MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  carden2b Structured version   Visualization version   GIF version

Theorem carden2b 9106
Description: If two sets are equinumerous, then they have equal cardinalities. (This assertion and carden2a 9105 are meant to replace carden 9688 in ZF without AC.) (Contributed by Mario Carneiro, 9-Jan-2013.) (Proof shortened by Mario Carneiro, 27-Apr-2015.)
Assertion
Ref Expression
carden2b (𝐴𝐵 → (card‘𝐴) = (card‘𝐵))

Proof of Theorem carden2b
StepHypRef Expression
1 cardne 9104 . . . . 5 ((card‘𝐵) ∈ (card‘𝐴) → ¬ (card‘𝐵) ≈ 𝐴)
2 ennum 9086 . . . . . . . 8 (𝐴𝐵 → (𝐴 ∈ dom card ↔ 𝐵 ∈ dom card))
32biimpa 470 . . . . . . 7 ((𝐴𝐵𝐴 ∈ dom card) → 𝐵 ∈ dom card)
4 cardid2 9092 . . . . . . 7 (𝐵 ∈ dom card → (card‘𝐵) ≈ 𝐵)
53, 4syl 17 . . . . . 6 ((𝐴𝐵𝐴 ∈ dom card) → (card‘𝐵) ≈ 𝐵)
6 ensym 8271 . . . . . . 7 (𝐴𝐵𝐵𝐴)
76adantr 474 . . . . . 6 ((𝐴𝐵𝐴 ∈ dom card) → 𝐵𝐴)
8 entr 8274 . . . . . 6 (((card‘𝐵) ≈ 𝐵𝐵𝐴) → (card‘𝐵) ≈ 𝐴)
95, 7, 8syl2anc 579 . . . . 5 ((𝐴𝐵𝐴 ∈ dom card) → (card‘𝐵) ≈ 𝐴)
101, 9nsyl3 136 . . . 4 ((𝐴𝐵𝐴 ∈ dom card) → ¬ (card‘𝐵) ∈ (card‘𝐴))
11 cardon 9083 . . . . 5 (card‘𝐴) ∈ On
12 cardon 9083 . . . . 5 (card‘𝐵) ∈ On
13 ontri1 5997 . . . . 5 (((card‘𝐴) ∈ On ∧ (card‘𝐵) ∈ On) → ((card‘𝐴) ⊆ (card‘𝐵) ↔ ¬ (card‘𝐵) ∈ (card‘𝐴)))
1411, 12, 13mp2an 683 . . . 4 ((card‘𝐴) ⊆ (card‘𝐵) ↔ ¬ (card‘𝐵) ∈ (card‘𝐴))
1510, 14sylibr 226 . . 3 ((𝐴𝐵𝐴 ∈ dom card) → (card‘𝐴) ⊆ (card‘𝐵))
16 cardne 9104 . . . . 5 ((card‘𝐴) ∈ (card‘𝐵) → ¬ (card‘𝐴) ≈ 𝐵)
17 cardid2 9092 . . . . . 6 (𝐴 ∈ dom card → (card‘𝐴) ≈ 𝐴)
18 id 22 . . . . . 6 (𝐴𝐵𝐴𝐵)
19 entr 8274 . . . . . 6 (((card‘𝐴) ≈ 𝐴𝐴𝐵) → (card‘𝐴) ≈ 𝐵)
2017, 18, 19syl2anr 590 . . . . 5 ((𝐴𝐵𝐴 ∈ dom card) → (card‘𝐴) ≈ 𝐵)
2116, 20nsyl3 136 . . . 4 ((𝐴𝐵𝐴 ∈ dom card) → ¬ (card‘𝐴) ∈ (card‘𝐵))
22 ontri1 5997 . . . . 5 (((card‘𝐵) ∈ On ∧ (card‘𝐴) ∈ On) → ((card‘𝐵) ⊆ (card‘𝐴) ↔ ¬ (card‘𝐴) ∈ (card‘𝐵)))
2312, 11, 22mp2an 683 . . . 4 ((card‘𝐵) ⊆ (card‘𝐴) ↔ ¬ (card‘𝐴) ∈ (card‘𝐵))
2421, 23sylibr 226 . . 3 ((𝐴𝐵𝐴 ∈ dom card) → (card‘𝐵) ⊆ (card‘𝐴))
2515, 24eqssd 3844 . 2 ((𝐴𝐵𝐴 ∈ dom card) → (card‘𝐴) = (card‘𝐵))
26 ndmfv 6463 . . . 4 𝐴 ∈ dom card → (card‘𝐴) = ∅)
2726adantl 475 . . 3 ((𝐴𝐵 ∧ ¬ 𝐴 ∈ dom card) → (card‘𝐴) = ∅)
282notbid 310 . . . . 5 (𝐴𝐵 → (¬ 𝐴 ∈ dom card ↔ ¬ 𝐵 ∈ dom card))
2928biimpa 470 . . . 4 ((𝐴𝐵 ∧ ¬ 𝐴 ∈ dom card) → ¬ 𝐵 ∈ dom card)
30 ndmfv 6463 . . . 4 𝐵 ∈ dom card → (card‘𝐵) = ∅)
3129, 30syl 17 . . 3 ((𝐴𝐵 ∧ ¬ 𝐴 ∈ dom card) → (card‘𝐵) = ∅)
3227, 31eqtr4d 2864 . 2 ((𝐴𝐵 ∧ ¬ 𝐴 ∈ dom card) → (card‘𝐴) = (card‘𝐵))
3325, 32pm2.61dan 847 1 (𝐴𝐵 → (card‘𝐴) = (card‘𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 198  wa 386   = wceq 1656  wcel 2164  wss 3798  c0 4144   class class class wbr 4873  dom cdm 5342  Oncon0 5963  cfv 6123  cen 8219  cardccrd 9074
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-8 2166  ax-9 2173  ax-10 2192  ax-11 2207  ax-12 2220  ax-13 2389  ax-ext 2803  ax-sep 5005  ax-nul 5013  ax-pow 5065  ax-pr 5127  ax-un 7209
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-3or 1112  df-3an 1113  df-tru 1660  df-ex 1879  df-nf 1883  df-sb 2068  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-ral 3122  df-rex 3123  df-rab 3126  df-v 3416  df-sbc 3663  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-pss 3814  df-nul 4145  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-tp 4402  df-op 4404  df-uni 4659  df-int 4698  df-br 4874  df-opab 4936  df-mpt 4953  df-tr 4976  df-id 5250  df-eprel 5255  df-po 5263  df-so 5264  df-fr 5301  df-we 5303  df-xp 5348  df-rel 5349  df-cnv 5350  df-co 5351  df-dm 5352  df-rn 5353  df-res 5354  df-ima 5355  df-ord 5966  df-on 5967  df-iota 6086  df-fun 6125  df-fn 6126  df-f 6127  df-f1 6128  df-fo 6129  df-f1o 6130  df-fv 6131  df-er 8009  df-en 8223  df-card 9078
This theorem is referenced by:  card1  9107  carddom2  9116  cardennn  9122  cardsucinf  9123  pm54.43lem  9138  nnacda  9338  ficardun  9339  ackbij1lem5  9361  ackbij1lem8  9364  ackbij1lem9  9365  ackbij2lem2  9377  carden  9688  r1tskina  9919  cardfz  13064
  Copyright terms: Public domain W3C validator