MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pcmpt2 Structured version   Visualization version   GIF version

Theorem pcmpt2 16940
Description: Dividing two prime count maps yields a number with all dividing primes confined to an interval. (Contributed by Mario Carneiro, 14-Mar-2014.)
Hypotheses
Ref Expression
pcmpt.1 𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (𝑛𝐴), 1))
pcmpt.2 (𝜑 → ∀𝑛 ∈ ℙ 𝐴 ∈ ℕ0)
pcmpt.3 (𝜑𝑁 ∈ ℕ)
pcmpt.4 (𝜑𝑃 ∈ ℙ)
pcmpt.5 (𝑛 = 𝑃𝐴 = 𝐵)
pcmpt2.6 (𝜑𝑀 ∈ (ℤ𝑁))
Assertion
Ref Expression
pcmpt2 (𝜑 → (𝑃 pCnt ((seq1( · , 𝐹)‘𝑀) / (seq1( · , 𝐹)‘𝑁))) = if((𝑃𝑀 ∧ ¬ 𝑃𝑁), 𝐵, 0))
Distinct variable groups:   𝐵,𝑛   𝑃,𝑛
Allowed substitution hints:   𝜑(𝑛)   𝐴(𝑛)   𝐹(𝑛)   𝑀(𝑛)   𝑁(𝑛)

Proof of Theorem pcmpt2
StepHypRef Expression
1 pcmpt.4 . . 3 (𝜑𝑃 ∈ ℙ)
2 pcmpt.1 . . . . . . 7 𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (𝑛𝐴), 1))
3 pcmpt.2 . . . . . . 7 (𝜑 → ∀𝑛 ∈ ℙ 𝐴 ∈ ℕ0)
42, 3pcmptcl 16938 . . . . . 6 (𝜑 → (𝐹:ℕ⟶ℕ ∧ seq1( · , 𝐹):ℕ⟶ℕ))
54simprd 495 . . . . 5 (𝜑 → seq1( · , 𝐹):ℕ⟶ℕ)
6 pcmpt.3 . . . . . 6 (𝜑𝑁 ∈ ℕ)
7 pcmpt2.6 . . . . . 6 (𝜑𝑀 ∈ (ℤ𝑁))
8 eluznn 12983 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ (ℤ𝑁)) → 𝑀 ∈ ℕ)
96, 7, 8syl2anc 583 . . . . 5 (𝜑𝑀 ∈ ℕ)
105, 9ffvelcdmd 7119 . . . 4 (𝜑 → (seq1( · , 𝐹)‘𝑀) ∈ ℕ)
1110nnzd 12666 . . 3 (𝜑 → (seq1( · , 𝐹)‘𝑀) ∈ ℤ)
1210nnne0d 12343 . . 3 (𝜑 → (seq1( · , 𝐹)‘𝑀) ≠ 0)
135, 6ffvelcdmd 7119 . . 3 (𝜑 → (seq1( · , 𝐹)‘𝑁) ∈ ℕ)
14 pcdiv 16899 . . 3 ((𝑃 ∈ ℙ ∧ ((seq1( · , 𝐹)‘𝑀) ∈ ℤ ∧ (seq1( · , 𝐹)‘𝑀) ≠ 0) ∧ (seq1( · , 𝐹)‘𝑁) ∈ ℕ) → (𝑃 pCnt ((seq1( · , 𝐹)‘𝑀) / (seq1( · , 𝐹)‘𝑁))) = ((𝑃 pCnt (seq1( · , 𝐹)‘𝑀)) − (𝑃 pCnt (seq1( · , 𝐹)‘𝑁))))
151, 11, 12, 13, 14syl121anc 1375 . 2 (𝜑 → (𝑃 pCnt ((seq1( · , 𝐹)‘𝑀) / (seq1( · , 𝐹)‘𝑁))) = ((𝑃 pCnt (seq1( · , 𝐹)‘𝑀)) − (𝑃 pCnt (seq1( · , 𝐹)‘𝑁))))
16 pcmpt.5 . . . 4 (𝑛 = 𝑃𝐴 = 𝐵)
172, 3, 9, 1, 16pcmpt 16939 . . 3 (𝜑 → (𝑃 pCnt (seq1( · , 𝐹)‘𝑀)) = if(𝑃𝑀, 𝐵, 0))
182, 3, 6, 1, 16pcmpt 16939 . . 3 (𝜑 → (𝑃 pCnt (seq1( · , 𝐹)‘𝑁)) = if(𝑃𝑁, 𝐵, 0))
1917, 18oveq12d 7466 . 2 (𝜑 → ((𝑃 pCnt (seq1( · , 𝐹)‘𝑀)) − (𝑃 pCnt (seq1( · , 𝐹)‘𝑁))) = (if(𝑃𝑀, 𝐵, 0) − if(𝑃𝑁, 𝐵, 0)))
2016eleq1d 2829 . . . . . . . 8 (𝑛 = 𝑃 → (𝐴 ∈ ℕ0𝐵 ∈ ℕ0))
2120, 3, 1rspcdva 3636 . . . . . . 7 (𝜑𝐵 ∈ ℕ0)
2221nn0cnd 12615 . . . . . 6 (𝜑𝐵 ∈ ℂ)
2322subidd 11635 . . . . 5 (𝜑 → (𝐵𝐵) = 0)
2423adantr 480 . . . 4 ((𝜑𝑃𝑁) → (𝐵𝐵) = 0)
25 prmnn 16721 . . . . . . . . . 10 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
261, 25syl 17 . . . . . . . . 9 (𝜑𝑃 ∈ ℕ)
2726nnred 12308 . . . . . . . 8 (𝜑𝑃 ∈ ℝ)
2827adantr 480 . . . . . . 7 ((𝜑𝑃𝑁) → 𝑃 ∈ ℝ)
296nnred 12308 . . . . . . . 8 (𝜑𝑁 ∈ ℝ)
3029adantr 480 . . . . . . 7 ((𝜑𝑃𝑁) → 𝑁 ∈ ℝ)
319nnred 12308 . . . . . . . 8 (𝜑𝑀 ∈ ℝ)
3231adantr 480 . . . . . . 7 ((𝜑𝑃𝑁) → 𝑀 ∈ ℝ)
33 simpr 484 . . . . . . 7 ((𝜑𝑃𝑁) → 𝑃𝑁)
34 eluzle 12916 . . . . . . . . 9 (𝑀 ∈ (ℤ𝑁) → 𝑁𝑀)
357, 34syl 17 . . . . . . . 8 (𝜑𝑁𝑀)
3635adantr 480 . . . . . . 7 ((𝜑𝑃𝑁) → 𝑁𝑀)
3728, 30, 32, 33, 36letrd 11447 . . . . . 6 ((𝜑𝑃𝑁) → 𝑃𝑀)
3837iftrued 4556 . . . . 5 ((𝜑𝑃𝑁) → if(𝑃𝑀, 𝐵, 0) = 𝐵)
39 iftrue 4554 . . . . . 6 (𝑃𝑁 → if(𝑃𝑁, 𝐵, 0) = 𝐵)
4039adantl 481 . . . . 5 ((𝜑𝑃𝑁) → if(𝑃𝑁, 𝐵, 0) = 𝐵)
4138, 40oveq12d 7466 . . . 4 ((𝜑𝑃𝑁) → (if(𝑃𝑀, 𝐵, 0) − if(𝑃𝑁, 𝐵, 0)) = (𝐵𝐵))
42 simpr 484 . . . . . 6 ((𝑃𝑀 ∧ ¬ 𝑃𝑁) → ¬ 𝑃𝑁)
4342, 33nsyl3 138 . . . . 5 ((𝜑𝑃𝑁) → ¬ (𝑃𝑀 ∧ ¬ 𝑃𝑁))
4443iffalsed 4559 . . . 4 ((𝜑𝑃𝑁) → if((𝑃𝑀 ∧ ¬ 𝑃𝑁), 𝐵, 0) = 0)
4524, 41, 443eqtr4d 2790 . . 3 ((𝜑𝑃𝑁) → (if(𝑃𝑀, 𝐵, 0) − if(𝑃𝑁, 𝐵, 0)) = if((𝑃𝑀 ∧ ¬ 𝑃𝑁), 𝐵, 0))
46 iffalse 4557 . . . . . 6 𝑃𝑁 → if(𝑃𝑁, 𝐵, 0) = 0)
4746oveq2d 7464 . . . . 5 𝑃𝑁 → (if(𝑃𝑀, 𝐵, 0) − if(𝑃𝑁, 𝐵, 0)) = (if(𝑃𝑀, 𝐵, 0) − 0))
48 0cn 11282 . . . . . . 7 0 ∈ ℂ
49 ifcl 4593 . . . . . . 7 ((𝐵 ∈ ℂ ∧ 0 ∈ ℂ) → if(𝑃𝑀, 𝐵, 0) ∈ ℂ)
5022, 48, 49sylancl 585 . . . . . 6 (𝜑 → if(𝑃𝑀, 𝐵, 0) ∈ ℂ)
5150subid1d 11636 . . . . 5 (𝜑 → (if(𝑃𝑀, 𝐵, 0) − 0) = if(𝑃𝑀, 𝐵, 0))
5247, 51sylan9eqr 2802 . . . 4 ((𝜑 ∧ ¬ 𝑃𝑁) → (if(𝑃𝑀, 𝐵, 0) − if(𝑃𝑁, 𝐵, 0)) = if(𝑃𝑀, 𝐵, 0))
53 simpr 484 . . . . . 6 ((𝜑 ∧ ¬ 𝑃𝑁) → ¬ 𝑃𝑁)
5453biantrud 531 . . . . 5 ((𝜑 ∧ ¬ 𝑃𝑁) → (𝑃𝑀 ↔ (𝑃𝑀 ∧ ¬ 𝑃𝑁)))
5554ifbid 4571 . . . 4 ((𝜑 ∧ ¬ 𝑃𝑁) → if(𝑃𝑀, 𝐵, 0) = if((𝑃𝑀 ∧ ¬ 𝑃𝑁), 𝐵, 0))
5652, 55eqtrd 2780 . . 3 ((𝜑 ∧ ¬ 𝑃𝑁) → (if(𝑃𝑀, 𝐵, 0) − if(𝑃𝑁, 𝐵, 0)) = if((𝑃𝑀 ∧ ¬ 𝑃𝑁), 𝐵, 0))
5745, 56pm2.61dan 812 . 2 (𝜑 → (if(𝑃𝑀, 𝐵, 0) − if(𝑃𝑁, 𝐵, 0)) = if((𝑃𝑀 ∧ ¬ 𝑃𝑁), 𝐵, 0))
5815, 19, 573eqtrd 2784 1 (𝜑 → (𝑃 pCnt ((seq1( · , 𝐹)‘𝑀) / (seq1( · , 𝐹)‘𝑁))) = if((𝑃𝑀 ∧ ¬ 𝑃𝑁), 𝐵, 0))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1537  wcel 2108  wne 2946  wral 3067  ifcif 4548   class class class wbr 5166  cmpt 5249  wf 6569  cfv 6573  (class class class)co 7448  cc 11182  cr 11183  0cc0 11184  1c1 11185   · cmul 11189  cle 11325  cmin 11520   / cdiv 11947  cn 12293  0cn0 12553  cz 12639  cuz 12903  seqcseq 14052  cexp 14112  cprime 16718   pCnt cpc 16883
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-sup 9511  df-inf 9512  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-n0 12554  df-z 12640  df-uz 12904  df-q 13014  df-rp 13058  df-fz 13568  df-fl 13843  df-mod 13921  df-seq 14053  df-exp 14113  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-dvds 16303  df-gcd 16541  df-prm 16719  df-pc 16884
This theorem is referenced by:  pcmptdvds  16941  bposlem6  27351
  Copyright terms: Public domain W3C validator