MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pcmpt2 Structured version   Visualization version   GIF version

Theorem pcmpt2 16522
Description: Dividing two prime count maps yields a number with all dividing primes confined to an interval. (Contributed by Mario Carneiro, 14-Mar-2014.)
Hypotheses
Ref Expression
pcmpt.1 𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (𝑛𝐴), 1))
pcmpt.2 (𝜑 → ∀𝑛 ∈ ℙ 𝐴 ∈ ℕ0)
pcmpt.3 (𝜑𝑁 ∈ ℕ)
pcmpt.4 (𝜑𝑃 ∈ ℙ)
pcmpt.5 (𝑛 = 𝑃𝐴 = 𝐵)
pcmpt2.6 (𝜑𝑀 ∈ (ℤ𝑁))
Assertion
Ref Expression
pcmpt2 (𝜑 → (𝑃 pCnt ((seq1( · , 𝐹)‘𝑀) / (seq1( · , 𝐹)‘𝑁))) = if((𝑃𝑀 ∧ ¬ 𝑃𝑁), 𝐵, 0))
Distinct variable groups:   𝐵,𝑛   𝑃,𝑛
Allowed substitution hints:   𝜑(𝑛)   𝐴(𝑛)   𝐹(𝑛)   𝑀(𝑛)   𝑁(𝑛)

Proof of Theorem pcmpt2
StepHypRef Expression
1 pcmpt.4 . . 3 (𝜑𝑃 ∈ ℙ)
2 pcmpt.1 . . . . . . 7 𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (𝑛𝐴), 1))
3 pcmpt.2 . . . . . . 7 (𝜑 → ∀𝑛 ∈ ℙ 𝐴 ∈ ℕ0)
42, 3pcmptcl 16520 . . . . . 6 (𝜑 → (𝐹:ℕ⟶ℕ ∧ seq1( · , 𝐹):ℕ⟶ℕ))
54simprd 495 . . . . 5 (𝜑 → seq1( · , 𝐹):ℕ⟶ℕ)
6 pcmpt.3 . . . . . 6 (𝜑𝑁 ∈ ℕ)
7 pcmpt2.6 . . . . . 6 (𝜑𝑀 ∈ (ℤ𝑁))
8 eluznn 12587 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ (ℤ𝑁)) → 𝑀 ∈ ℕ)
96, 7, 8syl2anc 583 . . . . 5 (𝜑𝑀 ∈ ℕ)
105, 9ffvelrnd 6944 . . . 4 (𝜑 → (seq1( · , 𝐹)‘𝑀) ∈ ℕ)
1110nnzd 12354 . . 3 (𝜑 → (seq1( · , 𝐹)‘𝑀) ∈ ℤ)
1210nnne0d 11953 . . 3 (𝜑 → (seq1( · , 𝐹)‘𝑀) ≠ 0)
135, 6ffvelrnd 6944 . . 3 (𝜑 → (seq1( · , 𝐹)‘𝑁) ∈ ℕ)
14 pcdiv 16481 . . 3 ((𝑃 ∈ ℙ ∧ ((seq1( · , 𝐹)‘𝑀) ∈ ℤ ∧ (seq1( · , 𝐹)‘𝑀) ≠ 0) ∧ (seq1( · , 𝐹)‘𝑁) ∈ ℕ) → (𝑃 pCnt ((seq1( · , 𝐹)‘𝑀) / (seq1( · , 𝐹)‘𝑁))) = ((𝑃 pCnt (seq1( · , 𝐹)‘𝑀)) − (𝑃 pCnt (seq1( · , 𝐹)‘𝑁))))
151, 11, 12, 13, 14syl121anc 1373 . 2 (𝜑 → (𝑃 pCnt ((seq1( · , 𝐹)‘𝑀) / (seq1( · , 𝐹)‘𝑁))) = ((𝑃 pCnt (seq1( · , 𝐹)‘𝑀)) − (𝑃 pCnt (seq1( · , 𝐹)‘𝑁))))
16 pcmpt.5 . . . 4 (𝑛 = 𝑃𝐴 = 𝐵)
172, 3, 9, 1, 16pcmpt 16521 . . 3 (𝜑 → (𝑃 pCnt (seq1( · , 𝐹)‘𝑀)) = if(𝑃𝑀, 𝐵, 0))
182, 3, 6, 1, 16pcmpt 16521 . . 3 (𝜑 → (𝑃 pCnt (seq1( · , 𝐹)‘𝑁)) = if(𝑃𝑁, 𝐵, 0))
1917, 18oveq12d 7273 . 2 (𝜑 → ((𝑃 pCnt (seq1( · , 𝐹)‘𝑀)) − (𝑃 pCnt (seq1( · , 𝐹)‘𝑁))) = (if(𝑃𝑀, 𝐵, 0) − if(𝑃𝑁, 𝐵, 0)))
2016eleq1d 2823 . . . . . . . 8 (𝑛 = 𝑃 → (𝐴 ∈ ℕ0𝐵 ∈ ℕ0))
2120, 3, 1rspcdva 3554 . . . . . . 7 (𝜑𝐵 ∈ ℕ0)
2221nn0cnd 12225 . . . . . 6 (𝜑𝐵 ∈ ℂ)
2322subidd 11250 . . . . 5 (𝜑 → (𝐵𝐵) = 0)
2423adantr 480 . . . 4 ((𝜑𝑃𝑁) → (𝐵𝐵) = 0)
25 prmnn 16307 . . . . . . . . . 10 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
261, 25syl 17 . . . . . . . . 9 (𝜑𝑃 ∈ ℕ)
2726nnred 11918 . . . . . . . 8 (𝜑𝑃 ∈ ℝ)
2827adantr 480 . . . . . . 7 ((𝜑𝑃𝑁) → 𝑃 ∈ ℝ)
296nnred 11918 . . . . . . . 8 (𝜑𝑁 ∈ ℝ)
3029adantr 480 . . . . . . 7 ((𝜑𝑃𝑁) → 𝑁 ∈ ℝ)
319nnred 11918 . . . . . . . 8 (𝜑𝑀 ∈ ℝ)
3231adantr 480 . . . . . . 7 ((𝜑𝑃𝑁) → 𝑀 ∈ ℝ)
33 simpr 484 . . . . . . 7 ((𝜑𝑃𝑁) → 𝑃𝑁)
34 eluzle 12524 . . . . . . . . 9 (𝑀 ∈ (ℤ𝑁) → 𝑁𝑀)
357, 34syl 17 . . . . . . . 8 (𝜑𝑁𝑀)
3635adantr 480 . . . . . . 7 ((𝜑𝑃𝑁) → 𝑁𝑀)
3728, 30, 32, 33, 36letrd 11062 . . . . . 6 ((𝜑𝑃𝑁) → 𝑃𝑀)
3837iftrued 4464 . . . . 5 ((𝜑𝑃𝑁) → if(𝑃𝑀, 𝐵, 0) = 𝐵)
39 iftrue 4462 . . . . . 6 (𝑃𝑁 → if(𝑃𝑁, 𝐵, 0) = 𝐵)
4039adantl 481 . . . . 5 ((𝜑𝑃𝑁) → if(𝑃𝑁, 𝐵, 0) = 𝐵)
4138, 40oveq12d 7273 . . . 4 ((𝜑𝑃𝑁) → (if(𝑃𝑀, 𝐵, 0) − if(𝑃𝑁, 𝐵, 0)) = (𝐵𝐵))
42 simpr 484 . . . . . 6 ((𝑃𝑀 ∧ ¬ 𝑃𝑁) → ¬ 𝑃𝑁)
4342, 33nsyl3 138 . . . . 5 ((𝜑𝑃𝑁) → ¬ (𝑃𝑀 ∧ ¬ 𝑃𝑁))
4443iffalsed 4467 . . . 4 ((𝜑𝑃𝑁) → if((𝑃𝑀 ∧ ¬ 𝑃𝑁), 𝐵, 0) = 0)
4524, 41, 443eqtr4d 2788 . . 3 ((𝜑𝑃𝑁) → (if(𝑃𝑀, 𝐵, 0) − if(𝑃𝑁, 𝐵, 0)) = if((𝑃𝑀 ∧ ¬ 𝑃𝑁), 𝐵, 0))
46 iffalse 4465 . . . . . 6 𝑃𝑁 → if(𝑃𝑁, 𝐵, 0) = 0)
4746oveq2d 7271 . . . . 5 𝑃𝑁 → (if(𝑃𝑀, 𝐵, 0) − if(𝑃𝑁, 𝐵, 0)) = (if(𝑃𝑀, 𝐵, 0) − 0))
48 0cn 10898 . . . . . . 7 0 ∈ ℂ
49 ifcl 4501 . . . . . . 7 ((𝐵 ∈ ℂ ∧ 0 ∈ ℂ) → if(𝑃𝑀, 𝐵, 0) ∈ ℂ)
5022, 48, 49sylancl 585 . . . . . 6 (𝜑 → if(𝑃𝑀, 𝐵, 0) ∈ ℂ)
5150subid1d 11251 . . . . 5 (𝜑 → (if(𝑃𝑀, 𝐵, 0) − 0) = if(𝑃𝑀, 𝐵, 0))
5247, 51sylan9eqr 2801 . . . 4 ((𝜑 ∧ ¬ 𝑃𝑁) → (if(𝑃𝑀, 𝐵, 0) − if(𝑃𝑁, 𝐵, 0)) = if(𝑃𝑀, 𝐵, 0))
53 simpr 484 . . . . . 6 ((𝜑 ∧ ¬ 𝑃𝑁) → ¬ 𝑃𝑁)
5453biantrud 531 . . . . 5 ((𝜑 ∧ ¬ 𝑃𝑁) → (𝑃𝑀 ↔ (𝑃𝑀 ∧ ¬ 𝑃𝑁)))
5554ifbid 4479 . . . 4 ((𝜑 ∧ ¬ 𝑃𝑁) → if(𝑃𝑀, 𝐵, 0) = if((𝑃𝑀 ∧ ¬ 𝑃𝑁), 𝐵, 0))
5652, 55eqtrd 2778 . . 3 ((𝜑 ∧ ¬ 𝑃𝑁) → (if(𝑃𝑀, 𝐵, 0) − if(𝑃𝑁, 𝐵, 0)) = if((𝑃𝑀 ∧ ¬ 𝑃𝑁), 𝐵, 0))
5745, 56pm2.61dan 809 . 2 (𝜑 → (if(𝑃𝑀, 𝐵, 0) − if(𝑃𝑁, 𝐵, 0)) = if((𝑃𝑀 ∧ ¬ 𝑃𝑁), 𝐵, 0))
5815, 19, 573eqtrd 2782 1 (𝜑 → (𝑃 pCnt ((seq1( · , 𝐹)‘𝑀) / (seq1( · , 𝐹)‘𝑁))) = if((𝑃𝑀 ∧ ¬ 𝑃𝑁), 𝐵, 0))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1539  wcel 2108  wne 2942  wral 3063  ifcif 4456   class class class wbr 5070  cmpt 5153  wf 6414  cfv 6418  (class class class)co 7255  cc 10800  cr 10801  0cc0 10802  1c1 10803   · cmul 10807  cle 10941  cmin 11135   / cdiv 11562  cn 11903  0cn0 12163  cz 12249  cuz 12511  seqcseq 13649  cexp 13710  cprime 16304   pCnt cpc 16465
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-2o 8268  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-sup 9131  df-inf 9132  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-n0 12164  df-z 12250  df-uz 12512  df-q 12618  df-rp 12660  df-fz 13169  df-fl 13440  df-mod 13518  df-seq 13650  df-exp 13711  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-dvds 15892  df-gcd 16130  df-prm 16305  df-pc 16466
This theorem is referenced by:  pcmptdvds  16523  bposlem6  26342
  Copyright terms: Public domain W3C validator