Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > infdif2 | Structured version Visualization version GIF version |
Description: Cardinality ordering for an infinite class difference. (Contributed by NM, 24-Mar-2007.) (Revised by Mario Carneiro, 29-Apr-2015.) |
Ref | Expression |
---|---|
infdif2 | ⊢ ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card ∧ ω ≼ 𝐴) → ((𝐴 ∖ 𝐵) ≼ 𝐵 ↔ 𝐴 ≼ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | domnsym 8886 | . . . . . . 7 ⊢ ((𝐴 ∖ 𝐵) ≼ 𝐵 → ¬ 𝐵 ≺ (𝐴 ∖ 𝐵)) | |
2 | simp3 1137 | . . . . . . . 8 ⊢ ((𝐴 ∈ dom card ∧ ω ≼ 𝐴 ∧ 𝐵 ≺ 𝐴) → 𝐵 ≺ 𝐴) | |
3 | infdif 9965 | . . . . . . . . 9 ⊢ ((𝐴 ∈ dom card ∧ ω ≼ 𝐴 ∧ 𝐵 ≺ 𝐴) → (𝐴 ∖ 𝐵) ≈ 𝐴) | |
4 | 3 | ensymd 8791 | . . . . . . . 8 ⊢ ((𝐴 ∈ dom card ∧ ω ≼ 𝐴 ∧ 𝐵 ≺ 𝐴) → 𝐴 ≈ (𝐴 ∖ 𝐵)) |
5 | sdomentr 8898 | . . . . . . . 8 ⊢ ((𝐵 ≺ 𝐴 ∧ 𝐴 ≈ (𝐴 ∖ 𝐵)) → 𝐵 ≺ (𝐴 ∖ 𝐵)) | |
6 | 2, 4, 5 | syl2anc 584 | . . . . . . 7 ⊢ ((𝐴 ∈ dom card ∧ ω ≼ 𝐴 ∧ 𝐵 ≺ 𝐴) → 𝐵 ≺ (𝐴 ∖ 𝐵)) |
7 | 1, 6 | nsyl3 138 | . . . . . 6 ⊢ ((𝐴 ∈ dom card ∧ ω ≼ 𝐴 ∧ 𝐵 ≺ 𝐴) → ¬ (𝐴 ∖ 𝐵) ≼ 𝐵) |
8 | 7 | 3expia 1120 | . . . . 5 ⊢ ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → (𝐵 ≺ 𝐴 → ¬ (𝐴 ∖ 𝐵) ≼ 𝐵)) |
9 | 8 | 3adant2 1130 | . . . 4 ⊢ ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card ∧ ω ≼ 𝐴) → (𝐵 ≺ 𝐴 → ¬ (𝐴 ∖ 𝐵) ≼ 𝐵)) |
10 | 9 | con2d 134 | . . 3 ⊢ ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card ∧ ω ≼ 𝐴) → ((𝐴 ∖ 𝐵) ≼ 𝐵 → ¬ 𝐵 ≺ 𝐴)) |
11 | domtri2 9747 | . . . 4 ⊢ ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card) → (𝐴 ≼ 𝐵 ↔ ¬ 𝐵 ≺ 𝐴)) | |
12 | 11 | 3adant3 1131 | . . 3 ⊢ ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card ∧ ω ≼ 𝐴) → (𝐴 ≼ 𝐵 ↔ ¬ 𝐵 ≺ 𝐴)) |
13 | 10, 12 | sylibrd 258 | . 2 ⊢ ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card ∧ ω ≼ 𝐴) → ((𝐴 ∖ 𝐵) ≼ 𝐵 → 𝐴 ≼ 𝐵)) |
14 | simp1 1135 | . . . 4 ⊢ ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card ∧ ω ≼ 𝐴) → 𝐴 ∈ dom card) | |
15 | difss 4066 | . . . 4 ⊢ (𝐴 ∖ 𝐵) ⊆ 𝐴 | |
16 | ssdomg 8786 | . . . 4 ⊢ (𝐴 ∈ dom card → ((𝐴 ∖ 𝐵) ⊆ 𝐴 → (𝐴 ∖ 𝐵) ≼ 𝐴)) | |
17 | 14, 15, 16 | mpisyl 21 | . . 3 ⊢ ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card ∧ ω ≼ 𝐴) → (𝐴 ∖ 𝐵) ≼ 𝐴) |
18 | domtr 8793 | . . . 4 ⊢ (((𝐴 ∖ 𝐵) ≼ 𝐴 ∧ 𝐴 ≼ 𝐵) → (𝐴 ∖ 𝐵) ≼ 𝐵) | |
19 | 18 | ex 413 | . . 3 ⊢ ((𝐴 ∖ 𝐵) ≼ 𝐴 → (𝐴 ≼ 𝐵 → (𝐴 ∖ 𝐵) ≼ 𝐵)) |
20 | 17, 19 | syl 17 | . 2 ⊢ ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card ∧ ω ≼ 𝐴) → (𝐴 ≼ 𝐵 → (𝐴 ∖ 𝐵) ≼ 𝐵)) |
21 | 13, 20 | impbid 211 | 1 ⊢ ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card ∧ ω ≼ 𝐴) → ((𝐴 ∖ 𝐵) ≼ 𝐵 ↔ 𝐴 ≼ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ w3a 1086 ∈ wcel 2106 ∖ cdif 3884 ⊆ wss 3887 class class class wbr 5074 dom cdm 5589 ωcom 7712 ≈ cen 8730 ≼ cdom 8731 ≺ csdm 8732 cardccrd 9693 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-inf2 9399 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-se 5545 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-isom 6442 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-2o 8298 df-oadd 8301 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-oi 9269 df-dju 9659 df-card 9697 |
This theorem is referenced by: axgroth3 10587 |
Copyright terms: Public domain | W3C validator |