| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > infdif2 | Structured version Visualization version GIF version | ||
| Description: Cardinality ordering for an infinite class difference. (Contributed by NM, 24-Mar-2007.) (Revised by Mario Carneiro, 29-Apr-2015.) |
| Ref | Expression |
|---|---|
| infdif2 | ⊢ ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card ∧ ω ≼ 𝐴) → ((𝐴 ∖ 𝐵) ≼ 𝐵 ↔ 𝐴 ≼ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | domnsym 9067 | . . . . . . 7 ⊢ ((𝐴 ∖ 𝐵) ≼ 𝐵 → ¬ 𝐵 ≺ (𝐴 ∖ 𝐵)) | |
| 2 | simp3 1138 | . . . . . . . 8 ⊢ ((𝐴 ∈ dom card ∧ ω ≼ 𝐴 ∧ 𝐵 ≺ 𝐴) → 𝐵 ≺ 𝐴) | |
| 3 | infdif 10161 | . . . . . . . . 9 ⊢ ((𝐴 ∈ dom card ∧ ω ≼ 𝐴 ∧ 𝐵 ≺ 𝐴) → (𝐴 ∖ 𝐵) ≈ 𝐴) | |
| 4 | 3 | ensymd 8976 | . . . . . . . 8 ⊢ ((𝐴 ∈ dom card ∧ ω ≼ 𝐴 ∧ 𝐵 ≺ 𝐴) → 𝐴 ≈ (𝐴 ∖ 𝐵)) |
| 5 | sdomentr 9075 | . . . . . . . 8 ⊢ ((𝐵 ≺ 𝐴 ∧ 𝐴 ≈ (𝐴 ∖ 𝐵)) → 𝐵 ≺ (𝐴 ∖ 𝐵)) | |
| 6 | 2, 4, 5 | syl2anc 584 | . . . . . . 7 ⊢ ((𝐴 ∈ dom card ∧ ω ≼ 𝐴 ∧ 𝐵 ≺ 𝐴) → 𝐵 ≺ (𝐴 ∖ 𝐵)) |
| 7 | 1, 6 | nsyl3 138 | . . . . . 6 ⊢ ((𝐴 ∈ dom card ∧ ω ≼ 𝐴 ∧ 𝐵 ≺ 𝐴) → ¬ (𝐴 ∖ 𝐵) ≼ 𝐵) |
| 8 | 7 | 3expia 1121 | . . . . 5 ⊢ ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → (𝐵 ≺ 𝐴 → ¬ (𝐴 ∖ 𝐵) ≼ 𝐵)) |
| 9 | 8 | 3adant2 1131 | . . . 4 ⊢ ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card ∧ ω ≼ 𝐴) → (𝐵 ≺ 𝐴 → ¬ (𝐴 ∖ 𝐵) ≼ 𝐵)) |
| 10 | 9 | con2d 134 | . . 3 ⊢ ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card ∧ ω ≼ 𝐴) → ((𝐴 ∖ 𝐵) ≼ 𝐵 → ¬ 𝐵 ≺ 𝐴)) |
| 11 | domtri2 9942 | . . . 4 ⊢ ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card) → (𝐴 ≼ 𝐵 ↔ ¬ 𝐵 ≺ 𝐴)) | |
| 12 | 11 | 3adant3 1132 | . . 3 ⊢ ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card ∧ ω ≼ 𝐴) → (𝐴 ≼ 𝐵 ↔ ¬ 𝐵 ≺ 𝐴)) |
| 13 | 10, 12 | sylibrd 259 | . 2 ⊢ ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card ∧ ω ≼ 𝐴) → ((𝐴 ∖ 𝐵) ≼ 𝐵 → 𝐴 ≼ 𝐵)) |
| 14 | simp1 1136 | . . . 4 ⊢ ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card ∧ ω ≼ 𝐴) → 𝐴 ∈ dom card) | |
| 15 | difss 4099 | . . . 4 ⊢ (𝐴 ∖ 𝐵) ⊆ 𝐴 | |
| 16 | ssdomg 8971 | . . . 4 ⊢ (𝐴 ∈ dom card → ((𝐴 ∖ 𝐵) ⊆ 𝐴 → (𝐴 ∖ 𝐵) ≼ 𝐴)) | |
| 17 | 14, 15, 16 | mpisyl 21 | . . 3 ⊢ ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card ∧ ω ≼ 𝐴) → (𝐴 ∖ 𝐵) ≼ 𝐴) |
| 18 | domtr 8978 | . . . 4 ⊢ (((𝐴 ∖ 𝐵) ≼ 𝐴 ∧ 𝐴 ≼ 𝐵) → (𝐴 ∖ 𝐵) ≼ 𝐵) | |
| 19 | 18 | ex 412 | . . 3 ⊢ ((𝐴 ∖ 𝐵) ≼ 𝐴 → (𝐴 ≼ 𝐵 → (𝐴 ∖ 𝐵) ≼ 𝐵)) |
| 20 | 17, 19 | syl 17 | . 2 ⊢ ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card ∧ ω ≼ 𝐴) → (𝐴 ≼ 𝐵 → (𝐴 ∖ 𝐵) ≼ 𝐵)) |
| 21 | 13, 20 | impbid 212 | 1 ⊢ ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card ∧ ω ≼ 𝐴) → ((𝐴 ∖ 𝐵) ≼ 𝐵 ↔ 𝐴 ≼ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ w3a 1086 ∈ wcel 2109 ∖ cdif 3911 ⊆ wss 3914 class class class wbr 5107 dom cdm 5638 ωcom 7842 ≈ cen 8915 ≼ cdom 8916 ≺ csdm 8917 cardccrd 9888 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-inf2 9594 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-se 5592 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-isom 6520 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-2o 8435 df-oadd 8438 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-oi 9463 df-dju 9854 df-card 9892 |
| This theorem is referenced by: axgroth3 10784 |
| Copyright terms: Public domain | W3C validator |