Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > infdif2 | Structured version Visualization version GIF version |
Description: Cardinality ordering for an infinite class difference. (Contributed by NM, 24-Mar-2007.) (Revised by Mario Carneiro, 29-Apr-2015.) |
Ref | Expression |
---|---|
infdif2 | ⊢ ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card ∧ ω ≼ 𝐴) → ((𝐴 ∖ 𝐵) ≼ 𝐵 ↔ 𝐴 ≼ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | domnsym 8839 | . . . . . . 7 ⊢ ((𝐴 ∖ 𝐵) ≼ 𝐵 → ¬ 𝐵 ≺ (𝐴 ∖ 𝐵)) | |
2 | simp3 1136 | . . . . . . . 8 ⊢ ((𝐴 ∈ dom card ∧ ω ≼ 𝐴 ∧ 𝐵 ≺ 𝐴) → 𝐵 ≺ 𝐴) | |
3 | infdif 9896 | . . . . . . . . 9 ⊢ ((𝐴 ∈ dom card ∧ ω ≼ 𝐴 ∧ 𝐵 ≺ 𝐴) → (𝐴 ∖ 𝐵) ≈ 𝐴) | |
4 | 3 | ensymd 8746 | . . . . . . . 8 ⊢ ((𝐴 ∈ dom card ∧ ω ≼ 𝐴 ∧ 𝐵 ≺ 𝐴) → 𝐴 ≈ (𝐴 ∖ 𝐵)) |
5 | sdomentr 8847 | . . . . . . . 8 ⊢ ((𝐵 ≺ 𝐴 ∧ 𝐴 ≈ (𝐴 ∖ 𝐵)) → 𝐵 ≺ (𝐴 ∖ 𝐵)) | |
6 | 2, 4, 5 | syl2anc 583 | . . . . . . 7 ⊢ ((𝐴 ∈ dom card ∧ ω ≼ 𝐴 ∧ 𝐵 ≺ 𝐴) → 𝐵 ≺ (𝐴 ∖ 𝐵)) |
7 | 1, 6 | nsyl3 138 | . . . . . 6 ⊢ ((𝐴 ∈ dom card ∧ ω ≼ 𝐴 ∧ 𝐵 ≺ 𝐴) → ¬ (𝐴 ∖ 𝐵) ≼ 𝐵) |
8 | 7 | 3expia 1119 | . . . . 5 ⊢ ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → (𝐵 ≺ 𝐴 → ¬ (𝐴 ∖ 𝐵) ≼ 𝐵)) |
9 | 8 | 3adant2 1129 | . . . 4 ⊢ ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card ∧ ω ≼ 𝐴) → (𝐵 ≺ 𝐴 → ¬ (𝐴 ∖ 𝐵) ≼ 𝐵)) |
10 | 9 | con2d 134 | . . 3 ⊢ ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card ∧ ω ≼ 𝐴) → ((𝐴 ∖ 𝐵) ≼ 𝐵 → ¬ 𝐵 ≺ 𝐴)) |
11 | domtri2 9678 | . . . 4 ⊢ ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card) → (𝐴 ≼ 𝐵 ↔ ¬ 𝐵 ≺ 𝐴)) | |
12 | 11 | 3adant3 1130 | . . 3 ⊢ ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card ∧ ω ≼ 𝐴) → (𝐴 ≼ 𝐵 ↔ ¬ 𝐵 ≺ 𝐴)) |
13 | 10, 12 | sylibrd 258 | . 2 ⊢ ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card ∧ ω ≼ 𝐴) → ((𝐴 ∖ 𝐵) ≼ 𝐵 → 𝐴 ≼ 𝐵)) |
14 | simp1 1134 | . . . 4 ⊢ ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card ∧ ω ≼ 𝐴) → 𝐴 ∈ dom card) | |
15 | difss 4062 | . . . 4 ⊢ (𝐴 ∖ 𝐵) ⊆ 𝐴 | |
16 | ssdomg 8741 | . . . 4 ⊢ (𝐴 ∈ dom card → ((𝐴 ∖ 𝐵) ⊆ 𝐴 → (𝐴 ∖ 𝐵) ≼ 𝐴)) | |
17 | 14, 15, 16 | mpisyl 21 | . . 3 ⊢ ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card ∧ ω ≼ 𝐴) → (𝐴 ∖ 𝐵) ≼ 𝐴) |
18 | domtr 8748 | . . . 4 ⊢ (((𝐴 ∖ 𝐵) ≼ 𝐴 ∧ 𝐴 ≼ 𝐵) → (𝐴 ∖ 𝐵) ≼ 𝐵) | |
19 | 18 | ex 412 | . . 3 ⊢ ((𝐴 ∖ 𝐵) ≼ 𝐴 → (𝐴 ≼ 𝐵 → (𝐴 ∖ 𝐵) ≼ 𝐵)) |
20 | 17, 19 | syl 17 | . 2 ⊢ ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card ∧ ω ≼ 𝐴) → (𝐴 ≼ 𝐵 → (𝐴 ∖ 𝐵) ≼ 𝐵)) |
21 | 13, 20 | impbid 211 | 1 ⊢ ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card ∧ ω ≼ 𝐴) → ((𝐴 ∖ 𝐵) ≼ 𝐵 ↔ 𝐴 ≼ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ w3a 1085 ∈ wcel 2108 ∖ cdif 3880 ⊆ wss 3883 class class class wbr 5070 dom cdm 5580 ωcom 7687 ≈ cen 8688 ≼ cdom 8689 ≺ csdm 8690 cardccrd 9624 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-inf2 9329 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-se 5536 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-isom 6427 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-2o 8268 df-oadd 8271 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-oi 9199 df-dju 9590 df-card 9628 |
This theorem is referenced by: axgroth3 10518 |
Copyright terms: Public domain | W3C validator |