Proof of Theorem pcmpt2
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | pcmpt.4 | . . 3
⊢ (𝜑 → 𝑃 ∈ ℙ) | 
| 2 |  | pcmpt.1 | . . . . . . 7
⊢ 𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (𝑛↑𝐴), 1)) | 
| 3 |  | pcmpt.2 | . . . . . . 7
⊢ (𝜑 → ∀𝑛 ∈ ℙ 𝐴 ∈
ℕ0) | 
| 4 | 2, 3 | pcmptcl 16930 | . . . . . 6
⊢ (𝜑 → (𝐹:ℕ⟶ℕ ∧ seq1( ·
, 𝐹):ℕ⟶ℕ)) | 
| 5 | 4 | simprd 495 | . . . . 5
⊢ (𝜑 → seq1( · , 𝐹):ℕ⟶ℕ) | 
| 6 |  | pcmpt.3 | . . . . . 6
⊢ (𝜑 → 𝑁 ∈ ℕ) | 
| 7 |  | pcmpt2.6 | . . . . . 6
⊢ (𝜑 → 𝑀 ∈ (ℤ≥‘𝑁)) | 
| 8 |  | eluznn 12961 | . . . . . 6
⊢ ((𝑁 ∈ ℕ ∧ 𝑀 ∈
(ℤ≥‘𝑁)) → 𝑀 ∈ ℕ) | 
| 9 | 6, 7, 8 | syl2anc 584 | . . . . 5
⊢ (𝜑 → 𝑀 ∈ ℕ) | 
| 10 | 5, 9 | ffvelcdmd 7104 | . . . 4
⊢ (𝜑 → (seq1( · , 𝐹)‘𝑀) ∈ ℕ) | 
| 11 | 10 | nnzd 12642 | . . 3
⊢ (𝜑 → (seq1( · , 𝐹)‘𝑀) ∈ ℤ) | 
| 12 | 10 | nnne0d 12317 | . . 3
⊢ (𝜑 → (seq1( · , 𝐹)‘𝑀) ≠ 0) | 
| 13 | 5, 6 | ffvelcdmd 7104 | . . 3
⊢ (𝜑 → (seq1( · , 𝐹)‘𝑁) ∈ ℕ) | 
| 14 |  | pcdiv 16891 | . . 3
⊢ ((𝑃 ∈ ℙ ∧ ((seq1(
· , 𝐹)‘𝑀) ∈ ℤ ∧ (seq1(
· , 𝐹)‘𝑀) ≠ 0) ∧ (seq1( ·
, 𝐹)‘𝑁) ∈ ℕ) → (𝑃 pCnt ((seq1( · , 𝐹)‘𝑀) / (seq1( · , 𝐹)‘𝑁))) = ((𝑃 pCnt (seq1( · , 𝐹)‘𝑀)) − (𝑃 pCnt (seq1( · , 𝐹)‘𝑁)))) | 
| 15 | 1, 11, 12, 13, 14 | syl121anc 1376 | . 2
⊢ (𝜑 → (𝑃 pCnt ((seq1( · , 𝐹)‘𝑀) / (seq1( · , 𝐹)‘𝑁))) = ((𝑃 pCnt (seq1( · , 𝐹)‘𝑀)) − (𝑃 pCnt (seq1( · , 𝐹)‘𝑁)))) | 
| 16 |  | pcmpt.5 | . . . 4
⊢ (𝑛 = 𝑃 → 𝐴 = 𝐵) | 
| 17 | 2, 3, 9, 1, 16 | pcmpt 16931 | . . 3
⊢ (𝜑 → (𝑃 pCnt (seq1( · , 𝐹)‘𝑀)) = if(𝑃 ≤ 𝑀, 𝐵, 0)) | 
| 18 | 2, 3, 6, 1, 16 | pcmpt 16931 | . . 3
⊢ (𝜑 → (𝑃 pCnt (seq1( · , 𝐹)‘𝑁)) = if(𝑃 ≤ 𝑁, 𝐵, 0)) | 
| 19 | 17, 18 | oveq12d 7450 | . 2
⊢ (𝜑 → ((𝑃 pCnt (seq1( · , 𝐹)‘𝑀)) − (𝑃 pCnt (seq1( · , 𝐹)‘𝑁))) = (if(𝑃 ≤ 𝑀, 𝐵, 0) − if(𝑃 ≤ 𝑁, 𝐵, 0))) | 
| 20 | 16 | eleq1d 2825 | . . . . . . . 8
⊢ (𝑛 = 𝑃 → (𝐴 ∈ ℕ0 ↔ 𝐵 ∈
ℕ0)) | 
| 21 | 20, 3, 1 | rspcdva 3622 | . . . . . . 7
⊢ (𝜑 → 𝐵 ∈
ℕ0) | 
| 22 | 21 | nn0cnd 12591 | . . . . . 6
⊢ (𝜑 → 𝐵 ∈ ℂ) | 
| 23 | 22 | subidd 11609 | . . . . 5
⊢ (𝜑 → (𝐵 − 𝐵) = 0) | 
| 24 | 23 | adantr 480 | . . . 4
⊢ ((𝜑 ∧ 𝑃 ≤ 𝑁) → (𝐵 − 𝐵) = 0) | 
| 25 |  | prmnn 16712 | . . . . . . . . . 10
⊢ (𝑃 ∈ ℙ → 𝑃 ∈
ℕ) | 
| 26 | 1, 25 | syl 17 | . . . . . . . . 9
⊢ (𝜑 → 𝑃 ∈ ℕ) | 
| 27 | 26 | nnred 12282 | . . . . . . . 8
⊢ (𝜑 → 𝑃 ∈ ℝ) | 
| 28 | 27 | adantr 480 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑃 ≤ 𝑁) → 𝑃 ∈ ℝ) | 
| 29 | 6 | nnred 12282 | . . . . . . . 8
⊢ (𝜑 → 𝑁 ∈ ℝ) | 
| 30 | 29 | adantr 480 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑃 ≤ 𝑁) → 𝑁 ∈ ℝ) | 
| 31 | 9 | nnred 12282 | . . . . . . . 8
⊢ (𝜑 → 𝑀 ∈ ℝ) | 
| 32 | 31 | adantr 480 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑃 ≤ 𝑁) → 𝑀 ∈ ℝ) | 
| 33 |  | simpr 484 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑃 ≤ 𝑁) → 𝑃 ≤ 𝑁) | 
| 34 |  | eluzle 12892 | . . . . . . . . 9
⊢ (𝑀 ∈
(ℤ≥‘𝑁) → 𝑁 ≤ 𝑀) | 
| 35 | 7, 34 | syl 17 | . . . . . . . 8
⊢ (𝜑 → 𝑁 ≤ 𝑀) | 
| 36 | 35 | adantr 480 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑃 ≤ 𝑁) → 𝑁 ≤ 𝑀) | 
| 37 | 28, 30, 32, 33, 36 | letrd 11419 | . . . . . 6
⊢ ((𝜑 ∧ 𝑃 ≤ 𝑁) → 𝑃 ≤ 𝑀) | 
| 38 | 37 | iftrued 4532 | . . . . 5
⊢ ((𝜑 ∧ 𝑃 ≤ 𝑁) → if(𝑃 ≤ 𝑀, 𝐵, 0) = 𝐵) | 
| 39 |  | iftrue 4530 | . . . . . 6
⊢ (𝑃 ≤ 𝑁 → if(𝑃 ≤ 𝑁, 𝐵, 0) = 𝐵) | 
| 40 | 39 | adantl 481 | . . . . 5
⊢ ((𝜑 ∧ 𝑃 ≤ 𝑁) → if(𝑃 ≤ 𝑁, 𝐵, 0) = 𝐵) | 
| 41 | 38, 40 | oveq12d 7450 | . . . 4
⊢ ((𝜑 ∧ 𝑃 ≤ 𝑁) → (if(𝑃 ≤ 𝑀, 𝐵, 0) − if(𝑃 ≤ 𝑁, 𝐵, 0)) = (𝐵 − 𝐵)) | 
| 42 |  | simpr 484 | . . . . . 6
⊢ ((𝑃 ≤ 𝑀 ∧ ¬ 𝑃 ≤ 𝑁) → ¬ 𝑃 ≤ 𝑁) | 
| 43 | 42, 33 | nsyl3 138 | . . . . 5
⊢ ((𝜑 ∧ 𝑃 ≤ 𝑁) → ¬ (𝑃 ≤ 𝑀 ∧ ¬ 𝑃 ≤ 𝑁)) | 
| 44 | 43 | iffalsed 4535 | . . . 4
⊢ ((𝜑 ∧ 𝑃 ≤ 𝑁) → if((𝑃 ≤ 𝑀 ∧ ¬ 𝑃 ≤ 𝑁), 𝐵, 0) = 0) | 
| 45 | 24, 41, 44 | 3eqtr4d 2786 | . . 3
⊢ ((𝜑 ∧ 𝑃 ≤ 𝑁) → (if(𝑃 ≤ 𝑀, 𝐵, 0) − if(𝑃 ≤ 𝑁, 𝐵, 0)) = if((𝑃 ≤ 𝑀 ∧ ¬ 𝑃 ≤ 𝑁), 𝐵, 0)) | 
| 46 |  | iffalse 4533 | . . . . . 6
⊢ (¬
𝑃 ≤ 𝑁 → if(𝑃 ≤ 𝑁, 𝐵, 0) = 0) | 
| 47 | 46 | oveq2d 7448 | . . . . 5
⊢ (¬
𝑃 ≤ 𝑁 → (if(𝑃 ≤ 𝑀, 𝐵, 0) − if(𝑃 ≤ 𝑁, 𝐵, 0)) = (if(𝑃 ≤ 𝑀, 𝐵, 0) − 0)) | 
| 48 |  | 0cn 11254 | . . . . . . 7
⊢ 0 ∈
ℂ | 
| 49 |  | ifcl 4570 | . . . . . . 7
⊢ ((𝐵 ∈ ℂ ∧ 0 ∈
ℂ) → if(𝑃 ≤
𝑀, 𝐵, 0) ∈ ℂ) | 
| 50 | 22, 48, 49 | sylancl 586 | . . . . . 6
⊢ (𝜑 → if(𝑃 ≤ 𝑀, 𝐵, 0) ∈ ℂ) | 
| 51 | 50 | subid1d 11610 | . . . . 5
⊢ (𝜑 → (if(𝑃 ≤ 𝑀, 𝐵, 0) − 0) = if(𝑃 ≤ 𝑀, 𝐵, 0)) | 
| 52 | 47, 51 | sylan9eqr 2798 | . . . 4
⊢ ((𝜑 ∧ ¬ 𝑃 ≤ 𝑁) → (if(𝑃 ≤ 𝑀, 𝐵, 0) − if(𝑃 ≤ 𝑁, 𝐵, 0)) = if(𝑃 ≤ 𝑀, 𝐵, 0)) | 
| 53 |  | simpr 484 | . . . . . 6
⊢ ((𝜑 ∧ ¬ 𝑃 ≤ 𝑁) → ¬ 𝑃 ≤ 𝑁) | 
| 54 | 53 | biantrud 531 | . . . . 5
⊢ ((𝜑 ∧ ¬ 𝑃 ≤ 𝑁) → (𝑃 ≤ 𝑀 ↔ (𝑃 ≤ 𝑀 ∧ ¬ 𝑃 ≤ 𝑁))) | 
| 55 | 54 | ifbid 4548 | . . . 4
⊢ ((𝜑 ∧ ¬ 𝑃 ≤ 𝑁) → if(𝑃 ≤ 𝑀, 𝐵, 0) = if((𝑃 ≤ 𝑀 ∧ ¬ 𝑃 ≤ 𝑁), 𝐵, 0)) | 
| 56 | 52, 55 | eqtrd 2776 | . . 3
⊢ ((𝜑 ∧ ¬ 𝑃 ≤ 𝑁) → (if(𝑃 ≤ 𝑀, 𝐵, 0) − if(𝑃 ≤ 𝑁, 𝐵, 0)) = if((𝑃 ≤ 𝑀 ∧ ¬ 𝑃 ≤ 𝑁), 𝐵, 0)) | 
| 57 | 45, 56 | pm2.61dan 812 | . 2
⊢ (𝜑 → (if(𝑃 ≤ 𝑀, 𝐵, 0) − if(𝑃 ≤ 𝑁, 𝐵, 0)) = if((𝑃 ≤ 𝑀 ∧ ¬ 𝑃 ≤ 𝑁), 𝐵, 0)) | 
| 58 | 15, 19, 57 | 3eqtrd 2780 | 1
⊢ (𝜑 → (𝑃 pCnt ((seq1( · , 𝐹)‘𝑀) / (seq1( · , 𝐹)‘𝑁))) = if((𝑃 ≤ 𝑀 ∧ ¬ 𝑃 ≤ 𝑁), 𝐵, 0)) |