![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > infdif2 | Structured version Visualization version GIF version |
Description: Cardinality ordering for an infinite class difference. (Contributed by NM, 24-Mar-2007.) (Revised by Mario Carneiro, 29-Apr-2015.) |
Ref | Expression |
---|---|
infdif2 | ⊢ ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card ∧ ω ≼ 𝐴) → ((𝐴 ∖ 𝐵) ≼ 𝐵 ↔ 𝐴 ≼ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | domnsym 9101 | . . . . . . 7 ⊢ ((𝐴 ∖ 𝐵) ≼ 𝐵 → ¬ 𝐵 ≺ (𝐴 ∖ 𝐵)) | |
2 | simp3 1138 | . . . . . . . 8 ⊢ ((𝐴 ∈ dom card ∧ ω ≼ 𝐴 ∧ 𝐵 ≺ 𝐴) → 𝐵 ≺ 𝐴) | |
3 | infdif 10206 | . . . . . . . . 9 ⊢ ((𝐴 ∈ dom card ∧ ω ≼ 𝐴 ∧ 𝐵 ≺ 𝐴) → (𝐴 ∖ 𝐵) ≈ 𝐴) | |
4 | 3 | ensymd 9003 | . . . . . . . 8 ⊢ ((𝐴 ∈ dom card ∧ ω ≼ 𝐴 ∧ 𝐵 ≺ 𝐴) → 𝐴 ≈ (𝐴 ∖ 𝐵)) |
5 | sdomentr 9113 | . . . . . . . 8 ⊢ ((𝐵 ≺ 𝐴 ∧ 𝐴 ≈ (𝐴 ∖ 𝐵)) → 𝐵 ≺ (𝐴 ∖ 𝐵)) | |
6 | 2, 4, 5 | syl2anc 584 | . . . . . . 7 ⊢ ((𝐴 ∈ dom card ∧ ω ≼ 𝐴 ∧ 𝐵 ≺ 𝐴) → 𝐵 ≺ (𝐴 ∖ 𝐵)) |
7 | 1, 6 | nsyl3 138 | . . . . . 6 ⊢ ((𝐴 ∈ dom card ∧ ω ≼ 𝐴 ∧ 𝐵 ≺ 𝐴) → ¬ (𝐴 ∖ 𝐵) ≼ 𝐵) |
8 | 7 | 3expia 1121 | . . . . 5 ⊢ ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → (𝐵 ≺ 𝐴 → ¬ (𝐴 ∖ 𝐵) ≼ 𝐵)) |
9 | 8 | 3adant2 1131 | . . . 4 ⊢ ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card ∧ ω ≼ 𝐴) → (𝐵 ≺ 𝐴 → ¬ (𝐴 ∖ 𝐵) ≼ 𝐵)) |
10 | 9 | con2d 134 | . . 3 ⊢ ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card ∧ ω ≼ 𝐴) → ((𝐴 ∖ 𝐵) ≼ 𝐵 → ¬ 𝐵 ≺ 𝐴)) |
11 | domtri2 9986 | . . . 4 ⊢ ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card) → (𝐴 ≼ 𝐵 ↔ ¬ 𝐵 ≺ 𝐴)) | |
12 | 11 | 3adant3 1132 | . . 3 ⊢ ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card ∧ ω ≼ 𝐴) → (𝐴 ≼ 𝐵 ↔ ¬ 𝐵 ≺ 𝐴)) |
13 | 10, 12 | sylibrd 258 | . 2 ⊢ ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card ∧ ω ≼ 𝐴) → ((𝐴 ∖ 𝐵) ≼ 𝐵 → 𝐴 ≼ 𝐵)) |
14 | simp1 1136 | . . . 4 ⊢ ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card ∧ ω ≼ 𝐴) → 𝐴 ∈ dom card) | |
15 | difss 4131 | . . . 4 ⊢ (𝐴 ∖ 𝐵) ⊆ 𝐴 | |
16 | ssdomg 8998 | . . . 4 ⊢ (𝐴 ∈ dom card → ((𝐴 ∖ 𝐵) ⊆ 𝐴 → (𝐴 ∖ 𝐵) ≼ 𝐴)) | |
17 | 14, 15, 16 | mpisyl 21 | . . 3 ⊢ ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card ∧ ω ≼ 𝐴) → (𝐴 ∖ 𝐵) ≼ 𝐴) |
18 | domtr 9005 | . . . 4 ⊢ (((𝐴 ∖ 𝐵) ≼ 𝐴 ∧ 𝐴 ≼ 𝐵) → (𝐴 ∖ 𝐵) ≼ 𝐵) | |
19 | 18 | ex 413 | . . 3 ⊢ ((𝐴 ∖ 𝐵) ≼ 𝐴 → (𝐴 ≼ 𝐵 → (𝐴 ∖ 𝐵) ≼ 𝐵)) |
20 | 17, 19 | syl 17 | . 2 ⊢ ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card ∧ ω ≼ 𝐴) → (𝐴 ≼ 𝐵 → (𝐴 ∖ 𝐵) ≼ 𝐵)) |
21 | 13, 20 | impbid 211 | 1 ⊢ ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card ∧ ω ≼ 𝐴) → ((𝐴 ∖ 𝐵) ≼ 𝐵 ↔ 𝐴 ≼ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ w3a 1087 ∈ wcel 2106 ∖ cdif 3945 ⊆ wss 3948 class class class wbr 5148 dom cdm 5676 ωcom 7857 ≈ cen 8938 ≼ cdom 8939 ≺ csdm 8940 cardccrd 9932 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7727 ax-inf2 9638 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-se 5632 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-isom 6552 df-riota 7367 df-ov 7414 df-oprab 7415 df-mpo 7416 df-om 7858 df-1st 7977 df-2nd 7978 df-frecs 8268 df-wrecs 8299 df-recs 8373 df-rdg 8412 df-1o 8468 df-2o 8469 df-oadd 8472 df-er 8705 df-en 8942 df-dom 8943 df-sdom 8944 df-fin 8945 df-oi 9507 df-dju 9898 df-card 9936 |
This theorem is referenced by: axgroth3 10828 |
Copyright terms: Public domain | W3C validator |