MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  carden2b Structured version   Visualization version   GIF version

Theorem carden2b 9860
Description: If two sets are equinumerous, then they have equal cardinalities. (This assertion and carden2a 9859 are meant to replace carden 10442 in ZF without AC.) (Contributed by Mario Carneiro, 9-Jan-2013.) (Proof shortened by Mario Carneiro, 27-Apr-2015.)
Assertion
Ref Expression
carden2b (𝐴𝐵 → (card‘𝐴) = (card‘𝐵))

Proof of Theorem carden2b
StepHypRef Expression
1 cardne 9858 . . . . 5 ((card‘𝐵) ∈ (card‘𝐴) → ¬ (card‘𝐵) ≈ 𝐴)
2 ennum 9840 . . . . . . . 8 (𝐴𝐵 → (𝐴 ∈ dom card ↔ 𝐵 ∈ dom card))
32biimpa 476 . . . . . . 7 ((𝐴𝐵𝐴 ∈ dom card) → 𝐵 ∈ dom card)
4 cardid2 9846 . . . . . . 7 (𝐵 ∈ dom card → (card‘𝐵) ≈ 𝐵)
53, 4syl 17 . . . . . 6 ((𝐴𝐵𝐴 ∈ dom card) → (card‘𝐵) ≈ 𝐵)
6 ensym 8925 . . . . . . 7 (𝐴𝐵𝐵𝐴)
76adantr 480 . . . . . 6 ((𝐴𝐵𝐴 ∈ dom card) → 𝐵𝐴)
8 entr 8928 . . . . . 6 (((card‘𝐵) ≈ 𝐵𝐵𝐴) → (card‘𝐵) ≈ 𝐴)
95, 7, 8syl2anc 584 . . . . 5 ((𝐴𝐵𝐴 ∈ dom card) → (card‘𝐵) ≈ 𝐴)
101, 9nsyl3 138 . . . 4 ((𝐴𝐵𝐴 ∈ dom card) → ¬ (card‘𝐵) ∈ (card‘𝐴))
11 cardon 9837 . . . . 5 (card‘𝐴) ∈ On
12 cardon 9837 . . . . 5 (card‘𝐵) ∈ On
13 ontri1 6340 . . . . 5 (((card‘𝐴) ∈ On ∧ (card‘𝐵) ∈ On) → ((card‘𝐴) ⊆ (card‘𝐵) ↔ ¬ (card‘𝐵) ∈ (card‘𝐴)))
1411, 12, 13mp2an 692 . . . 4 ((card‘𝐴) ⊆ (card‘𝐵) ↔ ¬ (card‘𝐵) ∈ (card‘𝐴))
1510, 14sylibr 234 . . 3 ((𝐴𝐵𝐴 ∈ dom card) → (card‘𝐴) ⊆ (card‘𝐵))
16 cardne 9858 . . . . 5 ((card‘𝐴) ∈ (card‘𝐵) → ¬ (card‘𝐴) ≈ 𝐵)
17 cardid2 9846 . . . . . 6 (𝐴 ∈ dom card → (card‘𝐴) ≈ 𝐴)
18 id 22 . . . . . 6 (𝐴𝐵𝐴𝐵)
19 entr 8928 . . . . . 6 (((card‘𝐴) ≈ 𝐴𝐴𝐵) → (card‘𝐴) ≈ 𝐵)
2017, 18, 19syl2anr 597 . . . . 5 ((𝐴𝐵𝐴 ∈ dom card) → (card‘𝐴) ≈ 𝐵)
2116, 20nsyl3 138 . . . 4 ((𝐴𝐵𝐴 ∈ dom card) → ¬ (card‘𝐴) ∈ (card‘𝐵))
22 ontri1 6340 . . . . 5 (((card‘𝐵) ∈ On ∧ (card‘𝐴) ∈ On) → ((card‘𝐵) ⊆ (card‘𝐴) ↔ ¬ (card‘𝐴) ∈ (card‘𝐵)))
2312, 11, 22mp2an 692 . . . 4 ((card‘𝐵) ⊆ (card‘𝐴) ↔ ¬ (card‘𝐴) ∈ (card‘𝐵))
2421, 23sylibr 234 . . 3 ((𝐴𝐵𝐴 ∈ dom card) → (card‘𝐵) ⊆ (card‘𝐴))
2515, 24eqssd 3947 . 2 ((𝐴𝐵𝐴 ∈ dom card) → (card‘𝐴) = (card‘𝐵))
26 ndmfv 6854 . . . 4 𝐴 ∈ dom card → (card‘𝐴) = ∅)
2726adantl 481 . . 3 ((𝐴𝐵 ∧ ¬ 𝐴 ∈ dom card) → (card‘𝐴) = ∅)
282notbid 318 . . . . 5 (𝐴𝐵 → (¬ 𝐴 ∈ dom card ↔ ¬ 𝐵 ∈ dom card))
2928biimpa 476 . . . 4 ((𝐴𝐵 ∧ ¬ 𝐴 ∈ dom card) → ¬ 𝐵 ∈ dom card)
30 ndmfv 6854 . . . 4 𝐵 ∈ dom card → (card‘𝐵) = ∅)
3129, 30syl 17 . . 3 ((𝐴𝐵 ∧ ¬ 𝐴 ∈ dom card) → (card‘𝐵) = ∅)
3227, 31eqtr4d 2769 . 2 ((𝐴𝐵 ∧ ¬ 𝐴 ∈ dom card) → (card‘𝐴) = (card‘𝐵))
3325, 32pm2.61dan 812 1 (𝐴𝐵 → (card‘𝐴) = (card‘𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wss 3897  c0 4280   class class class wbr 5089  dom cdm 5614  Oncon0 6306  cfv 6481  cen 8866  cardccrd 9828
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-int 4896  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-ord 6309  df-on 6310  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-er 8622  df-en 8870  df-card 9832
This theorem is referenced by:  card1  9861  carddom2  9870  cardennn  9876  cardsucinf  9877  pm54.43lem  9893  nnadju  10089  nnadjuALT  10090  ficardun  10092  ackbij1lem5  10114  ackbij1lem8  10117  ackbij1lem9  10118  ackbij2lem2  10130  carden  10442  r1tskina  10673  cardfz  13877
  Copyright terms: Public domain W3C validator