Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  infdif2 Structured version   Visualization version   GIF version

Theorem infdif2 9609
 Description: Cardinality ordering for an infinite class difference. (Contributed by NM, 24-Mar-2007.) (Revised by Mario Carneiro, 29-Apr-2015.)
Assertion
Ref Expression
infdif2 ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card ∧ ω ≼ 𝐴) → ((𝐴𝐵) ≼ 𝐵𝐴𝐵))

Proof of Theorem infdif2
StepHypRef Expression
1 domnsym 8619 . . . . . . 7 ((𝐴𝐵) ≼ 𝐵 → ¬ 𝐵 ≺ (𝐴𝐵))
2 simp3 1135 . . . . . . . 8 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴𝐵𝐴) → 𝐵𝐴)
3 infdif 9608 . . . . . . . . 9 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴𝐵𝐴) → (𝐴𝐵) ≈ 𝐴)
43ensymd 8535 . . . . . . . 8 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴𝐵𝐴) → 𝐴 ≈ (𝐴𝐵))
5 sdomentr 8627 . . . . . . . 8 ((𝐵𝐴𝐴 ≈ (𝐴𝐵)) → 𝐵 ≺ (𝐴𝐵))
62, 4, 5syl2anc 587 . . . . . . 7 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴𝐵𝐴) → 𝐵 ≺ (𝐴𝐵))
71, 6nsyl3 140 . . . . . 6 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴𝐵𝐴) → ¬ (𝐴𝐵) ≼ 𝐵)
873expia 1118 . . . . 5 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → (𝐵𝐴 → ¬ (𝐴𝐵) ≼ 𝐵))
983adant2 1128 . . . 4 ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card ∧ ω ≼ 𝐴) → (𝐵𝐴 → ¬ (𝐴𝐵) ≼ 𝐵))
109con2d 136 . . 3 ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card ∧ ω ≼ 𝐴) → ((𝐴𝐵) ≼ 𝐵 → ¬ 𝐵𝐴))
11 domtri2 9394 . . . 4 ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card) → (𝐴𝐵 ↔ ¬ 𝐵𝐴))
12113adant3 1129 . . 3 ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card ∧ ω ≼ 𝐴) → (𝐴𝐵 ↔ ¬ 𝐵𝐴))
1310, 12sylibrd 262 . 2 ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card ∧ ω ≼ 𝐴) → ((𝐴𝐵) ≼ 𝐵𝐴𝐵))
14 simp1 1133 . . . 4 ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card ∧ ω ≼ 𝐴) → 𝐴 ∈ dom card)
15 difss 4084 . . . 4 (𝐴𝐵) ⊆ 𝐴
16 ssdomg 8530 . . . 4 (𝐴 ∈ dom card → ((𝐴𝐵) ⊆ 𝐴 → (𝐴𝐵) ≼ 𝐴))
1714, 15, 16mpisyl 21 . . 3 ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card ∧ ω ≼ 𝐴) → (𝐴𝐵) ≼ 𝐴)
18 domtr 8537 . . . 4 (((𝐴𝐵) ≼ 𝐴𝐴𝐵) → (𝐴𝐵) ≼ 𝐵)
1918ex 416 . . 3 ((𝐴𝐵) ≼ 𝐴 → (𝐴𝐵 → (𝐴𝐵) ≼ 𝐵))
2017, 19syl 17 . 2 ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card ∧ ω ≼ 𝐴) → (𝐴𝐵 → (𝐴𝐵) ≼ 𝐵))
2113, 20impbid 215 1 ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card ∧ ω ≼ 𝐴) → ((𝐴𝐵) ≼ 𝐵𝐴𝐵))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 209   ∧ w3a 1084   ∈ wcel 2115   ∖ cdif 3907   ⊆ wss 3910   class class class wbr 5039  dom cdm 5528  ωcom 7555   ≈ cen 8481   ≼ cdom 8482   ≺ csdm 8483  cardccrd 9340 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2178  ax-ext 2793  ax-rep 5163  ax-sep 5176  ax-nul 5183  ax-pow 5239  ax-pr 5303  ax-un 7436  ax-inf2 9080 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2623  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2892  df-nfc 2960  df-ne 3008  df-ral 3131  df-rex 3132  df-reu 3133  df-rmo 3134  df-rab 3135  df-v 3473  df-sbc 3750  df-csb 3858  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4267  df-if 4441  df-pw 4514  df-sn 4541  df-pr 4543  df-tp 4545  df-op 4547  df-uni 4812  df-int 4850  df-iun 4894  df-br 5040  df-opab 5102  df-mpt 5120  df-tr 5146  df-id 5433  df-eprel 5438  df-po 5447  df-so 5448  df-fr 5487  df-se 5488  df-we 5489  df-xp 5534  df-rel 5535  df-cnv 5536  df-co 5537  df-dm 5538  df-rn 5539  df-res 5540  df-ima 5541  df-pred 6121  df-ord 6167  df-on 6168  df-lim 6169  df-suc 6170  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-isom 6337  df-riota 7088  df-ov 7133  df-oprab 7134  df-mpo 7135  df-om 7556  df-1st 7664  df-2nd 7665  df-wrecs 7922  df-recs 7983  df-rdg 8021  df-1o 8077  df-2o 8078  df-oadd 8081  df-er 8264  df-en 8485  df-dom 8486  df-sdom 8487  df-fin 8488  df-oi 8950  df-dju 9306  df-card 9344 This theorem is referenced by:  axgroth3  10230
 Copyright terms: Public domain W3C validator