MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pcmpt2 Structured version   Visualization version   GIF version

Theorem pcmpt2 16001
Description: Dividing two prime count maps yields a number with all dividing primes confined to an interval. (Contributed by Mario Carneiro, 14-Mar-2014.)
Hypotheses
Ref Expression
pcmpt.1 𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (𝑛𝐴), 1))
pcmpt.2 (𝜑 → ∀𝑛 ∈ ℙ 𝐴 ∈ ℕ0)
pcmpt.3 (𝜑𝑁 ∈ ℕ)
pcmpt.4 (𝜑𝑃 ∈ ℙ)
pcmpt.5 (𝑛 = 𝑃𝐴 = 𝐵)
pcmpt2.6 (𝜑𝑀 ∈ (ℤ𝑁))
Assertion
Ref Expression
pcmpt2 (𝜑 → (𝑃 pCnt ((seq1( · , 𝐹)‘𝑀) / (seq1( · , 𝐹)‘𝑁))) = if((𝑃𝑀 ∧ ¬ 𝑃𝑁), 𝐵, 0))
Distinct variable groups:   𝐵,𝑛   𝑃,𝑛
Allowed substitution hints:   𝜑(𝑛)   𝐴(𝑛)   𝐹(𝑛)   𝑀(𝑛)   𝑁(𝑛)

Proof of Theorem pcmpt2
StepHypRef Expression
1 pcmpt.4 . . 3 (𝜑𝑃 ∈ ℙ)
2 pcmpt.1 . . . . . . 7 𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (𝑛𝐴), 1))
3 pcmpt.2 . . . . . . 7 (𝜑 → ∀𝑛 ∈ ℙ 𝐴 ∈ ℕ0)
42, 3pcmptcl 15999 . . . . . 6 (𝜑 → (𝐹:ℕ⟶ℕ ∧ seq1( · , 𝐹):ℕ⟶ℕ))
54simprd 491 . . . . 5 (𝜑 → seq1( · , 𝐹):ℕ⟶ℕ)
6 pcmpt.3 . . . . . 6 (𝜑𝑁 ∈ ℕ)
7 pcmpt2.6 . . . . . 6 (𝜑𝑀 ∈ (ℤ𝑁))
8 eluznn 12065 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ (ℤ𝑁)) → 𝑀 ∈ ℕ)
96, 7, 8syl2anc 579 . . . . 5 (𝜑𝑀 ∈ ℕ)
105, 9ffvelrnd 6624 . . . 4 (𝜑 → (seq1( · , 𝐹)‘𝑀) ∈ ℕ)
1110nnzd 11833 . . 3 (𝜑 → (seq1( · , 𝐹)‘𝑀) ∈ ℤ)
1210nnne0d 11425 . . 3 (𝜑 → (seq1( · , 𝐹)‘𝑀) ≠ 0)
135, 6ffvelrnd 6624 . . 3 (𝜑 → (seq1( · , 𝐹)‘𝑁) ∈ ℕ)
14 pcdiv 15961 . . 3 ((𝑃 ∈ ℙ ∧ ((seq1( · , 𝐹)‘𝑀) ∈ ℤ ∧ (seq1( · , 𝐹)‘𝑀) ≠ 0) ∧ (seq1( · , 𝐹)‘𝑁) ∈ ℕ) → (𝑃 pCnt ((seq1( · , 𝐹)‘𝑀) / (seq1( · , 𝐹)‘𝑁))) = ((𝑃 pCnt (seq1( · , 𝐹)‘𝑀)) − (𝑃 pCnt (seq1( · , 𝐹)‘𝑁))))
151, 11, 12, 13, 14syl121anc 1443 . 2 (𝜑 → (𝑃 pCnt ((seq1( · , 𝐹)‘𝑀) / (seq1( · , 𝐹)‘𝑁))) = ((𝑃 pCnt (seq1( · , 𝐹)‘𝑀)) − (𝑃 pCnt (seq1( · , 𝐹)‘𝑁))))
16 pcmpt.5 . . . 4 (𝑛 = 𝑃𝐴 = 𝐵)
172, 3, 9, 1, 16pcmpt 16000 . . 3 (𝜑 → (𝑃 pCnt (seq1( · , 𝐹)‘𝑀)) = if(𝑃𝑀, 𝐵, 0))
182, 3, 6, 1, 16pcmpt 16000 . . 3 (𝜑 → (𝑃 pCnt (seq1( · , 𝐹)‘𝑁)) = if(𝑃𝑁, 𝐵, 0))
1917, 18oveq12d 6940 . 2 (𝜑 → ((𝑃 pCnt (seq1( · , 𝐹)‘𝑀)) − (𝑃 pCnt (seq1( · , 𝐹)‘𝑁))) = (if(𝑃𝑀, 𝐵, 0) − if(𝑃𝑁, 𝐵, 0)))
2016eleq1d 2843 . . . . . . . 8 (𝑛 = 𝑃 → (𝐴 ∈ ℕ0𝐵 ∈ ℕ0))
2120, 3, 1rspcdva 3516 . . . . . . 7 (𝜑𝐵 ∈ ℕ0)
2221nn0cnd 11704 . . . . . 6 (𝜑𝐵 ∈ ℂ)
2322subidd 10722 . . . . 5 (𝜑 → (𝐵𝐵) = 0)
2423adantr 474 . . . 4 ((𝜑𝑃𝑁) → (𝐵𝐵) = 0)
25 prmnn 15793 . . . . . . . . . 10 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
261, 25syl 17 . . . . . . . . 9 (𝜑𝑃 ∈ ℕ)
2726nnred 11391 . . . . . . . 8 (𝜑𝑃 ∈ ℝ)
2827adantr 474 . . . . . . 7 ((𝜑𝑃𝑁) → 𝑃 ∈ ℝ)
296nnred 11391 . . . . . . . 8 (𝜑𝑁 ∈ ℝ)
3029adantr 474 . . . . . . 7 ((𝜑𝑃𝑁) → 𝑁 ∈ ℝ)
319nnred 11391 . . . . . . . 8 (𝜑𝑀 ∈ ℝ)
3231adantr 474 . . . . . . 7 ((𝜑𝑃𝑁) → 𝑀 ∈ ℝ)
33 simpr 479 . . . . . . 7 ((𝜑𝑃𝑁) → 𝑃𝑁)
34 eluzle 12005 . . . . . . . . 9 (𝑀 ∈ (ℤ𝑁) → 𝑁𝑀)
357, 34syl 17 . . . . . . . 8 (𝜑𝑁𝑀)
3635adantr 474 . . . . . . 7 ((𝜑𝑃𝑁) → 𝑁𝑀)
3728, 30, 32, 33, 36letrd 10533 . . . . . 6 ((𝜑𝑃𝑁) → 𝑃𝑀)
3837iftrued 4314 . . . . 5 ((𝜑𝑃𝑁) → if(𝑃𝑀, 𝐵, 0) = 𝐵)
39 iftrue 4312 . . . . . 6 (𝑃𝑁 → if(𝑃𝑁, 𝐵, 0) = 𝐵)
4039adantl 475 . . . . 5 ((𝜑𝑃𝑁) → if(𝑃𝑁, 𝐵, 0) = 𝐵)
4138, 40oveq12d 6940 . . . 4 ((𝜑𝑃𝑁) → (if(𝑃𝑀, 𝐵, 0) − if(𝑃𝑁, 𝐵, 0)) = (𝐵𝐵))
42 simpr 479 . . . . . 6 ((𝑃𝑀 ∧ ¬ 𝑃𝑁) → ¬ 𝑃𝑁)
4342, 33nsyl3 136 . . . . 5 ((𝜑𝑃𝑁) → ¬ (𝑃𝑀 ∧ ¬ 𝑃𝑁))
4443iffalsed 4317 . . . 4 ((𝜑𝑃𝑁) → if((𝑃𝑀 ∧ ¬ 𝑃𝑁), 𝐵, 0) = 0)
4524, 41, 443eqtr4d 2823 . . 3 ((𝜑𝑃𝑁) → (if(𝑃𝑀, 𝐵, 0) − if(𝑃𝑁, 𝐵, 0)) = if((𝑃𝑀 ∧ ¬ 𝑃𝑁), 𝐵, 0))
46 iffalse 4315 . . . . . 6 𝑃𝑁 → if(𝑃𝑁, 𝐵, 0) = 0)
4746oveq2d 6938 . . . . 5 𝑃𝑁 → (if(𝑃𝑀, 𝐵, 0) − if(𝑃𝑁, 𝐵, 0)) = (if(𝑃𝑀, 𝐵, 0) − 0))
48 0cn 10368 . . . . . . 7 0 ∈ ℂ
49 ifcl 4350 . . . . . . 7 ((𝐵 ∈ ℂ ∧ 0 ∈ ℂ) → if(𝑃𝑀, 𝐵, 0) ∈ ℂ)
5022, 48, 49sylancl 580 . . . . . 6 (𝜑 → if(𝑃𝑀, 𝐵, 0) ∈ ℂ)
5150subid1d 10723 . . . . 5 (𝜑 → (if(𝑃𝑀, 𝐵, 0) − 0) = if(𝑃𝑀, 𝐵, 0))
5247, 51sylan9eqr 2835 . . . 4 ((𝜑 ∧ ¬ 𝑃𝑁) → (if(𝑃𝑀, 𝐵, 0) − if(𝑃𝑁, 𝐵, 0)) = if(𝑃𝑀, 𝐵, 0))
53 simpr 479 . . . . . 6 ((𝜑 ∧ ¬ 𝑃𝑁) → ¬ 𝑃𝑁)
5453biantrud 527 . . . . 5 ((𝜑 ∧ ¬ 𝑃𝑁) → (𝑃𝑀 ↔ (𝑃𝑀 ∧ ¬ 𝑃𝑁)))
5554ifbid 4328 . . . 4 ((𝜑 ∧ ¬ 𝑃𝑁) → if(𝑃𝑀, 𝐵, 0) = if((𝑃𝑀 ∧ ¬ 𝑃𝑁), 𝐵, 0))
5652, 55eqtrd 2813 . . 3 ((𝜑 ∧ ¬ 𝑃𝑁) → (if(𝑃𝑀, 𝐵, 0) − if(𝑃𝑁, 𝐵, 0)) = if((𝑃𝑀 ∧ ¬ 𝑃𝑁), 𝐵, 0))
5745, 56pm2.61dan 803 . 2 (𝜑 → (if(𝑃𝑀, 𝐵, 0) − if(𝑃𝑁, 𝐵, 0)) = if((𝑃𝑀 ∧ ¬ 𝑃𝑁), 𝐵, 0))
5815, 19, 573eqtrd 2817 1 (𝜑 → (𝑃 pCnt ((seq1( · , 𝐹)‘𝑀) / (seq1( · , 𝐹)‘𝑁))) = if((𝑃𝑀 ∧ ¬ 𝑃𝑁), 𝐵, 0))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 386   = wceq 1601  wcel 2106  wne 2968  wral 3089  ifcif 4306   class class class wbr 4886  cmpt 4965  wf 6131  cfv 6135  (class class class)co 6922  cc 10270  cr 10271  0cc0 10272  1c1 10273   · cmul 10277  cle 10412  cmin 10606   / cdiv 11032  cn 11374  0cn0 11642  cz 11728  cuz 11992  seqcseq 13119  cexp 13178  cprime 15790   pCnt cpc 15945
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2054  ax-8 2108  ax-9 2115  ax-10 2134  ax-11 2149  ax-12 2162  ax-13 2333  ax-ext 2753  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138  ax-un 7226  ax-cnex 10328  ax-resscn 10329  ax-1cn 10330  ax-icn 10331  ax-addcl 10332  ax-addrcl 10333  ax-mulcl 10334  ax-mulrcl 10335  ax-mulcom 10336  ax-addass 10337  ax-mulass 10338  ax-distr 10339  ax-i2m1 10340  ax-1ne0 10341  ax-1rid 10342  ax-rnegex 10343  ax-rrecex 10344  ax-cnre 10345  ax-pre-lttri 10346  ax-pre-lttrn 10347  ax-pre-ltadd 10348  ax-pre-mulgt0 10349  ax-pre-sup 10350
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-fal 1615  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2550  df-eu 2586  df-clab 2763  df-cleq 2769  df-clel 2773  df-nfc 2920  df-ne 2969  df-nel 3075  df-ral 3094  df-rex 3095  df-reu 3096  df-rmo 3097  df-rab 3098  df-v 3399  df-sbc 3652  df-csb 3751  df-dif 3794  df-un 3796  df-in 3798  df-ss 3805  df-pss 3807  df-nul 4141  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-tp 4402  df-op 4404  df-uni 4672  df-iun 4755  df-br 4887  df-opab 4949  df-mpt 4966  df-tr 4988  df-id 5261  df-eprel 5266  df-po 5274  df-so 5275  df-fr 5314  df-we 5316  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-pred 5933  df-ord 5979  df-on 5980  df-lim 5981  df-suc 5982  df-iota 6099  df-fun 6137  df-fn 6138  df-f 6139  df-f1 6140  df-fo 6141  df-f1o 6142  df-fv 6143  df-riota 6883  df-ov 6925  df-oprab 6926  df-mpt2 6927  df-om 7344  df-1st 7445  df-2nd 7446  df-wrecs 7689  df-recs 7751  df-rdg 7789  df-1o 7843  df-2o 7844  df-er 8026  df-en 8242  df-dom 8243  df-sdom 8244  df-fin 8245  df-sup 8636  df-inf 8637  df-pnf 10413  df-mnf 10414  df-xr 10415  df-ltxr 10416  df-le 10417  df-sub 10608  df-neg 10609  df-div 11033  df-nn 11375  df-2 11438  df-3 11439  df-n0 11643  df-z 11729  df-uz 11993  df-q 12096  df-rp 12138  df-fz 12644  df-fl 12912  df-mod 12988  df-seq 13120  df-exp 13179  df-cj 14246  df-re 14247  df-im 14248  df-sqrt 14382  df-abs 14383  df-dvds 15388  df-gcd 15623  df-prm 15791  df-pc 15946
This theorem is referenced by:  pcmptdvds  16002  bposlem6  25466
  Copyright terms: Public domain W3C validator