MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  infdif2 Structured version   Visualization version   GIF version

Theorem infdif2 9634
Description: Cardinality ordering for an infinite class difference. (Contributed by NM, 24-Mar-2007.) (Revised by Mario Carneiro, 29-Apr-2015.)
Assertion
Ref Expression
infdif2 ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card ∧ ω ≼ 𝐴) → ((𝐴𝐵) ≼ 𝐵𝐴𝐵))

Proof of Theorem infdif2
StepHypRef Expression
1 domnsym 8645 . . . . . . 7 ((𝐴𝐵) ≼ 𝐵 → ¬ 𝐵 ≺ (𝐴𝐵))
2 simp3 1134 . . . . . . . 8 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴𝐵𝐴) → 𝐵𝐴)
3 infdif 9633 . . . . . . . . 9 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴𝐵𝐴) → (𝐴𝐵) ≈ 𝐴)
43ensymd 8562 . . . . . . . 8 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴𝐵𝐴) → 𝐴 ≈ (𝐴𝐵))
5 sdomentr 8653 . . . . . . . 8 ((𝐵𝐴𝐴 ≈ (𝐴𝐵)) → 𝐵 ≺ (𝐴𝐵))
62, 4, 5syl2anc 586 . . . . . . 7 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴𝐵𝐴) → 𝐵 ≺ (𝐴𝐵))
71, 6nsyl3 140 . . . . . 6 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴𝐵𝐴) → ¬ (𝐴𝐵) ≼ 𝐵)
873expia 1117 . . . . 5 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → (𝐵𝐴 → ¬ (𝐴𝐵) ≼ 𝐵))
983adant2 1127 . . . 4 ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card ∧ ω ≼ 𝐴) → (𝐵𝐴 → ¬ (𝐴𝐵) ≼ 𝐵))
109con2d 136 . . 3 ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card ∧ ω ≼ 𝐴) → ((𝐴𝐵) ≼ 𝐵 → ¬ 𝐵𝐴))
11 domtri2 9420 . . . 4 ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card) → (𝐴𝐵 ↔ ¬ 𝐵𝐴))
12113adant3 1128 . . 3 ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card ∧ ω ≼ 𝐴) → (𝐴𝐵 ↔ ¬ 𝐵𝐴))
1310, 12sylibrd 261 . 2 ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card ∧ ω ≼ 𝐴) → ((𝐴𝐵) ≼ 𝐵𝐴𝐵))
14 simp1 1132 . . . 4 ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card ∧ ω ≼ 𝐴) → 𝐴 ∈ dom card)
15 difss 4110 . . . 4 (𝐴𝐵) ⊆ 𝐴
16 ssdomg 8557 . . . 4 (𝐴 ∈ dom card → ((𝐴𝐵) ⊆ 𝐴 → (𝐴𝐵) ≼ 𝐴))
1714, 15, 16mpisyl 21 . . 3 ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card ∧ ω ≼ 𝐴) → (𝐴𝐵) ≼ 𝐴)
18 domtr 8564 . . . 4 (((𝐴𝐵) ≼ 𝐴𝐴𝐵) → (𝐴𝐵) ≼ 𝐵)
1918ex 415 . . 3 ((𝐴𝐵) ≼ 𝐴 → (𝐴𝐵 → (𝐴𝐵) ≼ 𝐵))
2017, 19syl 17 . 2 ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card ∧ ω ≼ 𝐴) → (𝐴𝐵 → (𝐴𝐵) ≼ 𝐵))
2113, 20impbid 214 1 ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card ∧ ω ≼ 𝐴) → ((𝐴𝐵) ≼ 𝐵𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  w3a 1083  wcel 2114  cdif 3935  wss 3938   class class class wbr 5068  dom cdm 5557  ωcom 7582  cen 8508  cdom 8509  csdm 8510  cardccrd 9366
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-inf2 9106
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-se 5517  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-isom 6366  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-2o 8105  df-oadd 8108  df-er 8291  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-oi 8976  df-dju 9332  df-card 9370
This theorem is referenced by:  axgroth3  10255
  Copyright terms: Public domain W3C validator