt2 6875  df-om 7292  df-1st 7394  df-2nd 7395  df-wrecs 7638  df-recs 7700  df-rdg 7738  df-1o 7792  df-oadd 7796  df-er 7975  df-map 8090  df-en 8189  df-dom 8190  df-sdom 8191  df-fin 8192  df-fi 8552  df-sup 8583  df-inf 8584  df-pnf 10357  df-mnf 10358  df-xr 10359  df-ltxr 10360  df-le 10361  df-sub 10549  df-neg 10550  df-div 10966  df-nn 11302  df-2 11360  df-3 11361  df-4 11362  df-5 11363  df-6 11364  df-7 11365  df-8 11366  df-9 11367  df-n0 11556  df-z 11640  df-dec 11756  df-uz 11901  df-q 12004  df-rp 12043  df-xneg 12158  df-xadd 12159  df-xmul 12160  df-ioo 12393  df-fz 12546  df-fl 12813  df-seq 13021  df-exp 13080  df-cj 14058  df-re 14059  df-im 14060  df-sqrt 14194  df-abs 14195  df-struct 16066  df-ndx 16067  df-slot 16068  df-base 16070  df-plusg 16162  df-mulr 16163  df-starv 16164  df-tset 16168  df-ple 16169  df-ds 16171  df-unif 16172  df-rest 16284  df-topn 16285  df-topgen 16305  df-psmet 19942  df-xmet 19943  df-met 19944  df-bl 19945  df-mopn 19946  df-cnfld 19951  df-top 20909  df-topon 20926  df-topsp 20948  df-bases 20961  df-cld 21034  df-ntr 21035  df-xms 22335  df-ms 22336
This theorem is referenced by:  lgamucov2  24978
  Copyright terms: Public domain W3C validator