| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > infdif2 | Structured version Visualization version GIF version | ||
| Description: Cardinality ordering for an infinite class difference. (Contributed by NM, 24-Mar-2007.) (Revised by Mario Carneiro, 29-Apr-2015.) |
| Ref | Expression |
|---|---|
| infdif2 | ⊢ ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card ∧ ω ≼ 𝐴) → ((𝐴 ∖ 𝐵) ≼ 𝐵 ↔ 𝐴 ≼ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | domnsym 9016 | . . . . . . 7 ⊢ ((𝐴 ∖ 𝐵) ≼ 𝐵 → ¬ 𝐵 ≺ (𝐴 ∖ 𝐵)) | |
| 2 | simp3 1138 | . . . . . . . 8 ⊢ ((𝐴 ∈ dom card ∧ ω ≼ 𝐴 ∧ 𝐵 ≺ 𝐴) → 𝐵 ≺ 𝐴) | |
| 3 | infdif 10099 | . . . . . . . . 9 ⊢ ((𝐴 ∈ dom card ∧ ω ≼ 𝐴 ∧ 𝐵 ≺ 𝐴) → (𝐴 ∖ 𝐵) ≈ 𝐴) | |
| 4 | 3 | ensymd 8927 | . . . . . . . 8 ⊢ ((𝐴 ∈ dom card ∧ ω ≼ 𝐴 ∧ 𝐵 ≺ 𝐴) → 𝐴 ≈ (𝐴 ∖ 𝐵)) |
| 5 | sdomentr 9024 | . . . . . . . 8 ⊢ ((𝐵 ≺ 𝐴 ∧ 𝐴 ≈ (𝐴 ∖ 𝐵)) → 𝐵 ≺ (𝐴 ∖ 𝐵)) | |
| 6 | 2, 4, 5 | syl2anc 584 | . . . . . . 7 ⊢ ((𝐴 ∈ dom card ∧ ω ≼ 𝐴 ∧ 𝐵 ≺ 𝐴) → 𝐵 ≺ (𝐴 ∖ 𝐵)) |
| 7 | 1, 6 | nsyl3 138 | . . . . . 6 ⊢ ((𝐴 ∈ dom card ∧ ω ≼ 𝐴 ∧ 𝐵 ≺ 𝐴) → ¬ (𝐴 ∖ 𝐵) ≼ 𝐵) |
| 8 | 7 | 3expia 1121 | . . . . 5 ⊢ ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → (𝐵 ≺ 𝐴 → ¬ (𝐴 ∖ 𝐵) ≼ 𝐵)) |
| 9 | 8 | 3adant2 1131 | . . . 4 ⊢ ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card ∧ ω ≼ 𝐴) → (𝐵 ≺ 𝐴 → ¬ (𝐴 ∖ 𝐵) ≼ 𝐵)) |
| 10 | 9 | con2d 134 | . . 3 ⊢ ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card ∧ ω ≼ 𝐴) → ((𝐴 ∖ 𝐵) ≼ 𝐵 → ¬ 𝐵 ≺ 𝐴)) |
| 11 | domtri2 9882 | . . . 4 ⊢ ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card) → (𝐴 ≼ 𝐵 ↔ ¬ 𝐵 ≺ 𝐴)) | |
| 12 | 11 | 3adant3 1132 | . . 3 ⊢ ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card ∧ ω ≼ 𝐴) → (𝐴 ≼ 𝐵 ↔ ¬ 𝐵 ≺ 𝐴)) |
| 13 | 10, 12 | sylibrd 259 | . 2 ⊢ ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card ∧ ω ≼ 𝐴) → ((𝐴 ∖ 𝐵) ≼ 𝐵 → 𝐴 ≼ 𝐵)) |
| 14 | simp1 1136 | . . . 4 ⊢ ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card ∧ ω ≼ 𝐴) → 𝐴 ∈ dom card) | |
| 15 | difss 4083 | . . . 4 ⊢ (𝐴 ∖ 𝐵) ⊆ 𝐴 | |
| 16 | ssdomg 8922 | . . . 4 ⊢ (𝐴 ∈ dom card → ((𝐴 ∖ 𝐵) ⊆ 𝐴 → (𝐴 ∖ 𝐵) ≼ 𝐴)) | |
| 17 | 14, 15, 16 | mpisyl 21 | . . 3 ⊢ ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card ∧ ω ≼ 𝐴) → (𝐴 ∖ 𝐵) ≼ 𝐴) |
| 18 | domtr 8929 | . . . 4 ⊢ (((𝐴 ∖ 𝐵) ≼ 𝐴 ∧ 𝐴 ≼ 𝐵) → (𝐴 ∖ 𝐵) ≼ 𝐵) | |
| 19 | 18 | ex 412 | . . 3 ⊢ ((𝐴 ∖ 𝐵) ≼ 𝐴 → (𝐴 ≼ 𝐵 → (𝐴 ∖ 𝐵) ≼ 𝐵)) |
| 20 | 17, 19 | syl 17 | . 2 ⊢ ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card ∧ ω ≼ 𝐴) → (𝐴 ≼ 𝐵 → (𝐴 ∖ 𝐵) ≼ 𝐵)) |
| 21 | 13, 20 | impbid 212 | 1 ⊢ ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card ∧ ω ≼ 𝐴) → ((𝐴 ∖ 𝐵) ≼ 𝐵 ↔ 𝐴 ≼ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ w3a 1086 ∈ wcel 2111 ∖ cdif 3894 ⊆ wss 3897 class class class wbr 5089 dom cdm 5614 ωcom 7796 ≈ cen 8866 ≼ cdom 8867 ≺ csdm 8868 cardccrd 9828 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-inf2 9531 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-int 4896 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-se 5568 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-isom 6490 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-2o 8386 df-oadd 8389 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-oi 9396 df-dju 9794 df-card 9832 |
| This theorem is referenced by: axgroth3 10722 |
| Copyright terms: Public domain | W3C validator |